NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|311771527|ref|NP_001185766|]
View 

RNA-binding protein 14 isoform 3 [Homo sapiens]

Protein Classification

RNA-binding protein( domain architecture ID 106745)

RNA-binding protein containing an RNA recognition motif (RRM)

CATH:  3.30.70.330
Gene Ontology:  GO:0003723
PubMed:  15853797
SCOP:  3000110

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_SF super family cl17169
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
1-71 8.27e-37

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


The actual alignment was detected with superfamily member cd12608:

Pssm-ID: 473069 [Multi-domain]  Cd Length: 69  Bit Score: 119.52  E-value: 8.27e-37
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   1 MKIFVGNVDGaDTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGhELRPGRALVVEMS 71
Cdd:cd12608    1 MKIFVGNVDE-DTSQEELSALFEPYGAVLSCAVMKQFAFVHMRGEAAADRAIRELNG-RELHGRALVVEES 69
RRM_SF super family cl17169
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
79-113 3.62e-17

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


The actual alignment was detected with superfamily member cd12609:

Pssm-ID: 473069 [Multi-domain]  Cd Length: 68  Bit Score: 69.88  E-value: 3.62e-17
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 311771527  79 WKIFVGNVSAACTSQELRSLFERRGRVIECDVVKG 113
Cdd:cd12609    1 WKIFVGNVSATCTSDELRGLFEEFGRVVECDKVKD 35
 
Name Accession Description Interval E-value
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
1-71 8.27e-37

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 119.52  E-value: 8.27e-37
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   1 MKIFVGNVDGaDTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGhELRPGRALVVEMS 71
Cdd:cd12608    1 MKIFVGNVDE-DTSQEELSALFEPYGAVLSCAVMKQFAFVHMRGEAAADRAIRELNG-RELHGRALVVEES 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
1-75 5.78e-24

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 87.46  E-value: 5.78e-24
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   1 MKIFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSR 72
Cdd:COG0724    2 MKIYVGNLP-YSVTEEDLRELFSEYGEVTSVKLItdretgrsRGFGFVEMPDDEEAQAAIEALNGAELM-GRTLKVNEAR 79

                 ...
gi 311771527  73 PRP 75
Cdd:COG0724   80 PRE 82
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
79-113 3.62e-17

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 69.88  E-value: 3.62e-17
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 311771527  79 WKIFVGNVSAACTSQELRSLFERRGRVIECDVVKG 113
Cdd:cd12609    1 WKIFVGNVSATCTSDELRGLFEEFGRVVECDKVKD 35
RRM smart00360
RNA recognition motif;
2-68 1.35e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 65.69  E-value: 1.35e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527     2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:smart00360   1 TLFVGNLP-PDTTEEELRELFSKFGKVESVRLVRDketgkskgFAFVEFESEEDAEKALEALNGKELD-GRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
3-66 1.81e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 55.32  E-value: 1.81e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527    3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ-------FAFVHMRENAGALRAIEALHGHELRpGRAL 66
Cdd:pfam00076   1 LFVGNLP-PDTTEEDLKDLFSKFGPIKSIRLVRDetgrskgFAFVEFEDEEDAEKAIEALNGKELG-GREL 69
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
3-119 2.11e-11

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 59.05  E-value: 2.11e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527    3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMK-------QFAFVHMRENAGALRAIEALHGHEL---RPGRALVVEMSR 72
Cdd:TIGR01628 181 LYVKNLD-PSVNEDKLRELFAKFGEITSAAVMKdgsgrsrGFAFVNFEKHEDAAKAVEEMNGKKIglaKEGKKLYVGRAQ 259
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   73 PR-----------------PLNTWK---IFVGNVSAACTSQELRSLFERRGRVIECDVVkgMVPTGV 119
Cdd:TIGR01628 260 KRaereaelrrkfeelqqeRKMKAQgvnLYVKNLDDTVTDEKLRELFSECGEITSAKVM--LDEKGV 324
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
80-112 6.05e-06

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 41.24  E-value: 6.05e-06
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:COG0724    3 KIYVGNLPYSVTEEDLRELFSEYGEVTSVKLIT 35
RRM smart00360
RNA recognition motif;
80-112 1.97e-05

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 39.88  E-value: 1.97e-05
                           10        20        30
                   ....*....|....*....|....*....|...
gi 311771527    80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVR 33
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
81-112 1.33e-04

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 37.60  E-value: 1.33e-04
                          10        20        30
                  ....*....|....*....|....*....|..
gi 311771527   81 IFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVR 32
 
Name Accession Description Interval E-value
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
1-71 8.27e-37

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 119.52  E-value: 8.27e-37
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   1 MKIFVGNVDGaDTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGhELRPGRALVVEMS 71
Cdd:cd12608    1 MKIFVGNVDE-DTSQEELSALFEPYGAVLSCAVMKQFAFVHMRGEAAADRAIRELNG-RELHGRALVVEES 69
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
2-67 3.26e-31

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 105.39  E-value: 3.26e-31
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRPGRALV 67
Cdd:cd12343    1 KIFVGNLP-DAATSEELRALFEKYGKVTECDIVKNYAFVHMEKEEDAEDAIKALNGYEFMGSRINV 65
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
1-75 5.78e-24

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 87.46  E-value: 5.78e-24
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   1 MKIFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSR 72
Cdd:COG0724    2 MKIYVGNLP-YSVTEEDLRELFSEYGEVTSVKLItdretgrsRGFGFVEMPDDEEAQAAIEALNGAELM-GRTLKVNEAR 79

                 ...
gi 311771527  73 PRP 75
Cdd:COG0724   80 PRE 82
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
79-113 3.62e-17

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 69.88  E-value: 3.62e-17
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 311771527  79 WKIFVGNVSAACTSQELRSLFERRGRVIECDVVKG 113
Cdd:cd12609    1 WKIFVGNVSATCTSDELRGLFEEFGRVVECDKVKD 35
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
80-112 2.26e-16

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 67.64  E-value: 2.26e-16
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12343    1 KIFVGNLPDAATSEELRALFEKYGKVTECDIVK 33
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
2-70 1.11e-15

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 66.03  E-value: 1.11e-15
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVEM 70
Cdd:cd12609    2 KIFVGNVS-ATCTSDELRGLFEEFGRVVECDKVKDYAFVHMEREEEALAAIEALNGKEVK-GRRINVEL 68
RRM smart00360
RNA recognition motif;
2-68 1.35e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 65.69  E-value: 1.35e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527     2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:smart00360   1 TLFVGNLP-PDTTEEELRELFSKFGKVESVRLVRDketgkskgFAFVEFESEEDAEKALEALNGKELD-GRPLKV 73
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
2-68 3.89e-14

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 62.19  E-value: 3.89e-14
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd21608    1 KLYVGNLS-WDTTEDDLRDLFSEFGEVESAKVItdretgrsRGFGFVTFSTAEAAEAAIDALNGKELD-GRSIVV 73
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
3-69 1.40e-13

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 60.76  E-value: 1.40e-13
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd00590    1 LFVGNLP-PDTTEEDLRELFSKFGEVVSVRIVrdrdgksKGFAFVEFESPEDAEKALEALNGTELG-GRPLKVS 72
RRM2_RBM4 cd12607
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
2-67 3.11e-12

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM2 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410019 [Multi-domain]  Cd Length: 67  Bit Score: 57.28  E-value: 3.11e-12
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRPGRALV 67
Cdd:cd12607    2 KLHVGNI-SSSCTNQELRAKFEEYGPVIECDIVKDYAFVHMERAEDAMEAIRGLDNTEFQGKRMHV 66
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
3-66 1.81e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 55.32  E-value: 1.81e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527    3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ-------FAFVHMRENAGALRAIEALHGHELRpGRAL 66
Cdd:pfam00076   1 LFVGNLP-PDTTEEDLKDLFSKFGPIKSIRLVRDetgrskgFAFVEFEDEEDAEKAIEALNGKELG-GREL 69
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
3-119 2.11e-11

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 59.05  E-value: 2.11e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527    3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMK-------QFAFVHMRENAGALRAIEALHGHEL---RPGRALVVEMSR 72
Cdd:TIGR01628 181 LYVKNLD-PSVNEDKLRELFAKFGEITSAAVMKdgsgrsrGFAFVNFEKHEDAAKAVEEMNGKKIglaKEGKKLYVGRAQ 259
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   73 PR-----------------PLNTWK---IFVGNVSAACTSQELRSLFERRGRVIECDVVkgMVPTGV 119
Cdd:TIGR01628 260 KRaereaelrrkfeelqqeRKMKAQgvnLYVKNLDDTVTDEKLRELFSECGEITSAKVM--LDEKGV 324
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
1-69 3.21e-11

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 54.43  E-value: 3.21e-11
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527   1 MKIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12606    1 VKLFIGNLP-REATEEEIRSLFEQYGKVTECDIIKNYGFVHMEDKSAADEAIRNLHHYKLH-GVAINVE 67
RRM2_RBM4 cd12607
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
80-112 4.59e-11

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM2 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410019 [Multi-domain]  Cd Length: 67  Bit Score: 54.20  E-value: 4.59e-11
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12607    2 KLHVGNISSSCTNQELRAKFEEYGPVIECDIVK 34
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
3-68 4.62e-11

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 54.49  E-value: 4.62e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527   3 IFVGNVdGADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12380    4 VYVKNF-GEDVDDDELKELFEKYGKITSAKVMkddsgksKGFGFVNFENHEAAQKAVEELNGKELN-GKKLYV 74
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
3-72 2.76e-10

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 52.06  E-value: 2.76e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   3 IFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHElRPGRALVVEMSR 72
Cdd:cd12233    2 LFVVGFDPGTTREEDIEKLFEPFGPLVRCDIRKTFAFVEFEDSEDATKALEALHGSR-IDGSVLTVEFVK 70
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
12-73 1.50e-09

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 50.32  E-value: 1.50e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 311771527  12 DTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRP 73
Cdd:cd12251   12 STTEEKLRELFSEYGKVERVKKIKDYAFVHFEERDDAVKAMEEMNGKELE-GSEIEVSLAKP 72
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
80-112 2.30e-09

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 49.81  E-value: 2.30e-09
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12606    2 KLFIGNLPREATEEEIRSLFEQYGKVTECDIIK 34
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
2-57 2.91e-09

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 49.71  E-value: 2.91e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVMKQ--FAFVHMRENAGALRAIEALHG 57
Cdd:cd12340    1 RLFVRPF-PPDTSESAIREIFSPYGPVKEVKMLSDsnFAFVEFEELEDAIRAKDSVHG 57
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
12-119 3.02e-09

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 53.10  E-value: 3.02e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   12 DTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRPGRaLVVEMSRP--RPLNTWKI 81
Cdd:TIGR01659 118 DMTDRELYALFRTIGPINTCRIMRDyktgysfgYAFVDFGSEADSQRAIKNLNGITVRNKR-LKVSYARPggESIKDTNL 196
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 311771527   82 FVGNVSAACTSQELRSLFERRGRVIECDVVKGMV---PTGV 119
Cdd:TIGR01659 197 YVTNLPRTITDDQLDTIFGKYGQIVQKNILRDKLtgtPRGV 237
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
3-74 7.74e-09

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 48.81  E-value: 7.74e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYG---TVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRPR 74
Cdd:cd12524    4 LFVRNIN-SSVEDEELRALFEQFGeirTLYTACKHRGFIMVSYYDIRAAQSAKRALQGTELG-GRKLDIHFSIPK 76
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
2-68 2.98e-08

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 47.41  E-value: 2.98e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRPG--RALVV 68
Cdd:cd12635    3 KLFVGML-GKQQSEDDVRRLFEPFGSIEECTILrgpdgnsKGCAFVKFSSHAEAQAAINALHGSQTMPGasSSLVV 77
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
3-69 5.40e-08

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 46.67  E-value: 5.40e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12397    1 LFVGNLS-FETTEEDLRKHFAPAGKIRKVRMAtfedsgkcKGFAFVDFKEIESATNAVKGPINHSLN-GRDLRVE 73
RRM_Nab3p cd12342
RNA recognition motif (RRM) found in yeast nuclear polyadenylated RNA-binding protein 3 (Nab3p) ...
2-73 6.51e-08

RNA recognition motif (RRM) found in yeast nuclear polyadenylated RNA-binding protein 3 (Nab3p) and similar proteins; This subfamily corresponds to the RRM of Nab3p, an acidic nuclear polyadenylated RNA-binding protein encoded by Saccharomyces cerevisiae NAB3 gene that is essential for cell viability. Nab3p is predominantly localized within the nucleoplasm and essential for growth in yeast. It may play an important role in packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing. Nab3p contains an N-terminal aspartic/glutamic acid-rich region, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal region rich in glutamine and proline residues.


Pssm-ID: 240788 [Multi-domain]  Cd Length: 71  Bit Score: 46.28  E-value: 6.51e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 311771527   2 KIFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRP 73
Cdd:cd12342    1 RLFIGNLPTKRVSKEDLFRIFSPYGHLMQIVIKNAFGFVQFDSPQSCRNAIECEQGEMNR-GKKLHLEVSKS 71
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
2-74 1.01e-07

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 45.87  E-value: 1.01e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRP 73
Cdd:cd21609    1 RLYVGNIP-RNVTSEELAKIFEEAGTVEIAEVMydrytgrsRGFGFVTMGSVEDAKAAIEKLNGTEVG-GREIKVNITEK 78

                 .
gi 311771527  74 R 74
Cdd:cd21609   79 P 79
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
3-68 1.30e-07

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 48.26  E-value: 1.30e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527    3 IFVGNVDGAdTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:TIGR01628 288 LYVKNLDDT-VTDEKLRELFSECGEITSAKVMldekgvsRGFGFVCFSNPEEANRAVTEMHGRMLG-GKPLYV 358
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
15-69 2.24e-07

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 45.16  E-value: 2.24e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 311771527  15 PEELAALFAPYGTVMSCAV-------MKQFAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12675   15 PVHLKKLFGRYGKVVEATIprkkggkLSGFAFVTMKGRKNAEEALESVNGLEID-GRPVAVD 75
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
14-60 2.88e-07

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 44.53  E-value: 2.88e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 311771527  14 TPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHEL 60
Cdd:cd12362   11 TDQDLYQLFAPFGNVVSAKVFvdkntgrsKGFGFVSYDNPLSAQAAIKAMNGFQV 65
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
2-68 3.04e-07

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 44.54  E-value: 3.04e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   2 KIFVGNVDGAdTTPEELAALFAPYGTVMSCAVMKQF--------AFVHMRENAGALRAIEALHGHELRPG--RALVV 68
Cdd:cd12361    1 KLFVGMIPKT-ASEEDVRPLFEQFGNIEEVQILRDKqtgqskgcAFVTFSTREEALRAIEALHNKKTMPGcsSPLQV 76
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
3-73 3.48e-07

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 44.21  E-value: 3.48e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 311771527   3 IFVGNVdgADTTPEE-LAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRP 73
Cdd:cd12495    4 LFVRNL--ANTVTEEiLEKAFSQFGKLERVKKLKDYAFIHFDERDGAVKAMDEMNGKDLE-GENIEIVFAKP 72
RRM_RALY cd12604
RNA recognition motif (RRM) found in vertebrate RNA-binding protein Raly; This subgroup ...
2-75 4.73e-07

RNA recognition motif (RRM) found in vertebrate RNA-binding protein Raly; This subgroup corresponds to the RRM of Raly, also termed autoantigen p542, or heterogeneous nuclear ribonucleoprotein C-like 2, or hnRNP core protein C-like 2, or hnRNP associated with lethal yellow protein homolog, an RNA-binding protein that may play a critical role in embryonic development. It is encoded by Raly, a ubiquitously expressed gene of unknown function. Raly shows a high degree of identity with the 5' sequences of p542 gene encoding autoantigen, which can cross-react with EBNA-1 of the Epstein Barr virus. Raly contains two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain that includes a unique glycine/serine-rich stretch.


Pssm-ID: 410016 [Multi-domain]  Cd Length: 76  Bit Score: 44.25  E-value: 4.73e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELrPGRALVVEMS-RPRP 75
Cdd:cd12604    3 RVFIGNLNTAVVKKSDVETIFSKYGRVVGCSVHKGYAFVQYTNERHARAAVIGENGRVL-AGQTLDINMAgEPKP 76
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
12-67 5.17e-07

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 43.94  E-value: 5.17e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527  12 DTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRPGRALV 67
Cdd:cd12375   10 SMTQEELRSLFGAIGPIESCKLVRDkitgqslgYGFVNYRDPNDARKAINTLNGLDLENKRLKV 73
RRM2_RIM4_like cd12454
RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; ...
3-69 9.80e-07

RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409888 [Multi-domain]  Cd Length: 80  Bit Score: 43.23  E-value: 9.80e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ------FAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12454    6 IFVGQLD-PKTTDSELFRRFSKYGKIVDCKLIKRpepvnaFAFLRFESEEAAEAAVEEENHSEFL-NKQIRVQ 76
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
3-74 1.20e-06

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 42.74  E-value: 1.20e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--FAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRPR 74
Cdd:cd12358    1 LYIGNLS-SDVNESDLRQLFEEHKIPVSSVLVKKggYAFVDCPDQSWADKAIEKLNGKILQ-GKVIEVEHSVPK 72
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
3-68 1.24e-06

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 43.08  E-value: 1.24e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVdGADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12377    2 IFVYNL-APDADESLLWQLFGPFGAVQNVKIIrdfttnkcKGYGFVTMTNYDEAAVAIASLNGYRLG-GRVLQV 73
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
3-85 1.64e-06

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 42.56  E-value: 1.64e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGhelrpgralvveMSrprp 75
Cdd:cd12379    5 IFIKNLD-KSIDNKALYDTFSAFGNILSCKVAtdenggsKGYGFVHFETEEAAERAIEKVNG------------ML---- 67
                         90
                 ....*....|
gi 311771527  76 LNTWKIFVGN 85
Cdd:cd12379   68 LNGKKVFVGR 77
RRM_hnRNPC cd12603
RNA recognition motif (RRM) found in vertebrate heterogeneous nuclear ribonucleoprotein C1/C2 ...
2-75 1.95e-06

RNA recognition motif (RRM) found in vertebrate heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C1/C2); This subgroup corresponds to the RRM of heterogeneous nuclear ribonucleoprotein C (hnRNP) proteins C1 and C2, produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex. They are involved in the packaging of hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. hnRNP C proteins contain two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain that includes the variable region, the basic region and the KSG box rich in repeated Lys-Ser-Gly sequences, the leucine zipper, and the acidic region. The RRM is capable of binding poly(U). The KSG box may bind to RNA. The leucine zipper may be involved in dimer formation. The acidic and hydrophilic C-teminus harbors a putative nucleoside triphosphate (NTP)-binding fold and a protein kinase phosphorylation site.


Pssm-ID: 410015 [Multi-domain]  Cd Length: 84  Bit Score: 42.71  E-value: 1.95e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELrPGRALVVEMS-RPRP 75
Cdd:cd12603    8 RVFIGNLNTLVVKKSDVEAIFSKYGKIVGCSVHKGFAFVQYVNERNARAAVAGEDGRMI-AGQVLDINLAaEPKV 81
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
3-57 2.18e-06

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 42.74  E-value: 2.18e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   3 IFVGNVDgaDT---TPEELAALFAPYGTVMSC--------AVMKQFAFVHMRENAGALRAIEALHG 57
Cdd:cd21622    6 LFVKNLD--DTvitNKEDLEQLFSPFGQIVSSylatypgtGISKGFGFVAFSKPEDAAKAKETLNG 69
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
2-68 2.32e-06

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 41.90  E-value: 2.32e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVMKQ--FAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12332    3 RLFVGNL-PNDITEEEFKELFQKYGEVSEVFLNKGkgFGFIRLDTRANAEAAKAELDGTPRK-GRQLRV 69
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
2-70 2.36e-06

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 42.25  E-value: 2.36e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAV-----MKQ------FAFVHMRENAGALRAIEaLHGHELRpGRALVVEM 70
Cdd:cd12298    2 EIRVRNLD-FELDEEALRGIFEKFGEIESINIpkkqkNRKgrhnngFAFVTFEDADSAESALQ-LNGTLLD-NRKISVSL 78
RRM_hnRNPC_like cd12341
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C) ...
2-40 2.42e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C)-related proteins; This subfamily corresponds to the RRM in the hnRNP C-related protein family, including hnRNP C proteins, Raly, and Raly-like protein (RALYL). hnRNP C proteins, C1 and C2, are produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex; they are involved in the packaging of the hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. Raly, also termed autoantigen p542, is an RNA-binding protein that may play a critical role in embryonic development. The biological role of RALYL remains unclear. It shows high sequence homology with hnRNP C proteins and Raly. Members of this family are characterized by an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. The Raly proteins contain a glycine/serine-rich stretch within the C-terminal regions, which is absent in the hnRNP C proteins. Thus, the Raly proteins represent a newly identified class of evolutionarily conserved autoepitopes.


Pssm-ID: 409778 [Multi-domain]  Cd Length: 68  Bit Score: 41.85  E-value: 2.42e-06
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 311771527   2 KIFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFV 40
Cdd:cd12341    2 RIFVGNLPTDQMTKEDLEEIFSKYGKILGISLHKGYGFV 40
RRM3_hnRNPR cd12494
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
3-73 3.73e-06

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains.


Pssm-ID: 409917 [Multi-domain]  Cd Length: 72  Bit Score: 41.55  E-value: 3.73e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   3 IFVGNVDGAdTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRP 73
Cdd:cd12494    4 LFVRNLATT-VTEEILEKTFSQFGKLERVKKLKDYAFVHFEDRDAAVKAMDEMNGKEVE-GEEIEIVLAKP 72
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
2-74 3.73e-06

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 41.54  E-value: 3.73e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEAlHGHELRpGRALVVEMSRP 73
Cdd:cd12330    1 KIFVGGL-APDVTEEEFKEYFEQFGTVVDAVVMldhdtgrsRGFGFVTFDSESAVEKVLSK-GFHELG-GKKVEVKRATP 77

                 .
gi 311771527  74 R 74
Cdd:cd12330   78 K 78
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
2-53 3.82e-06

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 41.83  E-value: 3.82e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527   2 KIFVGNVDGaDTTPEELAALFAPYGTVMSC-------AVMKQFAFVHMRENAGALRAIE 53
Cdd:cd12412    4 RIFVGGIDW-DTTEEELREFFSKFGKVKDVkiikdraGVSKGYGFVTFETQEDAEKIQK 61
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
81-114 4.66e-06

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 41.51  E-value: 4.66e-06
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|
gi 311771527  81 IFVGNVSAACTSQELRSLFERRGRVIECDVV------KGM 114
Cdd:cd21605    4 IFVGNLPFDCTWEDLKDHFSQVGEVIRADIVtsrgrhRGM 43
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
2-74 4.69e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 41.42  E-value: 4.69e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVH--MRENagALRAIEALHGHELRpGRALVVEMS 71
Cdd:cd12413    1 TLFVRNLP-YDTTDEQLEELFSDVGPVKRCFVVKDkgkdkcrgFGYVTfaLAED--AQRALEEVKGKKFG-GRKIKVELA 76

                 ...
gi 311771527  72 RPR 74
Cdd:cd12413   77 KKK 79
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
3-69 4.94e-06

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 41.35  E-value: 4.94e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12398    3 VFVGNIP-YDATEEQLKEIFSEVGPVVSFRLVtdretgkpKGYGFCEFRDAETALSAVRNLNGYELN-GRPLRVD 75
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
80-112 6.05e-06

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 41.24  E-value: 6.05e-06
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:COG0724    3 KIYVGNLPYSVTEEDLRELFSEYGEVTSVKLIT 35
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
3-66 6.32e-06

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 41.11  E-value: 6.32e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   3 IFVGNVdGADTTPEELAALFAPYGTVMSCAV--MKQFAFVHMRENAGALRAIEALHGHELRpGRAL 66
Cdd:cd12354    3 VYVGNI-TKGLTEALLQQTFSPFGQILEVRVfpDKGYAFIRFDSHEAATHAIVSVNGTIIN-GQAV 66
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
14-114 7.72e-06

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 43.39  E-value: 7.72e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   14 TPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRPR--PLNTWKIFV 83
Cdd:TIGR01661  16 TQEEIRSLFTSIGEIESCKLVRDkvtgqslgYGFVNYVRPEDAEKAVNSLNGLRLQ-NKTIKVSYARPSsdSIKGANLYV 94
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 311771527   84 GNVSAACTSQELRSLFERRGRVIE----CDVVKGM 114
Cdd:TIGR01661  95 SGLPKTMTQHELESIFSPFGQIITsrilSDNVTGL 129
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
2-69 1.14e-05

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 40.32  E-value: 1.14e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12417    1 NLWISGLS-DTTKAADLKKIFSKYGKVVSAKVVtsartpgsRCYGYVTMASVEEADLCIKSLNKTELH-GRVITVE 74
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
80-112 1.32e-05

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 40.17  E-value: 1.32e-05
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12608    2 KIFVGNVDEDTSQEELSALFEPYGAVLSCAVMK 34
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
3-71 1.49e-05

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 40.29  E-value: 1.49e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ-----------FAFVHMRENAGALRAIEALHGHELRpGRALVVEMS 71
Cdd:cd12318    3 LFVKNLN-FKTTEEALKKHFEKCGPIRSVTIAKKkdpkgpllsmgYGFVEFKSPEAAQKALKQLQGTVLD-GHALELKIS 80
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
3-68 1.64e-05

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 39.98  E-value: 1.64e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMrENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12306    2 IYVGNVD-YGTTPEELQAHFKSCGTINRVTILcdkftgqpKGFAYIEF-VDKSSVENALLLNESEFR-GRQIKV 72
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
81-112 1.66e-05

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 39.96  E-value: 1.66e-05
                         10        20        30
                 ....*....|....*....|....*....|..
gi 311771527  81 IFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd00590    1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVR 32
RRM_RALYL cd12605
RNA recognition motif (RRM) found in vertebrate RNA-binding Raly-like protein (RALYL); This ...
2-52 1.75e-05

RNA recognition motif (RRM) found in vertebrate RNA-binding Raly-like protein (RALYL); This subgroup corresponds to the RRM of RALYL, also termed heterogeneous nuclear ribonucleoprotein C-like 3, or hnRNP core protein C-like 3, a putative RNA-binding protein that shows high sequence homology with Raly, an RNA-binding protein playing a critical role in embryonic development. The biological role of RALYL remains unclear. Like Raly, RALYL contains two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain.


Pssm-ID: 410017 [Multi-domain]  Cd Length: 69  Bit Score: 40.02  E-value: 1.75e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 311771527   2 KIFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAI 52
Cdd:cd12605    3 RVFIGNLNTAIVKKADIEAIFAKYGKIVGCSVHKGYAFVQYMSERHARAAV 53
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
3-112 1.76e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 42.49  E-value: 1.76e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527    3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVE--MSRP 73
Cdd:TIGR01628  91 IFVKNLD-KSVDNKALFDTFSKFGNILSCKVAtdengksRGYGFVHFEKEESAKAAIQKVNGMLLN-DKEVYVGrfIKKH 168
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....
gi 311771527   74 RPLNT-----WKIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:TIGR01628 169 EREAAplkkfTNLYVKNLDPSVNEDKLRELFAKFGEITSAAVMK 212
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
78-118 1.95e-05

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 40.08  E-value: 1.95e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 311771527  78 TWKIFVGNVSAACTSQELRSLFERRGRVIECDVVKGMVPTG 118
Cdd:cd12309    2 TRTLFVGNLEITITEEELRRAFERYGVVEDVDIKRPPRGQG 42
RRM smart00360
RNA recognition motif;
80-112 1.97e-05

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 39.88  E-value: 1.97e-05
                           10        20        30
                   ....*....|....*....|....*....|...
gi 311771527    80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVR 33
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
3-69 2.01e-05

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 39.70  E-value: 2.01e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAV--------MKQFAFVHMRENAGALRAIEALhGHELRPGRALVVE 69
Cdd:cd12448    1 LFVGNLP-FSATQDALYEAFSQHGSIVSVRLptdretgqPKGFGYVDFSTIDSAEAAIDAL-GGEYIDGRPIRLD 73
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
12-68 2.64e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 39.46  E-value: 2.64e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527  12 DTTPEELAALFAPYGTVMSCAV-------MKQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12414   10 KCTEDDLKKLFSKFGKVLEVTIpkkpdgkLRGFAFVQFTNVADAAKAIKGMNGKKIK-GRPVAV 72
RRM1_IGF2BP3 cd12627
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
2-74 2.67e-05

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3); This subgroup corresponds to the RRM1 of IGF2BP3 (IGF2 mRNA-binding protein 3 or IMP-3), also termed KH domain-containing protein overexpressed in cancer (KOC), or VICKZ family member 3, an RNA-binding protein that plays an important role in the differentiation process during early embryogenesis. It is known to bind to and repress the translation of IGF2 leader 3 mRNA. IGF2BP3 also acts as a Glioblastoma-specific proproliferative and proinvasive marker acting through IGF2 resulting in the activation of oncogenic phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways. IGF2BP3 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain.


Pssm-ID: 410036 [Multi-domain]  Cd Length: 77  Bit Score: 39.57  E-value: 2.67e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCA--VMKQFAFVHMRENAGALRAIEALHGHELRPGRALVVEMSRPR 74
Cdd:cd12627    3 KLYIGNL-SENASPLDLESIFKDWKIPFSGPflVKTGYAFVDCPDESWAMKAIDTLSGKVELHGKVIEVEHSVPK 76
RRM2_AtRSp31_like cd12466
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana arginine/serine-rich-splicing ...
3-60 3.13e-05

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants; This subgroup corresponds to the RRM2 in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus.


Pssm-ID: 409899 [Multi-domain]  Cd Length: 70  Bit Score: 39.11  E-value: 3.13e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 311771527   3 IFVGNVDGADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHEL 60
Cdd:cd12466    2 LFVINFDPIRTKERDLERHFEPYGKVVNVRIRRNFAFVQYETQEDATKALDATQSSKI 59
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
2-69 3.25e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 39.14  E-value: 3.25e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVMKQ-------FAFVHMRENAGALRAIEALHGHELRpGRALVVE 69
Cdd:cd12320    2 KLIVKNV-PFEATRKEIRELFSPFGQLKSVRLPKKfdgshrgFAFVEFVTKQEAQNAMEALKSTHLY-GRHLVLE 74
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
3-61 4.04e-05

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 38.96  E-value: 4.04e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   3 IFVGNVDGAdTTPEELAALFAPYGTVMSCAVM--KQFAFVHMRENAGALRAIEALHGHELR 61
Cdd:cd12227    5 LWVGHLSKK-VTQEELKNLFEEYGEIQSIDMIppRGCAYVCMKTRQDAHRALQKLKNHKLR 64
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
12-73 4.04e-05

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 38.92  E-value: 4.04e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527  12 DTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRPGRaLVVEMSRP 73
Cdd:cd12649   11 DLTDREFRALFRAIGPVNTCKIVRDkktgysygFGFVDFTSEEDAQRAIKTLNGLQLQNKR-LKVAYARP 79
RRM1_FCA cd12633
RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar ...
2-70 4.27e-05

RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 241077 [Multi-domain]  Cd Length: 80  Bit Score: 39.18  E-value: 4.27e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   2 KIFVGNVDGAdTTPEELAALFAPYGTVMSCAVMK------QFA--FVHMRENAGALRAIEALHGHELRPGRALVVEM 70
Cdd:cd12633    1 KLFVGSVPRT-ITEQEVRPMFEEHGNVLEVAIIKdkrtghQQGccFVKYSTRDEADRAIRALHNQRTLPGGASPVQV 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
3-111 4.72e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 40.95  E-value: 4.72e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527    3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHEL--RPGR-ALVVEMS 71
Cdd:TIGR01628   3 LYVGDLD-PDVTEAKLYDLFKPFGPVLSVRVCRDsvtrrslgYGYVNFQNPADAERALETMNFKRLggKPIRiMWSQRDP 81
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|
gi 311771527   72 RPRPLNTWKIFVGNVSAACTSQELRSLFERRGRVIECDVV 111
Cdd:TIGR01628  82 SLRRSGVGNIFVKNLDKSVDNKALFDTFSKFGNILSCKVA 121
RRM_TDRD10 cd21617
RNA recognition motif (RRM) found in Tudor domain-containing protein 10 (TDRD10) and similar ...
3-69 5.02e-05

RNA recognition motif (RRM) found in Tudor domain-containing protein 10 (TDRD10) and similar proteins; TDRD10 is widely expressed and localized both to the nucleus and cytoplasm and may play general roles like regulation of RNA metabolism. It contains a Tudor domain and a RNA recognition motif (RRM).


Pssm-ID: 410196 [Multi-domain]  Cd Length: 69  Bit Score: 38.55  E-value: 5.02e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAV---MKQFAFVHMRENAGALRAIEALHGHeLRPGRALVVE 69
Cdd:cd21617    2 VYVGNLP-LDISEEEILQLFKAFNPVLVKKIrsgFKCFAFVDLGSDENVKLAIQQLNGT-LFGGRRLVVN 69
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
80-112 5.23e-05

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 38.75  E-value: 5.23e-05
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12412    4 RIFVGGIDWDTTEEELREFFSKFGKVKDVKIIK 36
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
80-111 5.41e-05

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 38.69  E-value: 5.41e-05
                         10        20        30
                 ....*....|....*....|....*....|..
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVV 111
Cdd:cd21608    1 KLYVGNLSWDTTEDDLRDLFSEFGEVESAKVI 32
RRM1_AtRSp31_like cd12234
RNA recognition motif (RRM) found in Arabidopsis thaliana arginine/serine-rich-splicing factor ...
3-72 6.14e-05

RNA recognition motif (RRM) found in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants; This subfamily corresponds to the RRM1in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus.


Pssm-ID: 409680 [Multi-domain]  Cd Length: 72  Bit Score: 38.29  E-value: 6.14e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQFAFVHMRENAGALRAIEALHGHEL-RPGRALVVEMSR 72
Cdd:cd12234    3 VFCGNFE-YDARQSEIERLFGKYGRVDRVDMKSGYAFVYMEDERDAEDAIRGLDNFEFgRQRRRLRVEWTK 72
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
80-113 7.62e-05

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 38.37  E-value: 7.62e-05
                         10        20        30
                 ....*....|....*....|....*....|....
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVKG 113
Cdd:cd12361    1 KLFVGMIPKTASEEDVRPLFEQFGNIEEVQILRD 34
RRM1_FCA cd12633
RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar ...
80-112 8.04e-05

RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 241077 [Multi-domain]  Cd Length: 80  Bit Score: 38.41  E-value: 8.04e-05
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12633    1 KLFVGSVPRTITEQEVRPMFEEHGNVLEVAIIK 33
RRM3_PTBP1 cd12695
RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
3-72 8.24e-05

RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM3 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence show that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410095 [Multi-domain]  Cd Length: 93  Bit Score: 38.44  E-value: 8.24e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527   3 IFVGNVDGADTTPEELAALFAPYGTVMSCAVM---KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSR 72
Cdd:cd12695    2 LLVSNLNPERVTPQCLFILFGVYGDVQRVKILfnkKENALVQMADGNQAQLAMSHLNGQKLH-GKPIRITLSK 73
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
3-68 8.26e-05

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 38.27  E-value: 8.26e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12399    1 LYVGNLP-YSASEEQLKSLFGQFGAVFDVKLPmdretkrpRGFGFVELQEEESAEKAIAKLDGTDFM-GRTIRV 72
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
12-58 8.51e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 38.26  E-value: 8.51e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 311771527  12 DTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGH 58
Cdd:cd12408   10 DATEEDLRELFRPFGPISRVYLAKDketgqskgFAFVTFETREDAERAIEKLNGF 64
RRM3_SHARP cd12350
RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
78-112 8.73e-05

RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM3 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409786 [Multi-domain]  Cd Length: 74  Bit Score: 38.16  E-value: 8.73e-05
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 311771527  78 TWKIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12350    2 TRTLFIGNLEKTTTYGDLRNIFERFGEIIDIDIKK 36
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
3-71 9.12e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 37.95  E-value: 9.12e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRPGRALVVEMS 71
Cdd:cd12249    4 VFVGKIP-RDVFEDELVPLFEKCGKIYELRLMmdfsglnRGYAFVTYTNKEAAQRAVKTLNNYEIRPGKLLGVCIS 78
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
1-58 9.27e-05

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 38.02  E-value: 9.27e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   1 MKIFVGNVDgADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGH 58
Cdd:cd12381    2 VNLYVKNLD-DTIDDEKLREEFSPFGTITSAKVMtdeggrsKGFGFVCFSSPEEATKAVTEMNGR 65
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
81-112 1.33e-04

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 37.60  E-value: 1.33e-04
                          10        20        30
                  ....*....|....*....|....*....|..
gi 311771527   81 IFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVR 32
RRM1_IGF2BP1 cd12625
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
2-74 1.58e-04

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1); This subgroup corresponds to the RRM1 of IGF2BP1 (IGF2 mRNA-binding protein 1 or IMP-1), also termed coding region determinant-binding protein (CRD-BP), or VICKZ family member 1, or zipcode-binding protein 1 (ZBP-1). IGF2BP1 is a multi-functional regulator of RNA metabolism that has been implicated in the control of aspects of localization, stability, and translation for many mRNAs. It is predominantly located in cytoplasm and was initially identified as a trans-acting factor that interacts with the zipcode in the 3'- untranslated region (UTR) of the beta-actin mRNA, which is important for its localization and translational regulation. It inhibits IGF-II mRNA translation through binding to the 5'-UTR of the transcript. IGF2BP1 also acts as human immunodeficiency virus type 1 (HIV-1) Gag-binding factor that interacts with HIV-1 Gag protein and blocks the formation of infectious HIV-1 particles. IGF2BP1 promotes mRNA stabilization; it functions as a coding region determinant (CRD)-binding protein that binds to the coding region of betaTrCP1 mRNA and prevents miR-183-mediated degradation of betaTrCP1 mRNA. It also promotes c-myc mRNA stability by associating with the CRD and stabilizes CD44 mRNA via interaction with the 3'-UTR of the transcript. In addition, IGF2BP1 specifically interacts with both Hepatitis C virus (HCV) 5'-UTR and 3'-UTR, further recruiting eIF3 and enhancing HCV internal ribosome entry site (IRES)-mediated translation initiation via the 3'-UTR. IGF2BP1 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. It also contains two putative nuclear export signals (NESs) and a putative nuclear localization signal (NLS).


Pssm-ID: 241069 [Multi-domain]  Cd Length: 77  Bit Score: 37.71  E-value: 1.58e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--FAFVHMRENAGALRAIEALHGHELRPGRALVVEMSRPR 74
Cdd:cd12625    3 KLYIGNLN-ESVTPADLEKVFEDHKISYSGQFLVKsgYAFVDCPDEQWAMKAIETFSGKVELHGKRLEIEHSVPK 76
RRM2_Prp24 cd12297
RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
12-73 1.71e-04

RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409738 [Multi-domain]  Cd Length: 78  Bit Score: 37.36  E-value: 1.71e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527  12 DTTPEELAALFAPYGTVMSCAV-------MKQFAFVHMRENAGALRAIEaLHGHELRPGRALVVEMSRP 73
Cdd:cd12297   11 SYDERSIRDLFGDYGVILSVRLpslryntSRRFCYIDFTSPESARAAVE-LLNGLLEEGYTLVVKISDP 78
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
3-72 1.83e-04

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 37.17  E-value: 1.83e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 311771527   3 IFVGNVdGADTTPEELAALFAPYGTVMSC-------AVMKQFAFVHMRENAGAL-RAIEALHGHELRpGRALVVEMSR 72
Cdd:cd12226    2 LFVGGL-SPSITEDDLERRFSRFGTVSDVeiirkkdAPDRGFAYIDLRTSEAALqKCLSTLNGVKWK-GSRLKIQLAK 77
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
2-101 2.45e-04

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 39.21  E-value: 2.45e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527    2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQF-------AFVHMRENAGALRAIEALHGHELRPGRALVVEMSrpr 74
Cdd:TIGR01648  60 EVFVGKIP-RDLYEDELVPLFEKAGPIYELRLMMDFsgqnrgyAFVTFCGKEEAKEAVKLLNNYEIRPGRLLGVCIS--- 135
                          90       100
                  ....*....|....*....|....*..
gi 311771527   75 pLNTWKIFVGNVSAACTSQELRSLFER 101
Cdd:TIGR01648 136 -VDNCRLFVGGIPKNKKREEILEEFSK 161
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
3-68 2.51e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 37.12  E-value: 2.51e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAV----------MKQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd21619    4 IYVGNID-MTINEDALEKIFSRYGQVESVRRppihtdkadrTTGFGFIKYTDAESAERAMQQADGILLG-RRRLVV 77
RRM_PPARGC1A_like cd12357
RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma ...
3-61 2.51e-04

RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma coactivator 1A (PGC-1alpha) family of regulated coactivators; This subfamily corresponds to the RRM of PGC-1alpha, PGC-1beta, and PGC-1-related coactivator (PRC), which serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. They play an important integrative role in the control of respiratory gene expression through interacting with a number of transcription factors, such as NRF-1, NRF-2, ERR, CREB and YY1. All family members are multi-domain proteins containing the N-terminal activation domain, an LXXLL coactivator signature, a tetrapeptide motif (DHDY) responsible for HCF binding, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In contrast to PGC-1alpha and PRC, PGC-1beta possesses two glutamic/aspartic acid-rich acidic domains, but lacks most of the arginine/serine (SR)-rich domain that is responsible for the regulation of RNA processing.


Pssm-ID: 409793 [Multi-domain]  Cd Length: 91  Bit Score: 37.41  E-value: 2.51e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVDGaDTTPEELAALFAPYGTVMSCAVM-----KQFAFVHMRENAGALRAIEalHGHELR 61
Cdd:cd12357    5 VYVGKLEQ-DTTRSELRRRFEVFGEIEECTVHfrergDKYGFVTYRYSEDAFLALE--NGHDLR 65
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
2-118 2.51e-04

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 38.90  E-value: 2.51e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527    2 KIFVGNVD---GADTtpeeLAALFAPYGTVMSC------AVMKQ--FAFVHMRENAGALRAIEALHGhELRPGRALVV-- 68
Cdd:TIGR01645 109 RVYVGSISfelREDT----IRRAFDPFGPIKSInmswdpATGKHkgFAFVEYEVPEAAQLALEQMNG-QMLGGRNIKVgr 183
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   69 --EMSRPRPL---------NTWKIFVGNVSAACTSQELRSLFERRGRVIECDVVKGmvPTG 118
Cdd:TIGR01645 184 psNMPQAQPIidmvqeeakKFNRIYVASVHPDLSETDIKSVFEAFGEIVKCQLARA--PTG 242
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
12-68 2.54e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 36.86  E-value: 2.54e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527  12 DTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12311    9 RTTPDDLRRVFEKYGEVGDVYIPRDrytresrgFAFVRFYDKRDAEDAIDAMDGAELD-GRELRV 72
RRM2_CELF1_2 cd12634
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
80-119 2.75e-04

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 410042 [Multi-domain]  Cd Length: 81  Bit Score: 36.96  E-value: 2.75e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVKGmvPTGV 119
Cdd:cd12634    3 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRG--PDGL 40
RRM2_Bruno_like cd12636
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar ...
2-56 2.90e-04

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410044 [Multi-domain]  Cd Length: 81  Bit Score: 36.78  E-value: 2.90e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 311771527   2 KIFVGNVdGADTTPEELAALFAPYGTVMSCAVMKQ-------FAFVHMRENAGALRAIEALH 56
Cdd:cd12636    3 KLFVGML-SKKCNESDVRIMFSPYGSIEECTVLRDqngksrgCAFVTFTSRQCAVNAIKAMH 63
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
2-73 2.92e-04

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 36.92  E-value: 2.92e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVM-------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRP 73
Cdd:cd12392    4 KLFVKGLP-FSCTKEELEELFKQHGTVKDVRLVtyrngkpKGLAYVEYENEADASQAVLKTDGTEIK-DHTISVAISNP 80
RRM2_RIM4_like cd12454
RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; ...
76-112 2.94e-04

RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409888 [Multi-domain]  Cd Length: 80  Bit Score: 36.68  E-value: 2.94e-04
                         10        20        30
                 ....*....|....*....|....*....|....*..
gi 311771527  76 LNTWKIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12454    1 IDKLSIFVGQLDPKTTDSELFRRFSKYGKIVDCKLIK 37
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
3-57 3.16e-04

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 36.53  E-value: 3.16e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM--KQFAFVHMRENAGALRAIEALHG 57
Cdd:cd12346    4 VFVGGLD-PNVTEEDLRVLFGPFGEIVYVKIPpgKGCGFVQFVNRASAEAAIQKLQG 59
RRM_Srp1p_like cd12467
RNA recognition motif 1 (RRM1) found in fission yeast pre-mRNA-splicing factor Srp1p and ...
10-72 3.44e-04

RNA recognition motif 1 (RRM1) found in fission yeast pre-mRNA-splicing factor Srp1p and similar proteins; This subgroup corresponds to the RRM domain in Srp1p encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but not essential for growth. Srp1p is closely related to the SR protein family found in metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. Some family members also contain another RRM domain.


Pssm-ID: 240913 [Multi-domain]  Cd Length: 78  Bit Score: 36.70  E-value: 3.44e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527  10 GADTTPEELAALFAPYGTVMSCAV-------MKQFAFVHMRENAGALRAIEALHGHELRPGR-ALVVEMSR 72
Cdd:cd12467    8 GAETRARDLAYEFERYGRLVRCDIppprtfqSRPFAFVEYESHRDAEDAYEEMHGRRFPDTGdTLHVQWAK 78
RRM1_IGF2BP2 cd12626
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
2-74 3.79e-04

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2); This subgroup corresponds to the RRM1 of IGF2BP2 (IGF2 mRNA-binding protein 2 or IMP-2), also termed hepatocellular carcinoma autoantigen p62, or VICKZ family member 2, which is a ubiquitously expressed RNA-binding protein involved in the stimulation of insulin action. It is predominantly nuclear. SNPs in IGF2BP2 gene are implicated in susceptibility to type 2 diabetes. IGF2BP2 plays an important role in cellular motility; it regulates the expression of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein, through direct binding to their mRNAs. IGF2BP2 may be involved in the regulation of mRNA stability through the interaction with the AU-rich element-binding factor AUF1. IGF2BP2 binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling IGF2BP1. IGF2BP2 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain.


Pssm-ID: 241070 [Multi-domain]  Cd Length: 77  Bit Score: 36.51  E-value: 3.79e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527   2 KIFVGNVDGAdTTPEELAALFAPYGTVMSCAVMKQ--FAFVHMRENAGALRAIEALHGHELRPGRALVVEMSRPR 74
Cdd:cd12626    3 KLYIGNLSPA-VTAEDLRQLFGDRKLPLTGQVLLKsgYAFVDYPDQNWAIRAIETLSGKVELHGKVMEVDYSVPK 76
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
2-57 4.22e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 36.17  E-value: 4.22e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   2 KIFVGNVDGAdTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHG 57
Cdd:cd12316    1 RLFVRNLPFT-ATEDELRELFEAFGKISEVHIPldkqtkrsKGFAFVLFVIPEDAVKAYQELDG 63
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
3-62 5.36e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 35.96  E-value: 5.36e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEA----LHGHELRP 62
Cdd:cd12325    1 LFVGGLS-WETTEESLREYFSKYGEVVDCVVMKDpatgrsrgFGFVTFKDPSSVDAVLAArphtLDGRTIDP 71
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
13-64 5.82e-04

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 35.75  E-value: 5.82e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527  13 TTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRPGR 64
Cdd:cd12243   12 TTDEDLLLLCQSFGKIISTKAIidkqtnkcKGYGFVDFDSPEAALKAIEGLNGRGVQASF 71
RRM1_RBM47 cd12485
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This ...
2-68 5.89e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM1 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 240929 [Multi-domain]  Cd Length: 78  Bit Score: 36.10  E-value: 5.89e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQF-------AFVHMRENAGALRAIEALHGHELRPGRALVV 68
Cdd:cd12485    3 EVFVGKIP-RDVYEDELVPVFESVGRIYEMRLMMDFdgknrgyAFVMYTQKHEAKRAVRELNNYEIRPGRLLGV 75
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
3-57 6.35e-04

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 35.84  E-value: 6.35e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ------FAFVHMRENAGALRAIEALHG 57
Cdd:cd12352    1 LYVGNLD-RQVTEDLILQLFSQIGPCKSCKMITEhggndpYCFVEFYEHNHAAAALQAMNG 60
RRM1_RBM46 cd12484
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This ...
2-71 8.95e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM1 of RBM46, also termed cancer/testis antigen 68 (CT68), a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409911 [Multi-domain]  Cd Length: 78  Bit Score: 35.64  E-value: 8.95e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQF-------AFVHMRENAGALRAIEALHGHELRPGRALVVEMS 71
Cdd:cd12484    3 EVFVGKIP-RDMYEDELVPVFERAGKIYEFRLMMEFsgenrgyAFVMYTTKEEAQLAIKMLNNYEIRPGKFIGVCVS 78
RRM1_DAZAP1 cd12574
RNA recognition motif 1 (RRM1) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
2-76 1.01e-03

RNA recognition motif 1 (RRM1) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM1 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated form is predominantly nuclear and the nonacetylated form is in cytoplasm. It also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409988 [Multi-domain]  Cd Length: 82  Bit Score: 35.40  E-value: 1.01e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   2 KIFVGNVDGAdTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMREnAGALRAIEALHGHELrPGRALVVEMSRP 73
Cdd:cd12574    1 KLFVGGLDWS-TTQETLRSYFSQYGEVVDCVIMKDkttnqsrgFGFVKFKD-PNCVGTVLASRPHNL-DGRNIDPKPCTP 77

                 ...
gi 311771527  74 RPL 76
Cdd:cd12574   78 RGM 80
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
1-73 1.27e-03

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 35.47  E-value: 1.27e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   1 MKIFVGNVDgADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHGHELRPGralvveMSR 72
Cdd:cd12632    6 IKLFIGQIP-RNLEEKDLRPLFEQFGKIYELTVLKDkytgmhkgCAFLTYCARESALKAQSALHEQKTLPG------MNR 78

                 .
gi 311771527  73 P 73
Cdd:cd12632   79 P 79
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
3-68 1.38e-03

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 36.84  E-value: 1.38e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527    3 IFVGNVdGADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELrPGRALVV 68
Cdd:TIGR01661 272 IFVYNL-SPDTDETVLWQLFGPFGAVQNVKIIrdlttnqcKGYGFVSMTNYDEAAMAILSLNGYTL-GNRVLQV 343
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
77-107 1.59e-03

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 34.78  E-value: 1.59e-03
                         10        20        30
                 ....*....|....*....|....*....|.
gi 311771527  77 NTWKIFVGNVSAACTSQELRSLFERRGRVIE 107
Cdd:cd12327    1 KSKKVFVGGIPHNCGETELRDYFKRYGVVTE 31
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
2-72 1.68e-03

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 34.97  E-value: 1.68e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVM-----------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEM 70
Cdd:cd12355    1 RLWIGNLD-PRLTEYHLLKLLSKYGKIKKFDFLfhktgplkgqpRGYCFVTFETKEEAEKAIECLNGKLAL-GKKLVVRW 78

                 ..
gi 311771527  71 SR 72
Cdd:cd12355   79 AH 80
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
80-112 1.88e-03

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 34.70  E-value: 1.88e-03
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12632    7 KLFIGQIPRNLEEKDLRPLFEQFGKIYELTVLK 39
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
3-72 1.94e-03

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 34.51  E-value: 1.94e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527   3 IFVGNVDGADTTPEELAALFAPYGTVMSCAVM---KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSR 72
Cdd:cd12423    2 LLVSNLNEEMVTPDALFTLFGVYGDVLRVKILfnkKDTALIQMADPQQAQTALQHLNGIKLF-GKPIRVTLSK 73
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
2-69 1.97e-03

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 34.69  E-value: 1.97e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 311771527   2 KIFVGNVD---GADTTPEELAALFAPYGTVMSCAV--------MKQFAFVHMRENAGALRAIEaLHGHELRpGRALVVE 69
Cdd:cd12451    1 TIFVKGFDaslGEDTIRDELREHFGECGEVTNVRIptdretgeLKGFAYIEFSTKEAKEKALE-LNGSDIA-GGNLVVD 77
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
80-113 2.06e-03

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 34.70  E-value: 2.06e-03
                         10        20        30
                 ....*....|....*....|....*....|....
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVKG 113
Cdd:cd12635    3 KLFVGMLGKQQSEDDVRRLFEPFGSIEECTILRG 36
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
2-40 2.36e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 34.17  E-value: 2.36e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 311771527   2 KIFVGNVDGaDTTPEELAALFAPYGTVMSCAVM--KQ------FAFV 40
Cdd:cd12328    1 KLFVGGLKE-DVEEEDLREYFSQFGKVESVEIVtdKEtgkkrgFAFV 46
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
80-110 2.37e-03

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 34.22  E-value: 2.37e-03
                         10        20        30
                 ....*....|....*....|....*....|.
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDV 110
Cdd:cd12330    1 KIFVGGLAPDVTEEEFKEYFEQFGTVVDAVV 31
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
80-111 2.51e-03

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 34.32  E-value: 2.51e-03
                         10        20        30
                 ....*....|....*....|....*....|..
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVV 111
Cdd:cd21609    1 RLYVGNIPRNVTSEELAKIFEEAGTVEIAEVM 32
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
80-114 2.72e-03

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 34.29  E-value: 2.72e-03
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVKGM 114
Cdd:cd12353    1 HIFVGDLSPEIETEDLKEAFAPFGEISDARVVKDT 35
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
80-108 2.86e-03

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 33.81  E-value: 2.86e-03
                         10        20
                 ....*....|....*....|....*....
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIEC 108
Cdd:cd12332    3 RLFVGNLPNDITEEEFKELFQKYGEVSEV 31
RRM1_2_CID8_like cd12225
RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting ...
3-61 3.25e-03

RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409672 [Multi-domain]  Cd Length: 76  Bit Score: 33.98  E-value: 3.25e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 311771527   3 IFVGNVDGaDTTPEELAALFAPYGTVMSC-----AVMKQFAFVHMRENAGALRAI----EALHGHELR 61
Cdd:cd12225    3 IHVGGIDG-SLSEDELADYFSNCGEVTQVrlcgdRVHTRFAWVEFATDASALSALnldgTTLGGHPLR 69
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
2-65 3.45e-03

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 33.80  E-value: 3.45e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 311771527   2 KIFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEA-----LHGHELRPGRA 65
Cdd:cd12371    2 RIYVASVH-PDLSEDDIKSVFEAFGKIKSCSLApdpetgkhKGYGFIEYENPQSAQDAIASmnlfdLGGQYLRVGRA 77
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
2-57 3.59e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 33.83  E-value: 3.59e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   2 KIFVgnVDGADTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMRENAGALRAIEALHG 57
Cdd:cd12366    5 RLFV--VCSKSVTEDDLREAFSPFGEIQDIWVVKDkqtkeskgIAYVKFAKSSQAARAMEEMHG 66
RRM3_ROD1 cd12697
RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This ...
3-72 3.71e-03

RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM3 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410097 [Multi-domain]  Cd Length: 76  Bit Score: 33.79  E-value: 3.71e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527   3 IFVGNVDGADTTPEELAALFAPYGTVMSCAVM---KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSR 72
Cdd:cd12697    3 LLVSNLNPDAITPHGLFILFGVYGDVLRVKIMfnkKENALVQMADATQAQIAMSHLNGQRLY-GKVLRATLSK 74
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
3-60 3.92e-03

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 33.71  E-value: 3.92e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 311771527   3 IFVGNVdGADT--TPEELAALFAPYGTVMScAVM---KQFAFVHMRENAGALRAIEALHGHEL 60
Cdd:cd12431    4 LVVANG-GLGNgvSREQLLEVFEKYGTVED-IVMlpgKPYSFVSFKSVEEAAKAYNALNGKEL 64
RRM2_Crp79_Mug28 cd21621
RNA recognition motif 2 (RRM2) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
11-68 4.20e-03

RNA recognition motif 2 (RRM2) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410200 [Multi-domain]  Cd Length: 74  Bit Score: 33.45  E-value: 4.20e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 311771527  11 ADTTPEELAALFAPYGTVMSCAV-------MKQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd21621    8 TDMTPKDLYNLFSEHGKVEGTAInqvpdnrGRRYGEVAMNSYEDCQKALEYFNGYVYK-GYILEV 71
RRM_hnRNPC_like cd12341
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C) ...
80-113 4.56e-03

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C)-related proteins; This subfamily corresponds to the RRM in the hnRNP C-related protein family, including hnRNP C proteins, Raly, and Raly-like protein (RALYL). hnRNP C proteins, C1 and C2, are produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex; they are involved in the packaging of the hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. Raly, also termed autoantigen p542, is an RNA-binding protein that may play a critical role in embryonic development. The biological role of RALYL remains unclear. It shows high sequence homology with hnRNP C proteins and Raly. Members of this family are characterized by an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. The Raly proteins contain a glycine/serine-rich stretch within the C-terminal regions, which is absent in the hnRNP C proteins. Thus, the Raly proteins represent a newly identified class of evolutionarily conserved autoepitopes.


Pssm-ID: 409778 [Multi-domain]  Cd Length: 68  Bit Score: 33.38  E-value: 4.56e-03
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 311771527  80 KIFVGNV-SAACTSQELRSLFERRGRVIECDVVKG 113
Cdd:cd12341    2 RIFVGNLpTDQMTKEDLEEIFSKYGKILGISLHKG 36
RRM1_Hrp1p cd12577
RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
3-66 4.58e-03

RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition, steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway. It binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409991 [Multi-domain]  Cd Length: 76  Bit Score: 33.62  E-value: 4.58e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 311771527   3 IFVGNVDGaDTTPEELAALFAPYGTVMSCAVMKQ--------FAFVHMrENAGALRAI----EALHGHELRPGRAL 66
Cdd:cd12577    1 MFIGGLNW-DTTEEGLRDYFSQFGTVVDCTIMKDsatgrsrgFGFLTF-EDPSSVNEVmkkeHVLDGKIIDPKRAI 74
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
3-68 4.74e-03

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 33.35  E-value: 4.74e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAV--------MKQFAFVHMRENAGALRAIEALHGHELRpGRALVV 68
Cdd:cd12347    1 LYVGGLA-EEVDEKVLHAAFIPFGDIVDIQIpldyetekHRGFAFVEFEEAEDAAAAIDNMNESELF-GRTIRV 72
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
10-71 5.07e-03

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 33.36  E-value: 5.07e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527  10 GADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMS 71
Cdd:cd12363   10 SLYTTERDLREVFSRYGPIEKVQVVydqqtgrsRGFGFVYFESVEDAKEAKERLNGQEID-GRRIRVDYS 78
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
3-80 5.78e-03

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 33.84  E-value: 5.78e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527   3 IFVGNVDgADTTPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGHELRpGRALVVEMSRPR 74
Cdd:cd12237    7 LFVGRLS-LQTTEEKLKEVFSRYGDIRRLRLVrdivtgfsKRYAFIEYKEERDALHAYRDAKKLVID-QYEIFVDFECER 84

                 ....*.
gi 311771527  75 PLNTWK 80
Cdd:cd12237   85 TLPGWI 90
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
17-58 6.43e-03

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 33.14  E-value: 6.43e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 311771527  17 ELAALFAPYGTVMSCAVM------KQFAFVHMRENAGALRAIEALHGH 58
Cdd:cd12407   16 DLRQMFGQFGTILDVEIIfnergsKGFGFVTFANSADADRAREKLNGT 63
RRM2_Bruno_like cd12636
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar ...
80-112 6.60e-03

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410044 [Multi-domain]  Cd Length: 81  Bit Score: 33.31  E-value: 6.60e-03
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12636    3 KLFVGMLSKKCNESDVRIMFSPYGSIEECTVLR 35
RRM1_RBM34 cd12394
RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
81-105 6.63e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409828 [Multi-domain]  Cd Length: 91  Bit Score: 33.34  E-value: 6.63e-03
                         10        20
                 ....*....|....*....|....*
gi 311771527  81 IFVGNVSAACTSQELRSLFERRGRV 105
Cdd:cd12394    3 VFVGNLPVTVKKKALKKLFKEFGKI 27
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
81-112 6.98e-03

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 33.55  E-value: 6.98e-03
                         10        20        30
                 ....*....|....*....|....*....|..
gi 311771527  81 IFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12676    4 LFVRNLPFDATEDELYSHFSQFGPLKYARVVK 35
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
80-112 7.43e-03

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 33.12  E-value: 7.43e-03
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12637    1 KLFVGSLPKTATEQEVRDLFEAYGEVEEVYLMK 33
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
14-58 7.86e-03

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 33.07  E-value: 7.86e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 311771527  14 TPEELAALFAPYGTVMSCAVM--------KQFAFVHMRENAGALRAIEALHGH 58
Cdd:cd12652   13 TQKELEQLFSQFGRIITSRILcdnvtglsRGVGFIRFDKRVEAERAIKALNGT 65
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
80-112 7.88e-03

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 33.22  E-value: 7.88e-03
                         10        20        30
                 ....*....|....*....|....*....|...
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIECDVVK 112
Cdd:cd12449    2 KLFVGGLSFDTNEQSLEEVFSKYGQISEVVVVK 34
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
75-102 7.91e-03

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 32.98  E-value: 7.91e-03
                         10        20
                 ....*....|....*....|....*...
gi 311771527  75 PLNTwkIFVGNVSAACTSQELRSLFERR 102
Cdd:cd12245    1 PCNT--LFVANLGPNVSEQELRQLFSRQ 26
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
18-72 8.27e-03

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 32.89  E-value: 8.27e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 311771527  18 LAALFAPYGTVMSCAVMKQF-----AFVHMRENAGALRAIEALHGHELRpGRALVVEMSR 72
Cdd:cd12246   20 LYALFSQFGPVLDIVASKSLkmrgqAFVVFKDVESATNALRALQGFPFY-GKPMRIQYAK 78
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
80-108 9.06e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 32.79  E-value: 9.06e-03
                         10        20
                 ....*....|....*....|....*....
gi 311771527  80 KIFVGNVSAACTSQELRSLFERRGRVIEC 108
Cdd:cd12323    1 KIFVGGLSANTTEDDVKKYFSQFGKVEDA 29
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH