NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1002291118|ref|XP_015649900|]
View 

THO complex subunit 4D isoform X1 [Oryza sativa Japonica Group]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
90-163 3.67e-41

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


:

Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 136.97  E-value: 3.67e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12680     1 TKLLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQ 74
PABP-1234 super family cl31127
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
89-271 2.50e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


The actual alignment was detected with superfamily member TIGR01628:

Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 57.51  E-value: 2.50e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK------AMKI 162
Cdd:TIGR01628 285 GVNLYVKNLDDTVTDEKLRELFSECGEITSAKVMLDEKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKplyvalAQRK 364
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118 163 E------------------------VIGSDLGLPMTPRINVVGASNGRPTRTVVMTPEIGQRGSGSSSRPTGPTVNRYNR 218
Cdd:TIGR01628 365 EqrrahlqdqfmqlqprmrqlpmgsPMGGAMGQPPYYGQGPQQQFNGQPLGWPRMSMMPTPMGPGGPLRPNGLAPMNAVR 444
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1002291118 219 GAFQAGRGRGRGRGRAPFQSQFQGRGTGSVRGRGQFQGRGRGRRQAGKTADEL 271
Cdd:TIGR01628 445 APSRNAQNAAQKPPMQPVMYPPNYQSLPLSQDLPQPQSTASQGGQNKKLAQVL 497
 
Name Accession Description Interval E-value
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
90-163 3.67e-41

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 136.97  E-value: 3.67e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12680     1 TKLLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQ 74
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
92-161 3.43e-15

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 68.80  E-value: 3.43e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMK 161
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM smart00360
RNA recognition motif;
91-162 8.91e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 67.62  E-value: 8.91e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118   91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDkETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
89-163 2.88e-10

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 55.87  E-value: 2.88e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:COG0724     1 SMKIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDREtGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVN 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
89-271 2.50e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 57.51  E-value: 2.50e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK------AMKI 162
Cdd:TIGR01628 285 GVNLYVKNLDDTVTDEKLRELFSECGEITSAKVMLDEKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKplyvalAQRK 364
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118 163 E------------------------VIGSDLGLPMTPRINVVGASNGRPTRTVVMTPEIGQRGSGSSSRPTGPTVNRYNR 218
Cdd:TIGR01628 365 EqrrahlqdqfmqlqprmrqlpmgsPMGGAMGQPPYYGQGPQQQFNGQPLGWPRMSMMPTPMGPGGPLRPNGLAPMNAVR 444
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1002291118 219 GAFQAGRGRGRGRGRAPFQSQFQGRGTGSVRGRGQFQGRGRGRRQAGKTADEL 271
Cdd:TIGR01628 445 APSRNAQNAAQKPPMQPVMYPPNYQSLPLSQDLPQPQSTASQGGQNKKLAQVL 497
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
90-164 7.72e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 44.03  E-value: 7.72e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKA--MKIEV 164
Cdd:TIGR01628 179 TNLYVKNLDPSVNEDKLRELFAKFGEITSAAVMKDGSGRSRGFAFVNFEKHEDAAKAVEEMNGKKIGLAKegKKLYV 255
 
Name Accession Description Interval E-value
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
90-163 3.67e-41

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 136.97  E-value: 3.67e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12680     1 TKLLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQ 74
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
90-164 5.34e-28

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 102.66  E-value: 5.34e-28
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12418     1 TRVRVSNLHPDVTEEDLRELFGRVGPVKSVKINYDRSGRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVEL 75
RRM_SKAR cd12681
RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; ...
90-162 1.94e-20

RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; This subgroup corresponds to the RRM of SKAR, also termed polymerase delta-interacting protein 3 (PDIP3), 46 kDa DNA polymerase delta interaction protein (PDIP46), belonging to the Aly/REF family of RNA binding proteins that have been implicated in coupling transcription with pre-mRNA splicing and nucleo-cytoplasmic mRNA transport. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion. SKAR contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410082 [Multi-domain]  Cd Length: 69  Bit Score: 82.70  E-value: 1.94e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVhfdgygRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12681     1 TRLTVSNLHPSVTEDDIVELFSVIGALKRARL------VRPGVAEVVYVRREDAITAIKKYNNRELDGQPMKC 67
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
92-163 4.67e-17

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 73.86  E-value: 4.67e-17
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
92-161 3.43e-15

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 68.80  E-value: 3.43e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMK 161
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM smart00360
RNA recognition motif;
91-162 8.91e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 67.62  E-value: 8.91e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118   91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDkETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
91-164 1.69e-12

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 61.84  E-value: 1.69e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKR-FAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12413     1 TLFVRNLPYDTTDEQLEELFSDVGPVKRcFVVKDKGKDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKVEL 75
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
90-165 9.84e-11

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 56.66  E-value: 9.84e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  90 TKLYISNLDYGVSNEDIKELF-SEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK-AMKIEVI 165
Cdd:cd12267     1 SKVIVSNLPKDVTEAQIREYFvSQIGPIKRVLLSYNEGGKSTGIANITFKRAGDATKAYDKFNGRLDDGNrKMKVEVV 78
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
89-163 2.88e-10

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 55.87  E-value: 2.88e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:COG0724     1 SMKIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDREtGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVN 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
89-271 2.50e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 57.51  E-value: 2.50e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK------AMKI 162
Cdd:TIGR01628 285 GVNLYVKNLDDTVTDEKLRELFSECGEITSAKVMLDEKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKplyvalAQRK 364
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118 163 E------------------------VIGSDLGLPMTPRINVVGASNGRPTRTVVMTPEIGQRGSGSSSRPTGPTVNRYNR 218
Cdd:TIGR01628 365 EqrrahlqdqfmqlqprmrqlpmgsPMGGAMGQPPYYGQGPQQQFNGQPLGWPRMSMMPTPMGPGGPLRPNGLAPMNAVR 444
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1002291118 219 GAFQAGRGRGRGRGRAPFQSQFQGRGTGSVRGRGQFQGRGRGRRQAGKTADEL 271
Cdd:TIGR01628 445 APSRNAQNAAQKPPMQPVMYPPNYQSLPLSQDLPQPQSTASQGGQNKKLAQVL 497
RRM2_HRB1_GBP2 cd21606
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, ...
89-162 1.03e-08

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410185 [Multi-domain]  Cd Length: 75  Bit Score: 51.21  E-value: 1.03e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd21606     1 GYEVFIANLPYSINWQALKDMFKECGDVLRADVELDYNGRSRGFGTVIYATEEEMHRAIDTFNGYELEGRVLEV 74
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
93-160 2.23e-07

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 47.22  E-value: 2.23e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  93 YISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRyNNVLLDGKAM 160
Cdd:cd12391     3 FVSNLDYSVPEDKIREIFSGCGEITDVRLVKNYKGKSKGYCYVEFKDEESAQKALKL-DRQPVEGRPM 69
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
92-162 3.31e-07

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 47.02  E-value: 3.31e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNgTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12352     1 LYVGNLDRQVTEDLILQLFSQIGPCKSCKMITEHGGNDP-YCFVEFYEHNHAAAALQAMNGRKILGKEVKV 70
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
90-162 3.93e-07

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 46.66  E-value: 3.93e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRF-AVHfdgygrPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12227     3 TTLWVGHLSKKVTQEELKNLFEEYGEIQSIdMIP------PRGCAYVCMKTRQDAHRALQKLKNHKLRGKSIKI 70
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
92-161 4.03e-07

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 46.51  E-value: 4.03e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPN-GTAEVVFTRRSDAIAALKRYNNVLLDGKAMK 161
Cdd:cd12393     4 VYVSNLPFSLTNNDLHQIFSKYGKVVKVTILKDKETRKSkGVAFVLFLDRESAHNAVRAMNNKELFGRTLK 74
RRM2_MYEF2 cd12660
RNA recognition motif 2 (RRM2) found in vertebrate myelin expression factor 2 (MEF-2); This ...
90-164 4.90e-07

RNA recognition motif 2 (RRM2) found in vertebrate myelin expression factor 2 (MEF-2); This subgroup corresponds to the RRM2 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity.


Pssm-ID: 410061 [Multi-domain]  Cd Length: 76  Bit Score: 46.55  E-value: 4.90e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12660     1 TTIFVANLDFKVGWKKLKEVFSMAGTVKRADIKEDKDGKSRGMGTVTFEQAIEAVQAISMFNGQFLFDRPMHVKM 75
RRM2_hnRNPM_like cd12386
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
92-162 7.18e-07

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409820 [Multi-domain]  Cd Length: 74  Bit Score: 45.81  E-value: 7.18e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12386     1 IFVANLDYKVGWKKLKEVFKLAGKVVRADIREDKDGKSRGMGVVQFEHPIEAVQAISMFNGQMLFDRPMRV 71
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
92-162 9.39e-07

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 45.59  E-value: 9.39e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDrETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRV 72
RRM2_PSRP2 cd21610
RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
91-164 9.51e-07

RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). PSRP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410189 [Multi-domain]  Cd Length: 79  Bit Score: 45.69  E-value: 9.51e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAV-HFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd21610     4 KVYVGNLAKTVTNELLKDFFSEKGKVLGAKVqRTPGTSKSNGFGFVSFSSEEDVEAAIQALNNSVLEGQKIRVNK 78
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
91-162 1.05e-06

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 45.78  E-value: 1.05e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12392     4 KLFVKGLPFSCTKEELEELFKQHGTVKDVRLVTYRNGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTISV 75
RRM2_SREK1 cd12260
RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 ...
93-163 1.09e-06

RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM2 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), which is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and it may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 contains two (some contain only one) RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1. It plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site.


Pssm-ID: 409705 [Multi-domain]  Cd Length: 85  Bit Score: 45.76  E-value: 1.09e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  93 YISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGyGRPNGTAEVVFTRRSDAIAALKrYNNVLLDGKAMKIE 163
Cdd:cd12260     8 YVGNLDPSTTADQLLEFFSQAGEVKYVRMAGDE-TQPTRYAFVEFAEQTSVINALK-LNGKMFGGRPLKVN 76
RRM2_hnRNPM cd12659
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein M ...
90-164 1.19e-06

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M); This subgroup corresponds to the RRM2 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif).


Pssm-ID: 410060 [Multi-domain]  Cd Length: 76  Bit Score: 45.42  E-value: 1.19e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12659     1 STVFVANLDYKVGWKKLKEVFSMAGVVVRADILEDKDGKSRGIGTVTFEQPIEAVQAISMFNGQLLFDRPMHVKM 75
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
90-164 1.60e-06

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 45.15  E-value: 1.60e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12674     1 TTLFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDPEtKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDF 76
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
92-163 1.69e-06

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 44.87  E-value: 1.69e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGR-PNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12240     1 LYVGNLSFYTTEEQIYELFSKCGDIKRIIMGLDKFKKtPCGFCFVEYYSREDAENAVKYLNGTKLDDRIIRVD 73
RRM2_Bruno_like cd12636
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar ...
91-151 2.42e-06

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410044 [Multi-domain]  Cd Length: 81  Bit Score: 44.87  E-value: 2.42e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYN 151
Cdd:cd12636     3 KLFVGMLSKKCNESDVRIMFSPYGSIEECTVLRDQNGKSRGCAFVTFTSRQCAVNAIKAMH 63
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
89-158 2.57e-06

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 44.57  E-value: 2.57e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK 158
Cdd:cd12381     1 GVNLYVKNLDDTIDDEKLREEFSPFGTITSAKVMTDEGGRSKGFGFVCFSSPEEATKAVTEMNGRIIGGK 70
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
91-164 3.13e-06

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 44.17  E-value: 3.13e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRP----NGTAEVVFTRRSDAIAALKRyNNVLLDGKamKIEV 164
Cdd:cd12298     2 EIRVRNLDFELDEEALRGIFEKFGEIESINIPKKQKNRKgrhnNGFAFVTFEDADSAESALQL-NGTLLDNR--KISV 76
RRM2_p54nrb_like cd12333
RNA recognition motif 2 (RRM2) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
92-151 4.29e-06

RNA recognition motif 2 (RRM2) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM2 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. The family also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409770 [Multi-domain]  Cd Length: 80  Bit Score: 43.84  E-value: 4.29e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYN 151
Cdd:cd12333     2 LRVKNLSPYVSNELLEQAFSQFGDVERAVVIVDDRGRSTGEGIVEFSRKPGAQAALKRCS 61
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
94-155 4.55e-06

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 43.65  E-value: 4.55e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  94 ISNLDYGVSNEDIKELFSEVGHLKRFAVHFDG-YGRPNGTAEVVFTRRSDAIAALK-----RYNNVLL 155
Cdd:cd12408     4 VTNLSEDATEEDLRELFRPFGPISRVYLAKDKeTGQSKGFAFVTFETREDAERAIEklngfGYDNLIL 71
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
92-158 5.05e-06

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 43.55  E-value: 5.05e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRfAVH--FDGYGRPNGTAEVVFTRRSDAIAALkRYNNVLLDGK 158
Cdd:cd12514     2 IRITNLPYDATPVDIQRFFEDHGVRPE-DVHllRNKKGRGNGEALVTFKSEGDAREVL-KLNGKKLGKR 68
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
89-164 5.39e-06

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 43.73  E-value: 5.39e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12651     2 DTNLYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDKLtGRPRGVAFVRYDKREEAQAAISALNGTIPEGGTQPLSV 78
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
92-163 5.82e-06

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 43.29  E-value: 5.82e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  92 LYISNLDYGVSNEDIK----ELFSEVGHLKRFAVHFDGYGRpnGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12246     2 LYINNLNEKIKKDELKrslyALFSQFGPVLDIVASKSLKMR--GQAFVVFKDVESATNALRALQGFPFYGKPMRIQ 75
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
92-163 5.98e-06

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 43.27  E-value: 5.98e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12398     3 VFVGNIPYDATEEQLKEIFSEVGPVVSFRLVTDrETGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVD 75
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
92-162 6.06e-06

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 43.74  E-value: 6.06e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLK--RFAVHFDGyGRPNGTAEVVFTRRSDAIAALKRYNN------VLLDGKAMKI 162
Cdd:cd12415     3 VFIRNLSFDTTEEDLKEFFSKFGEVKyaRIVLDKDT-GHSKGTAFVQFKTKESADKCIEAANDesedggLVLDGRKLIV 80
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
89-162 6.20e-06

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 43.28  E-value: 6.20e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLK---RFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd21619     1 SNTIYVGNIDMTINEDALEKIFSRYGQVEsvrRPPIHTDKADRTTGFGFIKYTDAESAERAMQQADGILLGRRRLVV 77
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
90-163 6.50e-06

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 43.38  E-value: 6.50e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLK--RFAVHFDGYGRpnGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12320     1 TKLIVKNVPFEATRKEIRELFSPFGQLKsvRLPKKFDGSHR--GFAFVEFVTKQEAQNAMEALKSTHLYGRHLVLE 74
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
91-163 6.59e-06

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 42.99  E-value: 6.59e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGH------LKRFA-VHFDgygrpngtaevvftRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12343     1 KIFVGNLPDAATSEELRALFEKYGKvtecdiVKNYAfVHME--------------KEEDAEDAIKALNGYEFMGSRINVE 66
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
91-159 8.28e-06

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 42.93  E-value: 8.28e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKA 159
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDREtGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRS 70
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
93-162 1.16e-05

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 42.68  E-value: 1.16e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  93 YISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKrYNNVLLDGKAMKI 162
Cdd:cd12306     3 YVGNVDYGTTPEELQAHFKSCGTINRVTILCDKFtGQPKGFAYIEFVDKSSVENALL-LNESEFRGRQIKV 72
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
91-162 1.21e-05

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 42.33  E-value: 1.21e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKrfAVHF---DGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12316     1 RLFVRNLPFTATEDELRELFEAFGKIS--EVHIpldKQTKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGRLLHV 73
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
92-163 1.40e-05

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 42.50  E-value: 1.40e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12671     9 VFVGNIPYEATEEQLKDIFSEVGPVVSFRLVYDrETGKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRVD 81
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
92-158 1.96e-05

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 41.90  E-value: 1.96e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGyGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK 158
Cdd:cd21605     4 IFVGNLPFDCTWEDLKDHFSQVGEVIRADIVTSR-GRHRGMGTVEFTNKEDVDRAISKFDHTMFMGR 69
RRM_FET cd12280
RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily ...
92-163 2.30e-05

RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily corresponds to the RRM of FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA-binding proteins. This ubiquitously expressed family of similarly structured proteins predominantly localizing to the nuclear, includes FUS (also known as TLS or Pigpen or hnRNP P2), EWS (also known as EWSR1), TAF15 (also known as hTAFII68 or TAF2N or RPB56), and Drosophila Cabeza (also known as SARFH). The corresponding coding genes of these proteins are involved in deleterious genomic rearrangements with transcription factor genes in a variety of human sarcomas and acute leukemias. All FET proteins interact with each other and are therefore likely to be part of the very same protein complexes, which suggests a general bridging role for FET proteins coupling RNA transcription, processing, transport, and DNA repair. The FET proteins contain multiple copies of a degenerate hexapeptide repeat motif at the N-terminus. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a putative zinc-finger domain, and a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is flanked by 3 arginine-glycine-glycine (RGG) boxes. FUS and EWS might have similar sequence specificity; both bind preferentially to GGUG-containing RNAs. FUS has also been shown to bind strongly to human telomeric RNA and to small low-copy-number RNAs tethered to the promoter of cyclin D1. To date, nothing is known about the RNA binding specificity of TAF15.


Pssm-ID: 409722 [Multi-domain]  Cd Length: 82  Bit Score: 42.01  E-value: 2.30e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFA------VHF---DGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12280     1 IFVSGLPPDVTIDELADLFGQIGIIKRYKdtwppkIKIytdKETGKPKGEATLTYEDPSAAKAAIEWFNGKEFRGNKIKV 80

                  .
gi 1002291118 163 E 163
Cdd:cd12280    81 S 81
RRM2_p54nrb cd12591
RNA recognition motif 2 (RRM2) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
92-149 2.79e-05

RNA recognition motif 2 (RRM2) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM2 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. It binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. p54nrb forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manner. It also forms a heterodimer with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410004 [Multi-domain]  Cd Length: 80  Bit Score: 41.82  E-value: 2.79e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKR 149
Cdd:cd12591     2 LTVKNLPQFVSNELLEEAFSVFGQVERAVVIVDDRGRPTGKGIVEFSGKPAARKALDR 59
RRM2_PSP1 cd12589
RNA recognition motif 2 (RRM2) found in vertebrate paraspeckle protein 1 (PSP1 or PSPC1); This ...
92-149 3.03e-05

RNA recognition motif 2 (RRM2) found in vertebrate paraspeckle protein 1 (PSP1 or PSPC1); This subgroup corresponds to the RRM2 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Although its cellular function remains unknown currently, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410002 [Multi-domain]  Cd Length: 80  Bit Score: 41.52  E-value: 3.03e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKR 149
Cdd:cd12589     2 LTVKNLSPVVSNELLEQAFSQFGPVERAVVIVDDRGRPTGKGFVEFAAKPPARKALER 59
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
91-160 3.38e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 41.52  E-value: 3.38e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYG----RPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAM 160
Cdd:cd12355     1 RLWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLFHKTGplkgQPRGYCFVTFETKEEAEKAIECLNGKLALGKKL 74
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
90-164 3.68e-05

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 41.46  E-value: 3.68e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12376     1 ANLYVSGLPKTMTQKELEQLFSQYGRIITSRILRDQLtGVSRGVGFIRFDKRIEAEEAIKGLNGQKPEGASEPITV 76
RRM3_PES4_MIP6 cd21603
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
93-164 5.24e-05

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410182 [Multi-domain]  Cd Length: 73  Bit Score: 40.73  E-value: 5.24e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  93 YISNLDYGVSNEDIKELFSEVGHLKrfAVHF-DGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKamKIEV 164
Cdd:cd21603     4 FVKNLPLDTNNDEILDFFSKVGPIK--SVFTsPKYKYNSLWAFVTYKKGSDTEKAIKLLNGTLFKGR--TIEV 72
RRM1_hnRNPM_like cd12385
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
91-162 6.88e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409819 [Multi-domain]  Cd Length: 76  Bit Score: 40.48  E-value: 6.88e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  91 KLYISNLDYGVSNEDIKELF-SEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12385     1 RVFISNIPYDYKWQDLKDLFrEKVGEVTYVELFKDENGKSRGCGIVEFKDLESVQKALETMNRYELKGRKLVV 73
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
91-152 6.89e-05

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 40.30  E-value: 6.89e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNN 152
Cdd:cd12361     1 KLFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQtGQSKGCAFVTFSTREEALRAIEALHN 63
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
90-160 7.34e-05

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 40.23  E-value: 7.34e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAM 160
Cdd:cd12380     2 TNVYVKNFGEDVDDDELKELFEKYGKITSAKVMKDDSGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKL 72
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
87-162 7.37e-05

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 40.48  E-value: 7.37e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  87 ETGtKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12566     1 ETG-RLFLRNLPYSTKEDDLQKLFSKFGEVSEVHVPIDkKTKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLIHI 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
90-164 7.72e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 44.03  E-value: 7.72e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKA--MKIEV 164
Cdd:TIGR01628 179 TNLYVKNLDPSVNEDKLRELFAKFGEITSAAVMKDGSGRSRGFAFVNFEKHEDAAKAVEEMNGKKIGLAKegKKLYV 255
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
92-163 8.15e-05

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 40.24  E-value: 8.15e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHfdgyGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12405     4 LVVNNLSYSATEESLQSVFEKATSIRIPQNN----GRPKGYAFVEFESVEDAKEALESCNNTEIEGRSIRLE 71
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
92-164 9.60e-05

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 40.30  E-value: 9.60e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKR-FAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12236     4 LFVARLSYDTTESKLRREFEKYGPIKRvRLVRDKKTGKSRGYAFIEFEHERDMKAAYKHADGKKIDGRRVLVDV 77
RRM2_PSF cd12590
RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
92-149 9.92e-05

RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM2 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. It promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). Moreover, PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410003 [Multi-domain]  Cd Length: 80  Bit Score: 39.99  E-value: 9.92e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKR 149
Cdd:cd12590     2 LSVRNLSPYVSNELLEEAFSQFGPIERAVVIVDDRGRSTGKGIVEFASKPAARKAFER 59
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
92-163 1.08e-04

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 39.98  E-value: 1.08e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12336     4 LFVGNLDPRVTEEILYELFLQAGPLEGVKIPKDPNGKPKNFAFVTFKHEVSVPYAIQLLNGIRLFGREIRIK 75
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
91-163 1.27e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 39.90  E-value: 1.27e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1002291118  91 KLYISNLDYGVSNEDIKELF-----SEVGHLKRFAV-HFDGyGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12239     3 RLYVKNLSKRVSEKDLKYIFgrfvdSSSEEKNMFDIrLMTE-GRMKGQAFITFPSEELAEKALNLTNGYVLHGKPMVVQ 80
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
90-164 1.39e-04

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 39.52  E-value: 1.39e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLK--RFAVHFD--GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12318     1 TTLFVKNLNFKTTEEALKKHFEKCGPIRsvTIAKKKDpkGPLLSMGYGFVEFKSPEAAQKALKQLQGTVLDGHALELKI 79
RRM1_RRT5 cd12409
RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) ...
91-162 1.51e-04

RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins; This subfamily corresponds to the RRM1 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409843 [Multi-domain]  Cd Length: 84  Bit Score: 39.57  E-value: 1.51e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRF----AVHFDGYG--RPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12409     1 RVYISNLSYSTTEEELEELLKDYKPVSVLipsyTVRGFRSRkhRPLGIAYAEFSSVEEAEKVVKDLNGKVFKGRKLFV 78
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
92-163 1.87e-04

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 39.31  E-value: 1.87e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLK--RFAVHFDGyGRPNGTAEVVFTRRSDAIAALKRyNNVLLDGKAMKIE 163
Cdd:cd12450     2 LFVGNLSWSATQDDLENFFSDCGEVVdvRIAMDRDD-GRSKGFGHVEFASAESAQKALEK-SGQDLGGREIRLD 73
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
89-148 2.04e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 39.72  E-value: 2.04e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALK 148
Cdd:cd12676     1 GRTLFVRNLPFDATEDELYSHFSQFGPLKYARVVKDPAtGRSKGTAFVKFKNKEDADNCLS 61
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
91-162 2.15e-04

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 39.33  E-value: 2.15e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd21609     1 RLYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRYtGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKV 73
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
92-163 2.24e-04

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 39.10  E-value: 2.24e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIA-ALKRYNNVLLDGKAMKIE 163
Cdd:cd12226     2 LFVGGLSPSITEDDLERRFSRFGTVSDVEIIRKKDAPDRGFAYIDLRTSEAALQkCLSTLNGVKWKGSRLKIQ 74
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
92-163 2.26e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 38.96  E-value: 2.26e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLK--RFAVhFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12397     1 LFVGNLSFETTEEDLRKHFAPAGKIRkvRMAT-FEDSGKCKGFAFVDFKEIESATNAVKGPINHSLNGRDLRVE 73
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
92-164 2.28e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 38.77  E-value: 2.28e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAvhfdgygRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKamKIEV 164
Cdd:cd12251     4 LYVRNLMLSTTEEKLRELFSEYGKVERVK-------KIKDYAFVHFEERDDAVKAMEEMNGKELEGS--EIEV 67
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
92-158 2.40e-04

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 39.27  E-value: 2.40e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  92 LYISNLDYGV--SNEDIKELFSEVGHLKR-FAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGK 158
Cdd:cd21622     6 LFVKNLDDTVitNKEDLEQLFSPFGQIVSsYLATYPGTGISKGFGFVAFSKPEDAAKAKETLNGVMVGRK 75
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
96-163 2.43e-04

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 39.14  E-value: 2.43e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1002291118  96 NLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12363     8 GLSLYTTERDLREVFSRYGPIEKVQVVYDQQtGRSRGFGFVYFESVEDAKEAKERLNGQEIDGRRIRVD 76
RRM2_La_like cd12292
RNA recognition motif 2 in La autoantigen (La or SS-B or LARP3), La-related protein 7 (LARP7 ...
89-164 2.47e-04

RNA recognition motif 2 in La autoantigen (La or SS-B or LARP3), La-related protein 7 (LARP7 or PIP7S) and similar proteins; This subfamily corresponds to the RRM2 of La and LARP7. La is a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. LARP7 is an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. It is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP), intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. LARP7 plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. Both La and LARP7 contain an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409734 [Multi-domain]  Cd Length: 74  Bit Score: 38.84  E-value: 2.47e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  89 GTKLYISNLDYGVSNEDIKELFSEVGHLKrfavHFDgYGRPNGTAEVVFTRRSDAIAALKRYNNVLLD-GKAMKIEV 164
Cdd:cd12292     1 GLILKITGIGPSVSRDDLKELFKQFGEVE----YVD-FTPGDDEGHVRFKTSEAAQKARDAYTGKLELnGKEWKLEI 72
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
91-157 2.82e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 38.69  E-value: 2.82e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDG 157
Cdd:cd12414     1 RLIVRNLPFKCTEDDLKKLFSKFGKVLEVTIPKKPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKG 67
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
91-162 2.88e-04

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 38.75  E-value: 2.88e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12412     4 RIFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDRAGVSKGYGFVTFETQEDAEKIQKWGANLVFKGKKLNV 75
RRM3_HRB1_GBP2 cd21607
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, ...
92-162 3.05e-04

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410186 [Multi-domain]  Cd Length: 79  Bit Score: 38.85  E-value: 3.05e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd21607     5 IYCSNLPLSTAESDLYDLFETIGKVNNAELKYDETGDPTGSAVVEYENLDDADVCISKLNNYNYGGCDLKI 75
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
91-163 5.09e-04

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 37.80  E-value: 5.09e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12447     1 TLFVGGLSWNVDDPWLKKEFEKYGGVISARVITDrGSGRSKGYGYVDFATPEAAQKALAAMSGKEIDGRQINVD 74
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
92-163 5.32e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 37.97  E-value: 5.32e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLK--RFAVHFDGyGRPNGTAEVVFTRRSDAIAALKRYNNvLLDGKAMKIE 163
Cdd:cd12400     3 LFVGNLPYDTTAEDLKEHFKKAGEPPsvRLLTDKKT-GKSKGCAFVEFDNQKALQKALKLHHT-SLGGRKINVE 74
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
91-162 5.40e-04

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 41.06  E-value: 5.40e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:TIGR01622 216 RLYVGNLHFNITEQDLRQIFEPFGEIEFVQLQKDPEtGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKV 288
RRM2_MEI2_like cd12529
RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to ...
92-163 5.75e-04

RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409948 [Multi-domain]  Cd Length: 71  Bit Score: 37.87  E-value: 5.75e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLK-----------RFAVHFDgygrpngtaevvfTRrsDAIAALKRYNNVLLDGKAM 160
Cdd:cd12529     4 LVVFNLDPSISNDDLHQIFGAYGEIKeiretpnkrhhKFIEFYD-------------VR--SAEAALKALNKSEIAGKRI 68

                  ...
gi 1002291118 161 KIE 163
Cdd:cd12529    69 KLE 71
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
90-163 5.86e-04

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 37.77  E-value: 5.86e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12382     2 GKLFIGGLNTETNEKALEAVFGKYGRIVEVLLMKDrETNKSRGFAFVTFESPADAKDAARDMNGKELDGKAIKVE 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
90-163 6.48e-04

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 40.95  E-value: 6.48e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:TIGR01628  89 GNIFVKNLDKSVDNKALFDTFSKFGNILSCKVATDENGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVG 162
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
92-162 6.75e-04

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 37.58  E-value: 6.75e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVG-----HLKRFAVHfdgyGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12334     1 VYVGNLDEKVTEELLWELFIQAGpvvnvHMPKDRVT----QQHQGYGFVEFLSEEDADYAIKIMNMIKLYGKPIRV 72
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
91-164 6.86e-04

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 37.38  E-value: 6.86e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFdgygrPNGTAEVVFTRRSDAIAALKRYNNVLLDGkaMKIEV 164
Cdd:cd12340     1 RLFVRPFPPDTSESAIREIFSPYGPVKEVKMLS-----DSNFAFVEFEELEDAIRAKDSVHGRVLNN--EPLYV 67
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
92-156 7.58e-04

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 37.54  E-value: 7.58e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGhLKRFAVHF--DGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLD 156
Cdd:cd12254     2 VRLRGLPFSATEEDIRDFFSGLD-IPPDGIHIvyDDDGRPTGEAYVEFASEEDAQRALRRHKGKMGG 67
RRM1_Prp24 cd12296
RNA recognition motif 1 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
94-160 7.86e-04

RNA recognition motif 1 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM1 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409737 [Multi-domain]  Cd Length: 71  Bit Score: 37.25  E-value: 7.86e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  94 ISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRpngTAEVVFTRRSDAIAALKRynnvllDGKAM 160
Cdd:cd12296     5 VKNLPKSITENKIRQFFKDCGEIREVKILESGNGL---VAVIEFETEDEALAALTK------DHKRI 62
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
90-164 8.20e-04

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 40.39  E-value: 8.20e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:TIGR01659 194 TNLYVTNLPRTITDDQLDTIFGKYGQIVQKNILRDKLtGTPRGVAFVRFNKREEAQEAISALNNVIPEGGSQPLTV 269
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
90-162 1.15e-03

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 36.88  E-value: 1.15e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHfdgygrPN-GTAEVVFTRRSDA-IAALKRYNNVLLDGKAMKI 162
Cdd:cd12224     2 TTLYVGGLGDKITEKDLRDHFYQFGEIRSITVV------ARqQCAFVQFTTRQAAeRAAERTFNKLIIKGRRLKV 70
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
87-162 1.19e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 36.99  E-value: 1.19e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1002291118  87 ETGtKLYISNLDYGVSNEDIKELFSEVGHLKRfaVHF--DGYGR-PNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12567     1 ESG-RLFVRNLPYTCTEEDLEKLFSKYGPLSE--VHFpiDSLTKkPKGFAFVTYMIPEHAVKAYAELDGTVFQGRLLHL 76
RRM3_hnRNPH_CRSF1_like cd12506
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H ...
97-149 1.21e-03

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM3 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. For instance, members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409929 [Multi-domain]  Cd Length: 75  Bit Score: 36.97  E-value: 1.21e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  97 LDYGVSNEDIKELFSEvghLKRFAVH--FDGYGRPNGTAEVVFTRRSDAIAALKR 149
Cdd:cd12506     8 LPYRATENDIFEFFSP---LNPVNVRirYNKDGRATGEADVEFATHEDAVAAMSK 59
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
93-166 1.30e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 36.81  E-value: 1.30e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  93 YISNLDYGVSNEDIKELFsevGHLKRFAVHF---DGYGRPNGTAEVVFTRRSDAIAALKrYNNVLLDGKAMKIEVIG 166
Cdd:cd12402     6 YLGNLPYDVTEDDIEDFF---RGLNISSVRLpreNGPGRLRGFGYVEFEDRESLIQALS-LNEESLKNRRIRVDVAG 78
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
92-163 1.55e-03

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 37.00  E-value: 1.55e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  92 LYISNLDYGVSNED----IKELFSEVGHLKRFAVHFDGYGRPngTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12453     5 LFVASLSSARSDEElcaaVTNHFSKWGELLNVKVLKDWSNRP--YAFVQYTNTEDAKNALVNGHNTLLDGRHLRVE 78
RRM_CNOT4 cd12438
RNA recognition motif (RRM) found in Eukaryotic CCR4-NOT transcription complex subunit 4 (NOT4) ...
93-161 1.56e-03

RNA recognition motif (RRM) found in Eukaryotic CCR4-NOT transcription complex subunit 4 (NOT4) and similar proteins; This subfamily corresponds to the RRM of NOT4, also termed CCR4-associated factor 4, or E3 ubiquitin-protein ligase CNOT4, or potential transcriptional repressor NOT4Hp, a component of the CCR4-NOT complex, a global negative regulator of RNA polymerase II transcription. NOT4 functions as an ubiquitin-protein ligase (E3). It contains an N-terminal C4C4 type RING finger motif, followed by a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RING fingers may interact with a subset of ubiquitin-conjugating enzymes (E2s), including UbcH5B, and mediate protein-protein interactions. T


Pssm-ID: 409872 [Multi-domain]  Cd Length: 98  Bit Score: 37.12  E-value: 1.56e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1002291118  93 YISNLDYGVSNEDI---KELFSEVGHLKRFAV----HFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMK 161
Cdd:cd12438     9 YVVGLPPRLADEEVlkrPEYFGQYGKIKKIVInrstSYAGSQGPSASAYVTYSRKEDALRAIQAVDGFVLDGRTLK 84
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
92-163 1.57e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 36.73  E-value: 1.57e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12592     4 LFVGNLDTKVTEELLFELFLQAGPVIKVKIPKDKDGKPKQFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKIQ 75
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
90-162 1.59e-03

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 36.89  E-value: 1.59e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAV----HFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12223     2 TNLYVGNLPPSVTEEVLLREFGRFGPLASVKImwprTEEERRRNRNCGFVAFMSRADAERAMRELNGKDVMGYELKL 78
RRM2_Crp79_Mug28 cd21621
RNA recognition motif 2 (RRM2) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
92-157 1.69e-03

RNA recognition motif 2 (RRM2) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410200 [Multi-domain]  Cd Length: 74  Bit Score: 36.53  E-value: 1.69e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHfdGYGRPNGT--AEVVFTRRSDAIAALKRYNNVLLDG 157
Cdd:cd21621     1 LTVLNLPTDMTPKDLYNLFSEHGKVEGTAIN--QVPDNRGRryGEVAMNSYEDCQKALEYFNGYVYKG 66
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
90-163 1.75e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 36.52  E-value: 1.75e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12564     1 SRLIVKNLPSSITEDRLRKLFSAFGTITDVQLKYTKDGKFRRFGFVGFKSEEEAQKALKHFNNSFIDTSRITVE 74
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
91-163 1.91e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 36.69  E-value: 1.91e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  91 KLYISNLDYGVSNED-IKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12675     2 KLIIRNLPWSIKKPVhLKKLFGRYGKVVEATIPRKKGGKLSGFAFVTMKGRKNAEEALESVNGLEIDGRPVAVD 75
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
91-163 1.91e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 36.07  E-value: 1.91e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFdgygRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12373     1 KVYVGNLGPRVTKRELEDAFEKYGPLRNVWVAR----NPPGFAFVEFEDPRDAEDAVRALDGRRICGSRVRVE 69
RRM_II_PABPN1L cd12551
RNA recognition motif in vertebrate type II embryonic polyadenylate-binding protein 2 (ePABP-2) ...
92-162 2.00e-03

RNA recognition motif in vertebrate type II embryonic polyadenylate-binding protein 2 (ePABP-2); This subgroup corresponds to the RRM of ePABP-2, also termed embryonic poly(A)-binding protein 2, or poly(A)-binding protein nuclear-like 1 (PABPN1L). ePABP-2 is a novel embryonic-specific cytoplasmic type II poly(A)-binding protein that is expressed during the early stages of vertebrate development and in adult ovarian tissue. It may play an important role in the poly(A) metabolism of stored mRNAs during early vertebrate development. ePABP-2 shows significant sequence similarity to the ubiquitously expressed nuclear polyadenylate-binding protein 2 (PABP-2 or PABPN1). Like PABP-2, ePABP-2 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, it possesses an acidic N-terminal domain predicted to form a coiled-coil and an arginine-rich C-terminal domain.


Pssm-ID: 409967 [Multi-domain]  Cd Length: 77  Bit Score: 36.34  E-value: 2.00e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKrYNNVLLDGKAMKI 162
Cdd:cd12551     2 VYVGNVDYGSTADELEAHFNGCGPINRVTILCDKFsGHPKGYAYIEFATRSSVQAAVA-LDESSFRGRVIKV 72
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
92-164 2.33e-03

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 36.15  E-value: 2.33e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEV 164
Cdd:cd12652     3 LYVSGLPKTMTQKELEQLFSQFGRIITSRILCDNVtGLSRGVGFIRFDKRVEAERAIKALNGTIPPGATEPITV 76
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
92-165 2.62e-03

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 36.00  E-value: 2.62e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAV-HFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIEVI 165
Cdd:cd12552     2 IYVSHLPHGFHEKELKKYFAQFGDLKNVRLaRSKKTGNSKHYGFLEFVNPEDAMIAQKSMNNYLLMGKLLQVRVL 76
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
88-163 3.09e-03

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 35.69  E-value: 3.09e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  88 TGTkLYISNLDYGVSNEDIKELFSEVGHLKRFavhfdgygRPNGTAE----VVF--TRrsDAIAALKRYNNVLLDGKAMK 161
Cdd:cd12276     1 QGT-LLVFNLDAPVSNDELKSLFSKFGEIKEI--------RPTPDKPsqkfVEFydVR--DAEAALDGLNGRELLGGKLK 69

                  ..
gi 1002291118 162 IE 163
Cdd:cd12276    70 VA 71
RRM_II_PABPN1 cd12550
RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins; ...
92-162 4.54e-03

RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins; This subgroup corresponds to the RRM of PABP-2, also termed poly(A)-binding protein 2, or nuclear poly(A)-binding protein 1 (PABPN1), or poly(A)-binding protein II (PABII), which is a ubiquitously expressed type II nuclear poly(A)-binding protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. Although PABP-2 binds poly(A) with high affinity and specificity as type I poly(A)-binding proteins, it contains only one highly conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, PABP-2 possesses an acidic N-terminal domain that is essential for the stimulation of PAP, and an arginine-rich C-terminal domain.


Pssm-ID: 409966 [Multi-domain]  Cd Length: 76  Bit Score: 35.17  E-value: 4.54e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRsDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd12550     2 VYVGNVDYGATAEELEAHFHGCGSVNRVTILCDKFsGHPKGFAYIEFADK-ESVRTALALDESLFRGRQIKV 72
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
92-163 4.82e-03

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 34.99  E-value: 4.82e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVG-----HLKRFavhfDGYGRPNGTAEVVFTRRSDAIAALKrYNNVLLDGKAMKIE 163
Cdd:cd12271     1 VYVGGIPYYSTEAEIRSYFSSCGevrsvDLMRF----PDSGNFRGIAFITFKTEEAAKRALA-LDGEMLGNRFLKVE 72
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
102-163 5.17e-03

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 35.35  E-value: 5.17e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118 102 SNEDIKELFSEVGHLKRFAVHFDG-YGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12642    17 TERDLREVFSRYGPLAGVNVVYDQrTGRSRGFAFVYFERIDDSKEAMERANGMELDGRRIRVD 79
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
92-151 5.20e-03

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 35.27  E-value: 5.20e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-GYGRPNGTAEVVFTRRSDAIAALKRYN 151
Cdd:cd12773     3 LYISGLPRTMTQKDVEDMFSRFGRIINSRVLVDqATGLSRGVAFIRFDKRSEAEEAITNFN 63
RRM_SLIRP cd12242
RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and ...
91-154 5.39e-03

RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins; This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities.


Pssm-ID: 409688 [Multi-domain]  Cd Length: 73  Bit Score: 35.02  E-value: 5.39e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDG-YGRPNGTAEVVFTRRSDAIAALKRYNNVL 154
Cdd:cd12242     1 KLFVSNLPWTTGSSELKEYFSQFGKVKRCNLPFDKeTGFHKGFGFVSFENEDGLRNALQKQKHIF 65
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
92-158 5.61e-03

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 34.91  E-value: 5.61e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRpnGTAEVVFTRRSDAIAALKRYNNVLLDGK 158
Cdd:cd12241     5 LYVRNLPYKISSEELYDLFGKYGAIRQIRIGNTKETR--GTAFVVYEDIFDAKNACDHLSGFNVCNR 69
RRM_RBM11 cd12593
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily ...
92-163 7.08e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily corresponds to the RRM or RBM11, a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. RBM11 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM of RBM11 is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 410006 [Multi-domain]  Cd Length: 75  Bit Score: 34.77  E-value: 7.08e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  92 LYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12593     4 VFVGNLHSNVNEEILYELFLQAGPLTKVTIAKDKEGKPKSFGFVCFKHAESVPYAIALLNGIRLYGRPIKLQ 75
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
90-163 7.50e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 35.04  E-value: 7.50e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGY-GRPNGTAEVVFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12312     1 TSLFVRNVADDTRPDDLRREFGRYGPIVDVYIPLDFYtRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQ 75
RRM3_MRD1 cd12568
RNA recognition motif 3 (RRM3) found in yeast multiple RNA-binding domain-containing protein 1 ...
90-149 7.92e-03

RNA recognition motif 3 (RRM3) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM3 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241012 [Multi-domain]  Cd Length: 72  Bit Score: 34.67  E-value: 7.92e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVhfdgygRPNGTAEVV-FTRRSDAIAALKR 149
Cdd:cd12568     1 TTILVKNFPYGTTAEELRDLFEPHGKLTRVLM------PPAGTIAIVeFANPQQARLAFKA 55
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
90-148 8.53e-03

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 34.41  E-value: 8.53e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLK--RFAVHFDGYGRPNGTAEVVFTRRS-DAIAALK 148
Cdd:cd12570     1 TKILVKNLPFEATKKDVRTLFSSYGQLKsvRVPKKFDQSARGFAFVEFSTAKEAlNAMNALK 62
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
90-162 9.34e-03

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 34.63  E-value: 9.34e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  90 TKLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFD-------GYGRPNgtaevvFTRRSDAIAALKRYNNVLLDGKAMKI 162
Cdd:cd21601     1 TALFIGDLDKDVTEEMLRDIFSKYKSLVSVKICLDsetkkslGYGYLN------FSDKEDAEKAIEEFNYTPIFGKEVRI 74
RRM2_SRSF1_4_like cd12339
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and ...
91-163 9.68e-03

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and similar proteins; This subfamily corresponds to the RRM2 of several serine/arginine (SR) proteins that have been classified into two subgroups. The first subgroup consists of serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS) and serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). The second subgroup is composed of serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C) and plant pre-mRNA-splicing factor SF2 (SR1). These SR proteins are mainly involved in regulating constitutive and alternative pre-mRNA splicing. They also have been implicated in transcription, genomic stability, mRNA export and translation. All SR proteins in this family, except SRSF5, undergo nucleocytoplasmic shuttling, suggesting their widespread roles in gene expression. These SR proteins share a common domain architecture comprising two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. Both domains can directly contact with RNA. The RRMs appear to determine the binding specificity and the SR domain also mediates protein-protein interactions. In addition, this subfamily includes the yeast nucleolar protein 3 (Npl3p), also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. It is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein with two RRMs, separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409776 [Multi-domain]  Cd Length: 70  Bit Score: 34.10  E-value: 9.68e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1002291118  91 KLYISNLDYGVSNEDIKELFSEVGHLKRFAVHFDGYGrpNGTAEvvFTRRSDAIAALKRYNNVLLDGKAMKIE 163
Cdd:cd12339     2 RVVVSNLPERASWQDLKDFMRKAGEVTYADVHRDREG--EGVVE--FTSEEDMKRAIEKLDGTEFNGRRIRVE 70
RRM5_RBM12_like cd12515
RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
94-152 9.69e-03

RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM5 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409937 [Multi-domain]  Cd Length: 75  Bit Score: 34.12  E-value: 9.69e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002291118  94 ISNLDYGVSNEDIKELFSEVGHLKRFA-VHFDGYGRPNGTAEVVFTRRSDAIAALKRYNN 152
Cdd:cd12515     5 MRNLPFKATIEDILDFFYGYRVIPDSVsIRYNDDGQPTGDARVAFPSPREARRAVRELNN 64
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH