class III extradiol ring-cleavage dioxygenase family protein may catalyze the incorporation of both atoms of molecular oxygen into substrates resulting in the cleavage of aromatic rings
Subunit B of Class III Extradiol ring-cleavage dioxygenases; Dioxygenases catalyze the ...
14-273
4.98e-58
Subunit B of Class III Extradiol ring-cleavage dioxygenases; Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site of the aromatic ring. Intradiol enzymes cleave the aromatic ring between two hydroxyl groups, whereas extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Extradiol dioxygenases can be further divided into three classes. Class I and II enzymes are evolutionary related and show sequence similarity, with the two-domain class II enzymes evolving from the class I enzyme through gene duplication. Class III enzymes are different in sequence and structure and usually have two subunits, designated A and B. This model represents the catalytic subunit B of extradiol dioxygenase class III enzymes. Enzymes belonging to this family include Protocatechuate 4,5-dioxygenase (LigAB), 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB), 4,5-DOPA Dioxygenase, 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, and 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase (HPCD). There are also some family members that do not show the typical dioxygenase activity.
The actual alignment was detected with superfamily member cd07371:
Pssm-ID: 444999 Cd Length: 268 Bit Score: 187.29 E-value: 4.98e-58
The alpha and beta subunits of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1, ...
14-273
4.98e-58
The alpha and beta subunits of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol; This subfamily contains both alpha and beta subunits of 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO), which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, an intermediate during p-chloronitrobenzene degradation. 2A5CPDO is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. Alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication.
Pssm-ID: 153383 Cd Length: 268 Bit Score: 187.29 E-value: 4.98e-58
The alpha and beta subunits of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1, ...
14-273
4.98e-58
The alpha and beta subunits of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol; This subfamily contains both alpha and beta subunits of 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO), which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, an intermediate during p-chloronitrobenzene degradation. 2A5CPDO is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. Alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication.
Pssm-ID: 153383 Cd Length: 268 Bit Score: 187.29 E-value: 4.98e-58
The alpha subunit of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1, ...
12-273
8.57e-54
The alpha subunit of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol; 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO) catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, which is an intermediate during p-chloronitrobenzene degradation. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. The alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication. This model describes the alpha subunit, which does not contain a potential metal binding site and may not possess catalytic activity.
Pssm-ID: 153385 Cd Length: 271 Bit Score: 176.63 E-value: 8.57e-54
The beta subunit of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1, ...
4-273
7.26e-31
The beta subunit of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol; 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO), catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, which is an intermediate during p-chloronitrobenzene degradation. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active 2A5CPDO enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. The alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication. This model describes the beta subunit, which contains a putative metal binding site with two conserved histidines; these residues are equivalent to two out of three Fe(II) binding residues present in the catalytic subunit dioxygenase LigB. The alpha subunit does not contain these potential metal binding residues. The 2A5CPDO beta subunit may be the catalytic subunit of the enzyme.
Pssm-ID: 153384 Cd Length: 294 Bit Score: 117.39 E-value: 7.26e-31
Class III extradiol dioxygenases with similarity to homoprotocatechuate 2,3-dioxygenase, which ...
14-274
1.36e-21
Class III extradiol dioxygenases with similarity to homoprotocatechuate 2,3-dioxygenase, which catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate; This subfamily of class III extradiol dioxygenases consists of two types of proteins with known enzymatic activities; 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase (HPCD) and 2-amino-5-chlorophenol 1,6-dioxygenase. HPCD catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate (hpca), a central intermediate in the bacterial degradation of aromatic compounds. The enzyme incorporates both atoms of molecular oxygen into hpca, resulting in aromatic ring-opening to yield the product alpha-hydroxy-delta-carboxymethyl cis-muconic semialdehyde. 2-amino-5-chlorophenol 1,6-dioxygenase catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, which is an intermediate during p-chloronitrobenzene degradation. The enzyme is probably a heterotetramer composed of two alpha and two beta subunits. Alpha and beta subunits share significant sequence similarity and both belong to this family. Like all Class III extradiol dioxygenases, these enzymes use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon.
Pssm-ID: 153374 Cd Length: 272 Bit Score: 91.81 E-value: 1.36e-21
The Class III extradiol dioxygenase, homoprotocatechuate 2,3-dioxygenase, catalyzes the key ...
46-216
6.93e-13
The Class III extradiol dioxygenase, homoprotocatechuate 2,3-dioxygenase, catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate; 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase (HPCD) catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate (hpca), a central intermediate in the bacterial degradation of aromatic compounds. The enzyme incorporates both atoms of molecular oxygen into hpca, resulting in aromatic ring-opening to yield alpha-hydroxy-delta-carboxymethyl cis-muconic semialdehyde. HPCD is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon.
Pssm-ID: 153382 Cd Length: 280 Bit Score: 67.35 E-value: 6.93e-13
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options