NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|807066331|ref|NP_001293080|]
View 

dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide isoform 2 [Homo sapiens]

Protein Classification

SH2_DAPP1_BAM32_like and PH_DAPP1 domain-containing protein( domain architecture ID 10179495)

SH2_DAPP1_BAM32_like and PH_DAPP1 domain-containing protein

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
163-258 4.02e-62

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 190.23  E-value: 4.02e-62
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 163 SLGTKEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVNCFCLVFPFRTFYLCAK 242
Cdd:cd10573    1 SLGSKEGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLRECSSVQRDYSQGKVNCFCLVFPERTFYMYAN 80
                         90
                 ....*....|....*.
gi 807066331 243 TGVEADEWIKILRWKL 258
Cdd:cd10573   81 TEEEADEWVKLLKWKL 96
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
28-119 5.15e-61

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


:

Pssm-ID: 198218  Cd Length: 92  Bit Score: 187.30  E-value: 5.15e-61
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  28 ELLQDLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVK 107
Cdd:cd10355    1 ELLQSLGWYHGNLTRHAAEALLLSNGVDGSYLLRNSNEGTGLFSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLQDFVK 80
                         90
                 ....*....|..
gi 807066331 108 HFANQPLIGSET 119
Cdd:cd10355   81 HFANQPLIGSET 92
 
Name Accession Description Interval E-value
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
163-258 4.02e-62

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 190.23  E-value: 4.02e-62
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 163 SLGTKEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVNCFCLVFPFRTFYLCAK 242
Cdd:cd10573    1 SLGSKEGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLRECSSVQRDYSQGKVNCFCLVFPERTFYMYAN 80
                         90
                 ....*....|....*.
gi 807066331 243 TGVEADEWIKILRWKL 258
Cdd:cd10573   81 TEEEADEWVKLLKWKL 96
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
28-119 5.15e-61

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 187.30  E-value: 5.15e-61
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  28 ELLQDLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVK 107
Cdd:cd10355    1 ELLQSLGWYHGNLTRHAAEALLLSNGVDGSYLLRNSNEGTGLFSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLQDFVK 80
                         90
                 ....*....|..
gi 807066331 108 HFANQPLIGSET 119
Cdd:cd10355   81 HFANQPLIGSET 92
SH2 pfam00017
SH2 domain;
35-109 5.15e-22

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 86.50  E-value: 5.15e-22
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 807066331   35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYT--GYSFKFGFNEFSSLKDFVKHF 109
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGKPDGTFLVRESESTPGGYTLSVRDDGKVKHYKIQSTdnGGYYISGGVKFSSLAELVEHY 77
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
35-114 7.37e-19

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 78.42  E-value: 7.37e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331    35 WYHGNLTRHAAEALLLSNGcDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSfKFGFNE---FSSLKDFVKHFAN 111
Cdd:smart00252   3 WYHGFISREEAEKLLKNEG-DGDFLVRDSESSPGDYVLSVRVKGKVKHYRIRRNEDG-KFYLEGgrkFPSLVELVEHYQK 80

                   ...
gi 807066331   112 QPL 114
Cdd:smart00252  81 NSL 83
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
166-255 9.80e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 71.04  E-value: 9.80e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331   166 TKEGYLTKQG-GLVKTWKTRWFTLHRNELKYFKD---QMSPEPIRILDLTECSAVQFD--YSQERVNCFCLVFPFR-TFY 238
Cdd:smart00233   2 IKEGWLYKKSgGGKKSWKKRYFVLFNSTLLYYKSkkdKKSYKPKGSIDLSGCTVREAPdpDSSKKPHCFEIKTSDRkTLL 81
                           90
                   ....*....|....*..
gi 807066331   239 LCAKTGVEADEWIKILR 255
Cdd:smart00233  82 LQAESEEEREKWVEALR 98
PH pfam00169
PH domain; PH stands for pleckstrin homology.
166-255 1.56e-14

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 67.59  E-value: 1.56e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  166 TKEGYLTKQG-GLVKTWKTRWFTLHRNELKYFKDQMSP---EPIRILDLTECSAVQF--DYSQERVNCFCLVF----PFR 235
Cdd:pfam00169   2 VKEGWLLKKGgGKKKSWKKRYFVLFDGSLLYYKDDKSGkskEPKGSISLSGCEVVEVvaSDSPKRKFCFELRTgertGKR 81
                          90       100
                  ....*....|....*....|
gi 807066331  236 TFYLCAKTGVEADEWIKILR 255
Cdd:pfam00169  82 TYLLQAESEEERKDWIKAIQ 101
 
Name Accession Description Interval E-value
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
163-258 4.02e-62

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 190.23  E-value: 4.02e-62
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 163 SLGTKEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVNCFCLVFPFRTFYLCAK 242
Cdd:cd10573    1 SLGSKEGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLRECSSVQRDYSQGKVNCFCLVFPERTFYMYAN 80
                         90
                 ....*....|....*.
gi 807066331 243 TGVEADEWIKILRWKL 258
Cdd:cd10573   81 TEEEADEWVKLLKWKL 96
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
28-119 5.15e-61

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 187.30  E-value: 5.15e-61
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  28 ELLQDLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVK 107
Cdd:cd10355    1 ELLQSLGWYHGNLTRHAAEALLLSNGVDGSYLLRNSNEGTGLFSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLQDFVK 80
                         90
                 ....*....|..
gi 807066331 108 HFANQPLIGSET 119
Cdd:cd10355   81 HFANQPLIGSET 92
SH2 pfam00017
SH2 domain;
35-109 5.15e-22

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 86.50  E-value: 5.15e-22
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 807066331   35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYT--GYSFKFGFNEFSSLKDFVKHF 109
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGKPDGTFLVRESESTPGGYTLSVRDDGKVKHYKIQSTdnGGYYISGGVKFSSLAELVEHY 77
SH2_Nck_family cd09943
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ...
35-125 6.16e-22

Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198196  Cd Length: 93  Bit Score: 87.19  E-value: 6.16e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVKHFANQPL 114
Cdd:cd09943    3 WYYGRITRHQAETLLNEHGHEGDFLIRDSESNPGDYSVSLKAPGRNKHFKVQVVDNVYCIGQRKFHTMDELVEHYKKAPI 82
                         90
                 ....*....|.
gi 807066331 115 IGSETGTLMVL 125
Cdd:cd09943   83 FTSEQGEKLYL 93
SH2_C-SH2_SHP_like cd09931
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
35-131 7.50e-21

C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198185  Cd Length: 99  Bit Score: 84.25  E-value: 7.50e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDS-VKHFHVEYTGYSFKF-GFNEFSSLKDFVKHFANQ 112
Cdd:cd09931    2 WFHGHLSGKEAEKLLLEKGKPGSFLVRESQSKPGDFVLSVRTDDDkVTHIMIRCQGGKYDVgGGEEFDSLTDLVEHYKKN 81
                         90
                 ....*....|....*....
gi 807066331 113 PLIGSeTGTLMVLKHPYPR 131
Cdd:cd09931   82 PMVET-SGTVVHLKQPLNA 99
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
35-114 7.37e-19

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 78.42  E-value: 7.37e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331    35 WYHGNLTRHAAEALLLSNGcDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSfKFGFNE---FSSLKDFVKHFAN 111
Cdd:smart00252   3 WYHGFISREEAEKLLKNEG-DGDFLVRDSESSPGDYVLSVRVKGKVKHYRIRRNEDG-KFYLEGgrkFPSLVELVEHYQK 80

                   ...
gi 807066331   112 QPL 114
Cdd:smart00252  81 NSL 83
SH2_Nck2 cd10409
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
34-128 1.44e-18

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198272  Cd Length: 98  Bit Score: 78.54  E-value: 1.44e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  34 GWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVKHFANQP 113
Cdd:cd10409    2 EWYYGNVTRHQAECALNERGVEGDFLIRDSESSPSDFSVSLKAVGKNKHFKVQLVDNVYCIGQRRFNSMDELVEHYKKAP 81
                         90
                 ....*....|....*
gi 807066331 114 LIGSETGTLMVLKHP 128
Cdd:cd10409   82 IFTSEHGEKLYLVKA 96
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
167-254 1.68e-18

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 77.97  E-value: 1.68e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGG-LVKTWKTRWFTLHRNELKYFKDQMSP--EPIRILDLTECSAVQFDYSQERVNCFCLVFPF-RTFYLCAK 242
Cdd:cd00821    1 KEGYLLKRGGgGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGILEVEEVSPKERPHCFELVTPDgRTYYLQAD 80
                         90
                 ....*....|..
gi 807066331 243 TGVEADEWIKIL 254
Cdd:cd00821   81 SEEERQEWLKAL 92
SH2_Nck1 cd10408
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
35-127 7.63e-18

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198271  Cd Length: 97  Bit Score: 76.22  E-value: 7.63e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVKHFANQPL 114
Cdd:cd10408    3 WYYGKVTRHQAEMALNERGNEGDFLIRDSESSPNDFSVSLKAQGKNKHFKVQLKECVYCIGQRKFSSMEELVEHYKKAPI 82
                         90
                 ....*....|....
gi 807066331 115 IGSETG-TLMVLKH 127
Cdd:cd10408   83 FTSEQGeKLYLIKA 96
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
167-254 1.17e-17

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 75.80  E-value: 1.17e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQ--MSPEPIRILDLTECSAVQfdySQERVNCFCLVFPFRTFYLCAKTG 244
Cdd:cd13282    1 KAGYLTKLGGKVKTWKRRWFVLKNGELFYYKSPndVIRKPQGQIALDGSCEIA---RAEGAQTFEIVTEKRTYYLTADSE 77
                         90
                 ....*....|
gi 807066331 245 VEADEWIKIL 254
Cdd:cd13282   78 NDLDEWIRVI 87
SH2 cd00173
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ...
35-109 1.17e-17

Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others.


Pssm-ID: 198173 [Multi-domain]  Cd Length: 79  Bit Score: 75.18  E-value: 1.17e-17
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 807066331  35 WYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAK-DSVKHFHVEYTGYSFKFGFNE---FSSLKDFVKHF 109
Cdd:cd00173    2 WFHGSISREEAERLL-RGKPDGTFLVRESSSEPGDYVLSVRSGdGKVKHYLIERNEGGYYLLGGSgrtFPSLPELVEHY 79
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
167-252 1.80e-17

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 75.85  E-value: 1.80e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQ---FDYSQERVNCFCLVFPFRTFYLCAKT 243
Cdd:cd13271   10 KSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHeclVKSLLMRDNLFEIITTSRTFYIQADS 89

                 ....*....
gi 807066331 244 GVEADEWIK 252
Cdd:cd13271   90 PEEMHSWIK 98
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
167-254 6.61e-17

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 74.37  E-value: 6.61e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTE---CSAVQFDYSQervNCFCLVFPFRTFYLCAKT 243
Cdd:cd13255    8 KAGYLEKKGERRKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDLTDihtCTEVQLKKHD---NTFGIVTPARTFYVQADS 84
                         90
                 ....*....|.
gi 807066331 244 GVEADEWIKIL 254
Cdd:cd13255   85 KAEMESWISAI 95
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
166-255 9.80e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 71.04  E-value: 9.80e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331   166 TKEGYLTKQG-GLVKTWKTRWFTLHRNELKYFKD---QMSPEPIRILDLTECSAVQFD--YSQERVNCFCLVFPFR-TFY 238
Cdd:smart00233   2 IKEGWLYKKSgGGKKSWKKRYFVLFNSTLLYYKSkkdKKSYKPKGSIDLSGCTVREAPdpDSSKKPHCFEIKTSDRkTLL 81
                           90
                   ....*....|....*..
gi 807066331   239 LCAKTGVEADEWIKILR 255
Cdd:smart00233  82 LQAESEEEREKWVEALR 98
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
167-255 1.23e-15

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 70.33  E-value: 1.23e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQ-GGLVKTWKTRWFTLHRNELKYFKDQMSPEP-IRILDLTECSaVQFDYSQERVNCFCLVFPFRTFYLCAKTG 244
Cdd:cd13250    1 KEGYLFKRsSNAFKTWKRRWFSLQNGQLYYQKRDKKDEPtVMVEDLRLCT-VKPTEDSDRRFCFEVISPTKSYMLQAESE 79
                         90
                 ....*....|.
gi 807066331 245 VEADEWIKILR 255
Cdd:cd13250   80 EDRQAWIQAIQ 90
SH2_Cterm_RasGAP cd10354
C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
35-109 2.04e-15

C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198217  Cd Length: 77  Bit Score: 69.37  E-value: 2.04e-15
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTG-YSFKFGFNEFSSLKDFVKHF 109
Cdd:cd10354    2 WFHGKISREEAYNMLVKVGGPGSFLVRESDNTPGDYSLSFRVNEGIKHFKIIPTGnNQFMMGGRYFSSLDDVIDRY 77
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
167-251 8.87e-15

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 68.50  E-value: 8.87e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQ---MSPEPIRILDLTECSAVQfdySQE----RVNCFCLVFPFRTFYL 239
Cdd:cd13276    1 KAGWLEKQGEFIKTWRRRWFVLKQGKLFWFKEPdvtPYSKPRGVIDLSKCLTVK---SAEdatnKENAFELSTPEETFYF 77
                         90
                 ....*....|..
gi 807066331 240 CAKTGVEADEWI 251
Cdd:cd13276   78 IADNEKEKEEWI 89
SH2_ABL cd09935
Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ...
35-128 9.39e-15

Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198189  Cd Length: 94  Bit Score: 67.80  E-value: 9.39e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEaLLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNE--FSSLKDFVKHFANQ 112
Cdd:cd09935    5 WYHGPISRNAAE-YLLSSGINGSFLVRESESSPGQYSISLRYDGRVYHYRISEDSDGKVYVTQEhrFNTLAELVHHHSKN 83
                         90
                 ....*....|....*.
gi 807066331 113 PligseTGTLMVLKHP 128
Cdd:cd09935   84 A-----DGLITTLRYP 94
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
167-261 1.32e-14

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 68.49  E-value: 1.32e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSaVQFDYSQERVNCFCLvFPFR----------- 235
Cdd:cd01252    5 REGWLLKLGGRVKSWKRRWFILTDNCLYYFEYTTDKEPRGIIPLENLS-VREVEDKKKPFCFEL-YSPSngqvikacktd 82
                         90       100       110
                 ....*....|....*....|....*....|....*..
gi 807066331 236 ----------TFY-LCAKTGVEADEWIKILRWKLVKD 261
Cdd:cd01252   83 sdgkvvegnhTVYrISAASEEERDEWIKSIKASISRD 119
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
167-255 1.43e-14

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 67.65  E-value: 1.43e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVNCFCLVFPFRTFYLCAKTGVE 246
Cdd:cd13298    8 KSGYLLKRSRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDKKRKNVFGIYTPSKNLHFRATSEKD 87

                 ....*....
gi 807066331 247 ADEWIKILR 255
Cdd:cd13298   88 ANEWVEALR 96
PH pfam00169
PH domain; PH stands for pleckstrin homology.
166-255 1.56e-14

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 67.59  E-value: 1.56e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  166 TKEGYLTKQG-GLVKTWKTRWFTLHRNELKYFKDQMSP---EPIRILDLTECSAVQF--DYSQERVNCFCLVF----PFR 235
Cdd:pfam00169   2 VKEGWLLKKGgGKKKSWKKRYFVLFDGSLLYYKDDKSGkskEPKGSISLSGCEVVEVvaSDSPKRKFCFELRTgertGKR 81
                          90       100
                  ....*....|....*....|
gi 807066331  236 TFYLCAKTGVEADEWIKILR 255
Cdd:pfam00169  82 TYLLQAESEEERKDWIKAIQ 101
SH2_N-SH2_SHP_like cd10340
N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
35-128 4.86e-14

N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [IVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198203  Cd Length: 99  Bit Score: 66.27  E-value: 4.86e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTG-YSFKFGFNEFSSLKDFVKHFANQP 113
Cdd:cd10340    2 WFHPVISGIEAENLLKTRGVDGSFLARPSKSNPGDFTLSVRRGDEVTHIKIQNTGdYYDLYGGEKFATLSELVQYYMEQH 81
                         90
                 ....*....|....*.
gi 807066331 114 -LIGSETGTLMVLKHP 128
Cdd:cd10340   82 gQLREKNGDVIELKYP 97
SH2_C-SH2_PLC_gamma_like cd09932
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
35-133 5.46e-14

C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198186  Cd Length: 104  Bit Score: 66.13  E-value: 5.46e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVKHFANQPL 114
Cdd:cd09932    6 WFHANLTREQAEEMLMRVPRDGAFLVRPSETDPNSFAISFRAEGKIKHCRIKQEGRLFVIGTSQFESLVELVSYYEKHPL 85
                         90
                 ....*....|....*....
gi 807066331 115 IGSetgtlMVLKHPYPRKV 133
Cdd:cd09932   86 YRK-----IKLRYPVNEEL 99
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
167-255 2.03e-13

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 64.67  E-value: 2.03e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNE--LKYFKDQMSPEPIRILDLTECSAVQFDYS-QERVNCFCLV---FPFRT-FYL 239
Cdd:cd13260    5 KKGYLLKKGGKNKKWKNLYFVLEGKEqhLYFFDNEKRTKPKGLIDLSYCSLYPVHDSlFGRPNCFQIVvraLNESTiTYL 84
                         90
                 ....*....|....*.
gi 807066331 240 CAKTGVEADEWIKILR 255
Cdd:cd13260   85 CADTAELAQEWMRALR 100
SH2_Nterm_shark_like cd10347
N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
33-109 2.64e-13

N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198210  Cd Length: 81  Bit Score: 63.55  E-value: 2.64e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  33 LGWYHGNLTRHAAEALLL-SNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTG---YSFKFGFNEFSSLKDFVKH 108
Cdd:cd10347    1 LRWYHGKISREVAEALLLrEGGRDGLFLVRESTSAPGDYVLSLLAQGEVLHYQIRRHGedaFFSDDGPLIFHGLDTLIEH 80

                 .
gi 807066331 109 F 109
Cdd:cd10347   81 Y 81
SH2_SOCS7 cd10388
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
28-95 6.36e-13

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198251  Cd Length: 101  Bit Score: 63.14  E-value: 6.36e-13
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 807066331  28 ELLQDLGWYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFG 95
Cdd:cd10388    5 RELKDCGWYWGPMSWEDAEKVL-SNKPDGSFLVRDSSDDRYIFSLSFRSQGSVHHTRIEQYQGTFSLG 71
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
167-255 9.56e-13

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 63.41  E-value: 9.56e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSaVQFDYSQERvNCFCLVFP---FRTFYLCAKT 243
Cdd:cd13288   10 KEGYLWKKGERNTSYQKRWFVLKGNLLFYFEKKGDREPLGVIVLEGCT-VELAEDAEP-YAFAIRFDgpgARSYVLAAEN 87
                         90
                 ....*....|..
gi 807066331 244 GVEADEWIKILR 255
Cdd:cd13288   88 QEDMESWMKALS 99
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
167-255 1.51e-12

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 62.79  E-value: 1.51e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVNCFCL-VFP----------FR 235
Cdd:cd13263    5 KSGWLKKQGSIVKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLPGNKVKEVPFNPEEPGKFLFeIIPggggdrmtsnHD 84
                         90       100
                 ....*....|....*....|
gi 807066331 236 TFYLCAKTGVEADEWIKILR 255
Cdd:cd13263   85 SYLLMANSQAEMEEWVKVIR 104
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
167-254 2.68e-12

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 61.71  E-value: 2.68e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLV-----KTWKTRWFTLHRNELKYFK-DQMSPEPIRILDLTECSAVqFDYSQERvNCFCLVFPFRTFYLC 240
Cdd:cd13296    1 KSGWLTKKGGGSstlsrRNWKSRWFVLRDTVLKYYEnDQEGEKLLGTIDIRSAKEI-VDNDPKE-NRLSITTEERTYHLV 78
                         90
                 ....*....|....
gi 807066331 241 AKTGVEADEWIKIL 254
Cdd:cd13296   79 AESPEDASQWVNVL 92
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
35-128 3.53e-12

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 61.28  E-value: 3.53e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGcDGSYLLRDSNeTTGLYSLSVRAKDSVKH---FHVEyTGYSFKFGFNEFSSLKDFVKHFAN 111
Cdd:cd09930    8 WLVGDINRTQAEELLRGKP-DGTFLIRESS-TQGCYACSVVCNGEVKHcviYKTE-TGYGFAEPYNLYESLKELVLHYAH 84
                         90
                 ....*....|....*..
gi 807066331 112 QPLIGSETGTLMVLKHP 128
Cdd:cd09930   85 NSLEQHNDSLTVTLAYP 101
SH2_BCAR3 cd10337
Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is ...
28-109 4.09e-12

Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198200 [Multi-domain]  Cd Length: 136  Bit Score: 61.97  E-value: 4.09e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  28 ELLQDLGWYHGNLTRHAAEALLLSngcDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV---------EYTGYSFKFGFNE 98
Cdd:cd10337    1 EDLRSHAWYHGRIPRQVAESLVQR---EGDFLVRDSLSSPGDYVLTCRWKGQPLHFKInrvvlrpseAYTRVQYQFEDEQ 77
                         90
                 ....*....|.
gi 807066331  99 FSSLKDFVKHF 109
Cdd:cd10337   78 FDSIPALVHFY 88
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
167-255 1.00e-11

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 59.72  E-value: 1.00e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSP--EPIRILDLT--ECSavqfdySQERVNCFCLVFPFRTFYLCAK 242
Cdd:cd13274    2 KEGPLLKQTSSFQRWKRRYFKLKGRKLYYAKDSKSLifEEIDLSDASvaECS------TKNVNNSFTVITPFRKLILCAE 75
                         90
                 ....*....|...
gi 807066331 243 TGVEADEWIKILR 255
Cdd:cd13274   76 SRKEMEEWISALK 88
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
166-251 1.47e-11

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 59.65  E-value: 1.47e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQGGLVKTWKTRWFTLH--RNELKYFKDQMSPEPIRILDLTECSAVQF--------DYSQERVNcFCLVFPFR 235
Cdd:cd01235    4 THEGYLYKRGALLKGWKQRWFVLDstKHQLRYYESREDTKCKGFIDLAEVESVTPatpiigapKRADEGAF-FDLKTNKR 82
                         90
                 ....*....|....*.
gi 807066331 236 TFYLCAKTGVEADEWI 251
Cdd:cd01235   83 VYNFCAFDAESAQQWI 98
SH2_Src_Src42 cd10370
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ...
35-113 1.57e-11

Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198233  Cd Length: 96  Bit Score: 59.44  E-value: 1.57e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVRAKDSVKHFHV---EYTGYsFKFGFNEFSSLKDFVKHFA 110
Cdd:cd10370    5 WYFGKIKRIEAEKKLLLPENEhGAFLIRDSESRHNDYSLSVRDGDTVKHYRIrqlDEGGF-FIARRTTFRTLQELVEHYS 83

                 ...
gi 807066331 111 NQP 113
Cdd:cd10370   84 KDS 86
SH2_Grb2_like cd09941
Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar ...
35-85 1.59e-11

Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins; The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199828  Cd Length: 95  Bit Score: 59.21  E-value: 1.59e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV 85
Cdd:cd09941    5 WFHGKISRAEAEEILMNQRPDGAFLIRESESSPGDFSLSVKFGNDVQHFKV 55
SH2_Src_family cd09933
Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src ...
35-112 2.21e-11

Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199827  Cd Length: 101  Bit Score: 59.13  E-value: 2.21e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVR-----AKDSVKHF---HVEYTGYsFKFGFNEFSSLKDF 105
Cdd:cd09933    5 WFFGKIKRKDAEKLLLAPGNPrGTFLIRESETTPGAYSLSVRdgddaRGDTVKHYrirKLDNGGY-YITTRATFPTLQEL 83

                 ....*..
gi 807066331 106 VKHFANQ 112
Cdd:cd09933   84 VQHYSKD 90
PH_RhoGap24 cd13379
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ...
167-255 3.01e-11

Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241530  Cd Length: 114  Bit Score: 59.21  E-value: 3.01e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVNCFCL-VFP----------FR 235
Cdd:cd13379    5 KCGWLRKQGGFVKTWHTRWFVLKGDQLYYFKDEDETKPLGTIFLPGNRVTEHPCNEEEPGKFLFeVVPggdrermtanHE 84
                         90       100
                 ....*....|....*....|
gi 807066331 236 TFYLCAKTGVEADEWIKILR 255
Cdd:cd13379   85 TYLLMASTQNDMEDWVKSIR 104
SH2_Src_Fyn_isoform_a_like cd10418
Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src ...
35-112 3.02e-11

Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform a type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198281  Cd Length: 101  Bit Score: 58.86  E-value: 3.02e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEY-------TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10418    5 WYFGKLGRKDAERQLLSFGnPRGTFLIRESETTKGAYSLSIRDWDDMKGDHVKHykirkldNGGYYITTRAQFETLQQLV 84

                 ....*.
gi 807066331 107 KHFANQ 112
Cdd:cd10418   85 QHYSER 90
SH2_Tec_family cd09934
Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the ...
30-88 3.19e-11

Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198188  Cd Length: 104  Bit Score: 58.57  E-value: 3.19e-11
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 807066331  30 LQDLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNeTTGLYSLSVRAKDS----VKHFHVEYT 88
Cdd:cd09934    3 LEKYEWYVGDMSRQRAESLLKQEDKEGCFVVRNSS-TKGLYTVSLFTKVPgsphVKHYHIKQN 64
SH2_Nterm_RasGAP cd10353
N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
35-110 4.19e-11

N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general the longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the N-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198216  Cd Length: 103  Bit Score: 58.31  E-value: 4.19e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFVKHFA 110
Cdd:cd10353   21 WYHGRLDRTIAEERLRQAGKLGSYLIRESDRRPGSFVLSFLSRTGVNHFRIIAMCGDYYIGGRRFSSLSDLIGYYS 96
SH2_SAP1a cd10400
Src homology 2 (SH2) domain found in SLAM-associated protein (SAP) 1a; The X-linked ...
36-89 4.70e-11

Src homology 2 (SH2) domain found in SLAM-associated protein (SAP) 1a; The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX[VI], which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198263  Cd Length: 103  Bit Score: 58.32  E-value: 4.70e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 807066331  36 YHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTG 89
Cdd:cd10400    6 YHGKISRETGEKLLLAAGLDGSYLLRDSESVPGVYCLCVLYKGYVYTYRVSQTE 59
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
168-251 6.14e-11

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 58.19  E-value: 6.14e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 168 EGYLTKQGGLVK----TWKTRWFTLHRNE-------LKYFKDQMSPEPIRILDLTECSAVQ----FDY-SQERVNCFCLV 231
Cdd:cd13324    4 EGWLTKSPPEKKiwraAWRRRWFVLRSGRlsggqdvLEYYTDDHCKKLKGIIDLDQCEQVDagltFEKkKFKNQFIFDIR 83
                         90       100
                 ....*....|....*....|
gi 807066331 232 FPFRTFYLCAKTGVEADEWI 251
Cdd:cd13324   84 TPKRTYYLVAETEEEMNKWV 103
SH2_SHIP cd10343
Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and ...
31-74 1.42e-10

Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP); The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198206  Cd Length: 103  Bit Score: 57.07  E-value: 1.42e-10
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 807066331  31 QDLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSV 74
Cdd:cd10343    1 MAPPWYHGNITRSKAEELLSKAGKDGSFLVRDSESVSGAYALCV 44
SH2_SHE cd10391
Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed ...
35-128 1.51e-10

Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed in heart, lung, brain, and skeletal muscle. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198254  Cd Length: 98  Bit Score: 56.89  E-value: 1.51e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSngC-DGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYT---GYSFKFGFNEFSSLKDFVKHFA 110
Cdd:cd10391    3 WYHGSISRAEAESRLQP--CkEASYLVRNSESGNSKYSIALKTSQGCVHIIVAQTkdnKYTLNQTSAVFDSIPEVVHYYS 80
                         90       100
                 ....*....|....*....|
gi 807066331 111 NQ--PLIGSETgtlMVLKHP 128
Cdd:cd10391   81 NEklPFKGAEH---MTLLHP 97
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
166-255 1.69e-10

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 57.03  E-value: 1.69e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQGGLVKT---WKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQfdySQERvnCFCLVFPF-------- 234
Cdd:cd13308   10 IHSGTLTKKGGSQKTlqnWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRA---AEER--TSKLKFVFkiihlspd 84
                         90       100
                 ....*....|....*....|..
gi 807066331 235 -RTFYLCAKTGVEADEWIKILR 255
Cdd:cd13308   85 hRTWYFAAKSEDEMSEWMEYIR 106
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
167-255 2.02e-10

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 56.44  E-value: 2.02e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKT-WKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSavqFDYS----------QERVNCFCLVFPFR 235
Cdd:cd01251    4 KEGYLEKTGPKQTDgFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIGSKE---EGYSvreglppgikGHWGFGFTLVTPDR 80
                         90       100
                 ....*....|....*....|
gi 807066331 236 TFYLCAKTGVEADEWIKILR 255
Cdd:cd01251   81 TFLLSAETEEERREWITAIQ 100
PH_Gab3 cd13385
Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes ...
181-252 4.99e-10

Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1, Gab2, and Gab3 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270184  Cd Length: 125  Bit Score: 56.13  E-value: 4.99e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 181 WKTRWFTLHRNE-------LKYFKDQMSPEPIRILDLTECSAVQFD----YSQERVNCFCLVFP--FRTFYLCAKTGVEA 247
Cdd:cd13385   26 WRKRWFVLRRGRmsgnpdvLEYYRNNHSKKPIRVIDLSECEVLKHSgpnfIRKEFQNNFVFIVKttYRTFYLVAKTEEEM 105

                 ....*
gi 807066331 248 DEWIK 252
Cdd:cd13385  106 QVWVH 110
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
24-115 8.78e-10

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 55.01  E-value: 8.78e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  24 DGEAELLQDlGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGL--YSLSVRAKDSVKHFHVEYTGYSFKF------- 94
Cdd:cd09929    3 EEEADLLPK-EWYAGNIDRKEAEEALRRSNKDGTFLVRDSSGKDSSqpYTLMVLYNDKVYNIQIRFLENTRQYalgtglr 81
                         90       100
                 ....*....|....*....|.
gi 807066331  95 GFNEFSSLKDFVKHFANQPLI 115
Cdd:cd09929   82 GEETFSSVAEIIEHHQKTPLL 102
SH2_Vav_family cd09940
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ...
35-129 1.16e-09

Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198193  Cd Length: 102  Bit Score: 54.22  E-value: 1.16e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEyTGYSFKFGFNE---FSSLKDFVKHFAN 111
Cdd:cd09940    7 WFVGEMERDTAENRL-ENRPDGTYLVRVRPQGETQYALSIKYNGDVKHMKIE-QRSDGLYYLSEsrhFKSLVELVNYYER 84
                         90
                 ....*....|....*...
gi 807066331 112 QPLIGSETGTLMVLKHPY 129
Cdd:cd09940   85 NSLGENFAGLDTTLKWPY 102
PH_GAP1-like cd01244
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ...
167-255 1.22e-09

RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269950  Cd Length: 107  Bit Score: 54.60  E-value: 1.22e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTK--QGGL----VKTWKTRWFTLHRNELKYFKDQMSpEPIRILDLTECSAVqfdysqERV--------NCFCLVF 232
Cdd:cd01244    1 KEGYLIKraQGRKkkfgRKNFKKRYFRLTNEALSYSKSKGK-QPLCSIPLEDILAV------ERVeeesfkmkNMFQIVQ 73
                         90       100
                 ....*....|....*....|...
gi 807066331 233 PFRTFYLCAKTGVEADEWIKILR 255
Cdd:cd01244   74 PDRTLYLQAKNVVELNEWLSALR 96
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
166-254 1.66e-09

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 53.55  E-value: 1.66e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQGGL--VKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSavqfDYSQERVNCFCLVFPFRTFYLCAKT 243
Cdd:cd13253    1 IKSGYLDKQGGQgnNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAIS----TVRAVGDNKFELVTTNRTFVFRAES 76
                         90
                 ....*....|.
gi 807066331 244 GVEADEWIKIL 254
Cdd:cd13253   77 DDERNLWCSTL 87
SH2_Src_Lck cd10362
Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src ...
35-111 1.72e-09

Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src non-receptor type tyrosine kinase family of proteins. It is expressed in the brain, T-cells, and NK cells. The unique domain of Lck mediates its interaction with two T-cell surface molecules, CD4 and CD8. It associates with their cytoplasmic tails on CD4 T helper cells and CD8 cytotoxic T cells to assist signaling from the T cell receptor (TCR) complex. When the T cell receptor is engaged by the specific antigen presented by MHC, Lck phosphorylase the intracellular chains of the CD3 and zeta-chains of the TCR complex, allowing ZAP-70 to bind them. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates Linker of Activated T cells (LAT), a transmembrane protein that serves as a docking site for proteins including: Shc-Grb2-SOS, PI3K, and phospholipase C (PLC). The tyrosine phosphorylation cascade culminates in the intracellular mobilization of a calcium ions and activation of important signaling cascades within the lymphocyte, including the Ras-MEK-ERK pathway, which goes on to activate certain transcription factors such as NFAT, NF-kappaB, and AP-1. These transcription factors regulate the production cytokines such as Interleukin-2 that promote long-term proliferation and differentiation of the activated lymphocytes. The N-terminal tail of Lck is myristoylated and palmitoylated and it tethers the protein to the plasma membrane of the cell. Lck also contains a SH3 domain, a SH2 domain, and a C-terminal tyrosine kinase domain. Lck has 2 phosphorylation sites, the first an autophosphorylation site that is linked to activation of the protein and the second which is phosphorylated by Csk, which inhibits it. Lck is also inhibited by SHP-1 dephosphorylation and by Cbl ubiquitin ligase, which is part of the ubiquitin-mediated pathway. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198225  Cd Length: 101  Bit Score: 53.72  E-value: 1.72e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKD-----SVKHFHV---EYTGY--SFKFGFNefsSLK 103
Cdd:cd10362    5 WFFKNLSRNDAERQLLAPGnTHGSFLIRESETTAGSFSLSVRDFDqnqgeVVKHYKIrnlDNGGFyiSPRITFP---GLH 81

                 ....*...
gi 807066331 104 DFVKHFAN 111
Cdd:cd10362   82 ELVRHYTN 89
SH2_SOCS_family cd09923
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ...
34-109 1.73e-09

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198178  Cd Length: 81  Bit Score: 53.36  E-value: 1.73e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 807066331  34 GWYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKfgfneFSSLKDFVKHF 109
Cdd:cd09923    1 GWYWGGITRYEAEELL-AGKPEGTFLVRDSSDSRYLFSVSFRTYGRTLHARIEYSNGRFS-----FDSSDPSVPRF 70
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
167-252 1.79e-09

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 53.92  E-value: 1.79e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSavqfdysqerVNCFCLVFPFRTF--------- 237
Cdd:cd13301    5 KEGYLVKKGHVVNNWKARWFVLKEDGLEYYKKKTDSSPKGMIPLKGCT----------ITSPCLEYGKRPLvfklttakg 74
                         90
                 ....*....|....*...
gi 807066331 238 ---YLCAKTGVEADEWIK 252
Cdd:cd13301   75 qehFFQACSREERDAWAK 92
SH2_SHB_SHD_SHE_SHF_like cd09945
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ...
34-128 2.04e-09

Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198198  Cd Length: 98  Bit Score: 53.59  E-value: 2.04e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  34 GWYHGNLTRHAAEALLlsNGC-DGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGySFKFGFNEFS----SLKDFVKH 108
Cdd:cd09945    2 GWYHGAITRIEAESLL--RPCkEGSYLVRNSESTKQDYSLSLKSAKGFMHMRIQRNE-TGQYILGQFSrpfeTIPEMIRH 78
                         90       100
                 ....*....|....*....|..
gi 807066331 109 FANQ--PLIGSETgtlMVLKHP 128
Cdd:cd09945   79 YCLNklPVRGAEH---MCLLEP 97
SH2_SH2D4A cd10350
Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A); SH2D4A contains ...
35-114 3.14e-09

Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A); SH2D4A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198213  Cd Length: 103  Bit Score: 53.40  E-value: 3.14e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGcDGSYLLRDSNETTGlYSLSVRAKDSVKHFHVEYTGYSFKF-GFNEF--SSLKDFVKHFAN 111
Cdd:cd10350    9 WFHGILTLKKANELLLSTM-PGSFLIRVSEKIKG-YALSYLSEEGCKHFLIDASADSYSFlGVDQLqhATLADLVEYHKE 86

                 ...
gi 807066331 112 QPL 114
Cdd:cd10350   87 EPI 89
SH2_Tec_Bmx cd10399
Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine ...
28-128 3.24e-09

Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine kinase Bmx is expressed in the endothelium of large arteries, fetal endocardium, adult endocardium of the left ventricle, bone marrow, lung, testis, granulocytes, myeloid cell lines, and prostate cell lines. Bmx is involved in the regulation of Rho and serum response factor (SRF). Bmx has been shown to interact with PAK1, PTK2, PTPN21, and RUFY1. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains. It is not present in Txk and the type 1 splice form of the Drosophila homolog. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198262  Cd Length: 106  Bit Score: 53.42  E-value: 3.24e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  28 ELLQDLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNEtTGLYSLSVRA------KDSVKHFHVEYTGYSfKFGFNE--- 98
Cdd:cd10399    1 ENLDAYDWFAGNISRSQSEQLLRQKGKEGAFMVRNSSQ-VGMYTVSLFSkavndkKGTVKHYHVHTNAEN-KLYLAEnyc 78
                         90       100       110
                 ....*....|....*....|....*....|
gi 807066331  99 FSSLKDFVKHFANqpligSETGTLMVLKHP 128
Cdd:cd10399   79 FDSIPKLIHYHQH-----NSAGMITRLRHP 103
SH2_Srm cd10360
Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine ...
35-85 3.39e-09

Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (srm); Srm is a nonreceptor protein kinase that has two SH2 domains, a SH3 domain, and a kinase domain with a tyrosine residue for autophosphorylation. However it lacks an N-terminal glycine for myristoylation and a C-terminal tyrosine which suppresses kinase activity when phosphorylated. Srm is most similar to members of the Tec family who other members include: Tec, Btk/Emb, and Itk/Tsk/Emt. However Srm differs in its N-terminal unique domain it being much smaller than in the Tec family and is closer to Src. Srm is thought to be a new family of nonreceptor tyrosine kinases that may be redundant in function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198223  Cd Length: 79  Bit Score: 52.27  E-value: 3.39e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 807066331  35 WYHGNLTRHAAEALLLS-NGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV 85
Cdd:cd10360    2 WYFSGISRTQAQQLLLSpPNEPGAFLIRPSESSLGGYSLSVRAQAKVCHYRI 53
SH2_Src_Fyn cd10368
Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type ...
35-112 4.48e-09

Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198231 [Multi-domain]  Cd Length: 101  Bit Score: 52.72  E-value: 4.48e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVRAKDSVKHFHVEY-------TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10368    5 WYFGKLGRKDAERQLLSFGNPrGTFLIRESETTKGAYSLSIRDWDDMKGDHVKHykirkldNGGYYITTRAQFETLQQLV 84

                 ....*.
gi 807066331 107 KHFANQ 112
Cdd:cd10368   85 QHYSET 90
SH2_SHF cd10392
Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought ...
35-130 4.50e-09

Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought to play a role in PDGF-receptor signaling and regulation of apoptosis. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198255  Cd Length: 98  Bit Score: 52.76  E-value: 4.50e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLlsNGC-DGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYS-FKFGFNE--FSSLKDFVKHFA 110
Cdd:cd10392    3 WYHGAISRTDAENLL--RLCkEASYLVRNSETSKNDFSLSLKSSQGFMHMKLSRTKEHkYVLGQNSppFSSVPEIIHHYA 80
                         90       100
                 ....*....|....*....|..
gi 807066331 111 NQ--PLIGSETGTLMvlkhpYP 130
Cdd:cd10392   81 SRklPIKGAEHMSLL-----YP 97
SH2_Src_Fgr cd10367
Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene ...
35-109 4.98e-09

Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, Fgr; Fgr is a member of the Src non-receptor type tyrosine kinase family of proteins. The protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. Fgr is expressed in B-cells and myeloid cells, localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Multiple alternatively spliced variants, encoding the same protein, have been identified Fgr has been shown to interact with Wiskott-Aldrich syndrome protein. Fgr has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198230  Cd Length: 101  Bit Score: 52.60  E-value: 4.98e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEY-------TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10367    5 WYFGKIGRKDAERQLLSPGnPRGAFLIRESETTKGAYSLSIRDWDQNRGDHVKHykirkldTGGYYITTRAQFDTVQELV 84

                 ...
gi 807066331 107 KHF 109
Cdd:cd10367   85 QHY 87
SH2_SH2D4B cd10351
Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains ...
35-124 7.25e-09

Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198214  Cd Length: 103  Bit Score: 52.20  E-value: 7.25e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLsNGCDGSYLLRDSNETTGlYSLSVRAKDSVKHFHVEYTG--YSFkFGF--NEFSSLKDFVKhFA 110
Cdd:cd10351    9 WFHGIISREEAEALLM-NATEGSFLVRVSEKIWG-YTLSYRLQSGFKHFLVDASGdfYSF-LGVdpNRHATLTDLID-FH 84
                         90
                 ....*....|....
gi 807066331 111 NQPLIGSETGTLMV 124
Cdd:cd10351   85 KEEIITTSGGELLQ 98
SH2_Src_HCK cd10363
Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type ...
35-112 7.63e-09

Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in hemopoietic cells. HCK is proposed to couple the Fc receptor to the activation of the respiratory burst. It may also play a role in neutrophil migration and in the degranulation of neutrophils. It has two different translational starts that have different subcellular localization. HCK has been shown to interact with BCR gene, ELMO1 Cbl gene, RAS p21 protein activator 1, RASA3, Granulocyte colony-stimulating factor receptor, ADAM15 and RAPGEF1. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. HCK has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198226  Cd Length: 104  Bit Score: 52.27  E-value: 7.63e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVR-----AKDSVKHFHVEY--TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10363    5 WFFKGISRKDAERQLLAPGNMlGSFMIRDSETTKGSYSLSVRdydpqHGDTVKHYKIRTldNGGFYISPRSTFSTLQELV 84

                 ....*.
gi 807066331 107 KHFANQ 112
Cdd:cd10363   85 DHYKKG 90
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
167-251 8.31e-09

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 52.30  E-value: 8.31e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTE-CSAVQFDYSQERVNCFCLVFPFRTFYLCAKTGV 245
Cdd:cd13273   10 KKGYLWKKGHLLPTWTERWFVLKPNSLSYYKSEDLKEKKGEIALDSnCCVESLPDREGKKCRFLVKTPDKTYELSASDHK 89

                 ....*.
gi 807066331 246 EADEWI 251
Cdd:cd13273   90 TRQEWI 95
SH2_SOCS6 cd10387
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
34-108 8.32e-09

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198250  Cd Length: 100  Bit Score: 51.76  E-value: 8.32e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 807066331  34 GWYHGNLTRHAAEALLLSNGcDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFN----EFSSLKDFVKH 108
Cdd:cd10387   11 GWYWGPITRWEAEGKLANVP-DGSFLVRDSSDDRYLLSLSFRSHGKTLHTRIEHSNGRFSFYEQpdveGHTSIVDLIEH 88
SH2_Src_Lyn cd10364
Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type ...
35-112 1.02e-08

Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in the hematopoietic cells, in neural tissues, liver, and adipose tissue. There are two alternatively spliced forms of Lyn. Lyn plays an inhibitory role in myeloid lineage proliferation. Following engagement of the B cell receptors, Lyn undergoes rapid phosphorylation and activation, triggering a cascade of signaling events mediated by Lyn phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the receptor proteins, and subsequent recruitment and activation of other kinases including Syk, phospholipase C2 (PLC2) and phosphatidyl inositol-3 kinase. These kinases play critical roles in proliferation, Ca2+ mobilization and cell differentiation. Lyn plays an essential role in the transmission of inhibitory signals through phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in regulatory proteins such as CD22, PIR-B and FC RIIb1. Their ITIM phosphorylation subsequently leads to recruitment and activation of phosphatases such as SHIP-1 and SHP-1 which further down modulate signaling pathways, attenuate cell activation and can mediate tolerance. Lyn also plays a role in the insulin signaling pathway. Activated Lyn phosphorylates insulin receptor substrate 1 (IRS1) leading to an increase in translocation of Glut-4 to the cell membrane and increased glucose utilization. It is the primary Src family member involved in signaling downstream of the B cell receptor. Lyn plays an unusual, 2-fold role in B cell receptor signaling; it is essential for initiation of signaling but is also later involved in negative regulation of the signal. Lyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198227  Cd Length: 101  Bit Score: 51.91  E-value: 1.02e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVR-----AKDSVKHFHV---EYTGYSFKFGFNeFSSLKDF 105
Cdd:cd10364    5 WFFKDITRKDAERQLLAPGNSaGAFLIRESETLKGSYSLSVRdydpqHGDVIKHYKIrslDNGGYYISPRIT-FPCISDM 83

                 ....*..
gi 807066331 106 VKHFANQ 112
Cdd:cd10364   84 IKHYQKQ 90
SH2_csk_like cd09937
Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal ...
35-109 1.46e-08

Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are members of the CSK-family of protein tyrosine kinases. These proteins suppress activity of Src-family kinases (SFK) by selectively phosphorylating the conserved C-terminal tail regulatory tyrosine by a similar mechanism. CHK is also capable of inhibiting SFKs by a non-catalytic mechanism that involves binding of CHK to SFKs to form stable protein complexes. The unphosphorylated form of SFKs is inhibited by CSK and CHK by a two-step mechanism. The first step involves the formation of a complex of SFKs with CSK/CHK with the SFKs in the complex are inactive. The second step, involves the phosphorylation of the C-terminal tail tyrosine of SFKs, which then dissociates and adopt an inactive conformation. The structural basis of how the phosphorylated SFKs dissociate from CSK/CHK to adopt the inactive conformation is not known. The inactive conformation of SFKs is stabilized by two intramolecular inhibitory interactions: (a) the pYT:SH2 interaction in which the phosphorylated C-terminal tail tyrosine (YT) binds to the SH2 domain, and (b) the linker:SH3 interaction of which the SH2-kinase domain linker binds to the SH3 domain. SFKs are activated by multiple mechanisms including binding of the ligands to the SH2 and SH3 domains to displace the two inhibitory intramolecular interactions, autophosphorylation, and dephosphorylation of YT. By selective phosphorylation and the non-catalytic inhibitory mechanism CSK and CHK are able to inhibit the active forms of SFKs. CSK and CHK are regulated by phosphorylation and inter-domain interactions. They both contain SH3, SH2, and kinase domains separated by the SH3-SH2 connector and SH2 kinase linker, intervening segments separating the three domains. They lack a conserved tyrosine phosphorylation site in the kinase domain and the C-terminal tail regulatory tyrosine phosphorylation site. The CSK SH2 domain is crucial for stabilizing the kinase domain in the active conformation. A disulfide bond here regulates CSK kinase activity. The subcellular localization and activity of CSK are regulated by its SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198190  Cd Length: 98  Bit Score: 51.14  E-value: 1.46e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 807066331  35 WYHGNLTRHAAEALLLSNGcDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNE-FSSLKDFVKHF 109
Cdd:cd09937    5 WFHGKISREEAERLLQPPE-DGLFLVRESTNYPGDYTLCVSFEGKVEHYRVIYRNGKLTIDEEEyFENLIQLVEHY 79
SH2_Src_Frk cd10369
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ...
35-110 1.50e-08

Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199831  Cd Length: 96  Bit Score: 51.03  E-value: 1.50e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 807066331  35 WYHGNLTRHAAE-ALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEY--TGYSFKFGFNEFSSLKDFVKHFA 110
Cdd:cd10369    5 WFFGAIKRADAEkQLLYSENQTGAFLIRESESQKGEFSLSVLDGGVVKHYRIRRldEGGFFLTRRKTFSTLNEFVNYYT 83
SH2_SHC cd09925
Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide ...
35-83 2.21e-08

Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198179  Cd Length: 104  Bit Score: 50.81  E-value: 2.21e-08
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 807066331  35 WYHGNLTRHAAEALLlsnGCDGSYLLRDSNETTGLYSLSVRAKDSVKHF 83
Cdd:cd09925    9 WYHGKMSRRDAESLL---QTDGDFLVRESTTTPGQYVLTGMQNGQPKHL 54
SH2_Src_Src cd10365
Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src ...
35-109 2.31e-08

Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src non-receptor type tyrosine kinase family of proteins. Src is thought to play a role in the regulation of embryonic development and cell growth. Members here include v-Src and c-Src. v-Src lacks the C-terminal inhibitory phosphorylation site and is therefore constitutively active as opposed to normal cellular src (c-Src) which is only activated under certain circumstances where it is required (e.g. growth factor signaling). v-Src is an oncogene whereas c-Src is a proto-oncogene. c-Src consists of three domains, an N-terminal SH3 domain, a central SH2 domain and a tyrosine kinase domain. The SH2 and SH3 domains work together in the auto-inhibition of the kinase domain. The phosphorylation of an inhibitory tyrosine near the c-terminus of the protein produces a binding site for the SH2 domain which then facilitates binding of the SH3 domain to a polyproline site within the linker between the SH2 domain and the kinase domain. Binding of the SH3 domain inactivates the enzyme. This allows for multiple mechanisms for c-Src activation: dephosphorylation of the C-terminal tyrosine by a protein tyrosine phosphatase, binding of the SH2 domain by a competitive phospho-tyrosine residue, or competitive binding of a polyproline binding site to the SH3 domain. Unlike most other Src members Src lacks cysteine residues in the SH4 domain that undergo palmitylation. Serine and threonine phosphorylation sites have also been identified in the unique domains of Src and are believed to modulate protein-protein interactions or regulate catalytic activity. Alternatively spliced forms of Src, which contain 6- or 11-amino acid insertions in the SH3 domain, are expressed in CNS neurons. c-Src has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198228  Cd Length: 101  Bit Score: 50.82  E-value: 2.31e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLS-NGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEY-------TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10365    5 WYFGKITRRESERLLLNaENPRGTFLVRESETTKGAYCLSVSDFDNAKGLNVKHykirkldSGGFYITSRTQFNSLQQLV 84

                 ...
gi 807066331 107 KHF 109
Cdd:cd10365   85 AYY 87
SH2_a2chimerin_b2chimerin cd10352
Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins ...
36-106 2.77e-08

Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198215  Cd Length: 91  Bit Score: 50.06  E-value: 2.77e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 807066331  36 YHGNLTRHAAEaLLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTG--YSFKFGFNEFSSLKDFV 106
Cdd:cd10352    9 YHGLISREEAE-QLLSGASDGSYLIRESSRDDGYYTLSLRFNGKVKNYKLYYDGknHYHYVGEKRFDTIHDLV 80
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
169-255 2.83e-08

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 50.35  E-value: 2.83e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 169 GYLTKQGGL-VKTWKTRWFTLHRNELKYFKDQMSPEPIRILDL-----TECSAV-----QFDYSQERVNcfclvfpFRTF 237
Cdd:cd13248   11 GWLHKQGGSgLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLpsytiSPAPPSdeisrKFAFKAEHAN-------MRTY 83
                         90
                 ....*....|....*...
gi 807066331 238 YLCAKTGVEADEWIKILR 255
Cdd:cd13248   84 YFAADTAEEMEQWMNAMS 101
PH_Bem3 cd13277
Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces ...
165-256 3.95e-08

Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces cerevisiae involves cell cycle-regulated reorganizations of cortical cytoskeletal elements and requires the action of the Rho-type GTPase Cdc42. Bem3 contains a RhoGAP domain and a PH domain. Though Bem3 and Bem2 both contain a RhoGAP, but only Bem3 is able to stimulate the hydrolysis of GTP on Cdc42. Bem3 is thought to be the GAP for Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270096  Cd Length: 111  Bit Score: 50.36  E-value: 3.95e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 165 GTKEGYLTKQG----GLVKTWKTRWFTLHRNELKYFKDQMSP--EPIRildLTECS-----AVQFDYSQERvNCFCLVFP 233
Cdd:cd13277    3 SVKEGYLLKRRkktlGSTGGWKLRYGVLDGNILELYESRGGQllESIK---LRNAQierqpNLPDDKYGTR-HGFLINEH 78
                         90       100       110
                 ....*....|....*....|....*....|
gi 807066331 234 FRT-------FYLCAKTGVEADEWIKILRW 256
Cdd:cd13277   79 KKSglssttkYYLCAETDKERDEWVSALSE 108
SH2_Cterm_shark_like cd10348
C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
35-109 5.16e-08

C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198211  Cd Length: 86  Bit Score: 49.34  E-value: 5.16e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 807066331  35 WYHGNLTRHAAEALLLSNGC-DGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNE--FSSLKDFVKHF 109
Cdd:cd10348    2 WLHGALDRNEAVEILKQKADaDGSFLVRYSRRRPGGYVLTLVYENHVYHFEIQNRDDKWFYIDDGpyFESLEHLIEHY 79
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
30-114 5.77e-08

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 50.01  E-value: 5.77e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  30 LQDLGWYHGNLTRH-AAEALllSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYsfKFGFNE---FSSLKDF 105
Cdd:cd09942    4 LQEAEWYWGDISREeVNEKM--RDTPDGTFLVRDASTMKGDYTLTLRKGGNNKLIKIFHRDG--KYGFSDpltFNSVVEL 79

                 ....*....
gi 807066331 106 VKHFANQPL 114
Cdd:cd09942   80 INYYRNNSL 88
SH2_Tec_Itk cd10396
Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member ...
35-110 7.42e-08

Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member of the Tec protein tyrosine kinase Itk is expressed thymus, spleen, lymph node, T lymphocytes, NK and mast cells. It plays a role in T-cell proliferation and differentiation, analogous to Tec family kinases Txk. Itk has been shown to interact with Fyn, Wiskott-Aldrich syndrome protein, KHDRBS1, PLCG1, Lymphocyte cytosolic protein 2, Linker of activated T cells, Karyopherin alpha 2, Grb2, and Peptidylprolyl isomerase A. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198259  Cd Length: 108  Bit Score: 49.40  E-value: 7.42e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNeTTGLYSLSVRAK------DSVKHFHVEYTGYS-------FKFGFNEFSS 101
Cdd:cd10396    8 WYNKNINRSKAEKLLRDEGKEGGFMVRDSS-QPGLYTVSLYTKaggegnPCIRHYHIKETNDSpkkyylaEKHVFNSIPE 86

                 ....*....
gi 807066331 102 LKDFVKHFA 110
Cdd:cd10396   87 LIEYHKHNA 95
SH2_Fps_family cd10361
Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related ...
30-108 8.14e-08

Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins; The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198224  Cd Length: 90  Bit Score: 48.68  E-value: 8.14e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  30 LQDLGWYHGNLTRHAAEALLLSNGcdgSYLLRDSNETTGL---YSLSVRAKDSVKHFHVEYTGySFKFGFNE--FSSLKD 104
Cdd:cd10361    3 LENEPYYHGLLPREDAEELLKNDG---DFLVRKTEPKGGGkrkLVLSVRWDGKIRHFVINRDD-GGKYYIEGksFKSISE 78

                 ....
gi 807066331 105 FVKH 108
Cdd:cd10361   79 LINY 82
PH_Bud4 cd13278
Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the ...
166-255 9.05e-08

Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the formation and the disassembly of the double ring structure formed by the septins during cytokinesis. Bud4 acts with Bud3 and and in parallel with septin phosphorylation by the p21-activated kinase Cla4 and the septin-dependent kinase Gin4. Bud4 is regulated by the cyclin-dependent protein kinase Cdk1, the master regulator of cell cycle progression. Bud4 contains an anillin-like domain followed by a PH domain. In addition there are two consensus Cdk phosphorylation sites: one at the N-terminus and one right before the C-terminal PH domain. Anillins also have C-terminal PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241432  Cd Length: 139  Bit Score: 49.90  E-value: 9.05e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQGGLVKTWKTRWFTLHRNELKYFkDQMSPEP---------IRILDLTecSAVQFDYSQERV--------NCF 228
Cdd:cd13278   20 TKEGYLLQEGGDCEYWRRRFFKLQGTKLVAY-HEVTRKPratinllkvVDVVDDD--DARERTSSFKRNftdlvlfeECF 96
                         90       100       110
                 ....*....|....*....|....*....|
gi 807066331 229 CLVF---PFRTFYlcAKTGVEADEWIKILR 255
Cdd:cd13278   97 RLVFangEVIDFY--ADSKEEKADWYSKLK 124
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
167-255 9.93e-08

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 49.16  E-value: 9.93e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPE-PIRILDLTECSAVQF-DYSQERVNCFCLVFPFRTFYLCAKTG 244
Cdd:cd13215   23 KSGYLSKRSKRTLRYTRYWFVLKGDTLSWYNSSTDLYfPAGTIDLRYATSIELsKSNGEATTSFKIVTNSRTYKFKADSE 102
                         90
                 ....*....|.
gi 807066331 245 VEADEWIKILR 255
Cdd:cd13215  103 TSADEWVKALK 113
SH2_SAP1 cd10342
Src homology 2 (SH2) domain found in SLAM-associated protein (SAP)1; The X-linked ...
32-90 9.97e-08

Src homology 2 (SH2) domain found in SLAM-associated protein (SAP)1; The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX[VI], which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198205  Cd Length: 103  Bit Score: 48.87  E-value: 9.97e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 807066331  32 DLGWYHGNLTRHAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV--EYTGY 90
Cdd:cd10342    2 AVAVYHGKISRETGEKLLLATGLDGSYLLRDSESVPGVYCLCVLYHGYIYTYRVsqTETGS 62
SH2_N-SH2_Zap70_Syk_like cd09938
N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
33-86 1.01e-07

N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the N-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198191  Cd Length: 104  Bit Score: 48.93  E-value: 1.01e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 807066331  33 LGWYHGNLTRHAAEALLLSNGC-DGSYLLRDSNETTGLYSLSVRAKDSVKHFHVE 86
Cdd:cd09938    1 LPFFYGSITREEAEEYLKLAGMsDGLFLLRQSLRSLGGYVLSVCHGRKFHHYTIE 55
SH2_Src_Fyn_isoform_b_like cd10419
Src homology 2 (SH2) domain found in Fyn isoform b like proteins; Fyn is a member of the Src ...
35-112 1.15e-07

Src homology 2 (SH2) domain found in Fyn isoform b like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform b type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198282  Cd Length: 101  Bit Score: 48.90  E-value: 1.15e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVRAKDSVKHFHVEY-------TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10419    5 WYFGKLGRKDAERQLLSFGNPrGTFLIRESETTKGAYSLSIRDWDDMKGDHVKHykirkldNGGYYITTRAQFETLQQLV 84

                 ....*.
gi 807066331 107 KHFANQ 112
Cdd:cd10419   85 QHYSEK 90
SH2_SLAP cd10344
Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of ...
34-110 1.54e-07

Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of adapter proteins that negatively regulate cellular signaling initiated by tyrosine kinases. It has a myristylated N-terminus, SH3 and SH2 domains with high homology to Src family tyrosine kinases, and a unique C-terminal tail, which is important for c-Cbl binding. SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodeling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signaling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signaling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signaling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl. SLAP is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198207  Cd Length: 104  Bit Score: 48.64  E-value: 1.54e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  34 GWYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVR-----AKDSVKH---FHVEYTGYSFKFGFNeFSSLKD 104
Cdd:cd10344   11 GWLFEGLSREKAEELLMLPGNQvGSFLIRESETRRGCYSLSVRhrgsqSRDSVKHyriFRLDNGWFYISPRLT-FQCLED 89

                 ....*.
gi 807066331 105 FVKHFA 110
Cdd:cd10344   90 MVNHYS 95
SH2_Vav2 cd10406
Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the ...
35-129 1.72e-07

Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198269  Cd Length: 103  Bit Score: 48.52  E-value: 1.72e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNgCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV-EYTGYSFKFGFNEFSSLKDFVKHFANQP 113
Cdd:cd10406    7 WFAGNMERQQTDNLLKSH-ASGTYLIRERPAEAERFAISIKFNDEVKHIKVvEKDNWIHITEAKKFESLLELVEYYQCHS 85
                         90
                 ....*....|....*.
gi 807066331 114 LIGSETGTLMVLKHPY 129
Cdd:cd10406   86 LKESFKQLDTTLKYPY 101
SH2_SH2D7 cd10417
Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a ...
35-114 3.54e-07

Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199832  Cd Length: 102  Bit Score: 47.58  E-value: 3.54e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEAlLLSNGCDGSYLLRDSNETTGlYSLSVRAKDSVKHF---HVEYTGYSFKFGFNEFSSLKDFVKHFAN 111
Cdd:cd10417    9 WFHGFITRKQTEQ-LLRDKALGSFLIRLSDRATG-YILSYRGSDRCRHFvinQLRNRRYLISGDTSSHSTLAELVRHYQE 86

                 ...
gi 807066331 112 QPL 114
Cdd:cd10417   87 VQL 89
PH_Gab1_Gab2 cd01266
Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily ...
181-252 5.56e-07

Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1 and Gab2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241297  Cd Length: 123  Bit Score: 47.63  E-value: 5.56e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 181 WKTRWFTLHRNE-------LKYFKDQMSPEPIRILDLTECSAVQFDYS---QERVNCFclVFPF----RTFYLCAKTGVE 246
Cdd:cd01266   24 WKKRWFVLRSGRlsgdpdvLEYYKNDHAKKPIRVIDLNLCEQVDAGLTfnkKELENSY--IFDIktidRIFYLVAETEED 101

                 ....*.
gi 807066331 247 ADEWIK 252
Cdd:cd01266  102 MNKWVR 107
SH2_N-SH2_PLC_gamma_like cd10341
N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
35-118 5.67e-07

N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199829  Cd Length: 99  Bit Score: 46.96  E-value: 5.67e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLT--RHAAEALLLS--NGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYT--GYSFKFGFNE---FSSLKDF 105
Cdd:cd10341    6 WFHGKLGdgRDEAEKLLLEycEGGDGTFLVRESETFVGDYTLSFWRNGKVQHCRIRSRqeNGEKKYYLTDnlvFDSLYEL 85
                         90
                 ....*....|...
gi 807066331 106 VKHFANQPLIGSE 118
Cdd:cd10341   86 IDYYRQNPLRCAE 98
SH2_Src_Yes cd10366
Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type ...
35-112 6.78e-07

Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198229  Cd Length: 101  Bit Score: 46.55  E-value: 6.78e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD-GSYLLRDSNETTGLYSLSVR-----AKDSVKHFHVEY--TGYSFKFGFNEFSSLKDFV 106
Cdd:cd10366    5 WYFGKMGRKDAERLLLNPGNQrGIFLVRESETTKGAYSLSIRdwdevRGDNVKHYKIRKldNGGYYITTRAQFDTLQKLV 84

                 ....*.
gi 807066331 107 KHFANQ 112
Cdd:cd10366   85 KHYTEH 90
SH2_CRK_like cd09926
Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the ...
35-133 8.47e-07

Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198180 [Multi-domain]  Cd Length: 106  Bit Score: 46.31  E-value: 8.47e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLsNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGY------SFKFGFNEFSSLKDFVKH 108
Cdd:cd09926    9 WYFGPMSRQEAQELLQ-GQRHGVFLVRDSSTIPGDYVLSVSENSRVSHYIINSLGQpapnqsRYRIGDQEFDDLPALLEF 87
                         90       100
                 ....*....|....*....|....*
gi 807066331 109 FanqPLIGSETGTlmvLKHPYPRKV 133
Cdd:cd09926   88 Y---KLHYLDTTT---LIEPASRGR 106
SH2_HSH2_like cd09946
Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function ...
35-86 8.61e-07

Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function as an adapter protein involved in tyrosine kinase signaling. It may also be involved in regulating cytokine signaling and cytoskeletal reorganization in hematopoietic cells. HSH2 contains several putative protein-binding motifs, SH3-binding proline-rich regions, and phosphotyrosine sites, but lacks enzymatic motifs. HSH2 was found to interact with cytokine-regulated tyrosine kinase c-FES and an activated Cdc42-associated tyrosine kinase ACK1. HSH2 binds c-FES through both its C-terminal region and its N-terminal region including the SH2 domain and binds ACK1 via its N-terminal proline-rich region. Both kinases bound and tyrosine-phosphorylated HSH2 in mammalian cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198199  Cd Length: 102  Bit Score: 46.42  E-value: 8.61e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 807066331  35 WYHGNLTRHAAEALLLSNGCdGSYLLRDSNETTGlYSLSVRAKDSVKHFHVE 86
Cdd:cd09946    9 WFHGAISREAAENMLESQPL-GSFLIRVSHSHVG-YTLSYKAQSSCRHFMVK 58
SH2_C-SH2_Zap70 cd10402
C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
35-130 8.64e-07

C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70); ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198265  Cd Length: 105  Bit Score: 46.45  E-value: 8.64e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNEtTGLYSLSVRAKDSVKHFHV--EYTG-YSFKFGfNEFSSLKDFVKHFA 110
Cdd:cd10402   12 WYHGSIARDEAERRLYSGAqPDGKFLLRERKE-SGTYALSLVYGKTVYHYRIdqDKSGkYSIPEG-TKFDTLWQLVEYLK 89
                         90       100
                 ....*....|....*....|
gi 807066331 111 NQPligseTGTLMVLKHPYP 130
Cdd:cd10402   90 LKP-----DGLIFVLRESCP 104
SH2_Grb7_family cd09944
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) ...
35-85 1.01e-06

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. There are 3 members of the Grb7 family of proteins: Grb7, Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR). Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198197 [Multi-domain]  Cd Length: 108  Bit Score: 46.26  E-value: 1.01e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV 85
Cdd:cd09944    7 WFHGGISRDEAARLIRQQGlVDGVFLVRESQSNPGAFVLSLKHGQKIKHYQI 58
PH_RasGRF1_2 cd13261
Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; ...
165-255 1.57e-06

Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; RasGRF1 (also called GRF1; CDC25Mm/Ras-specific nucleotide exchange factor CDC25; GNRP/Guanine nucleotide-releasing protein) and RasGRF2 (also called GRF2; Ras guanine nucleotide exchange factor 2) are a family of guanine nucleotide exchange factors (GEFs). They both promote the exchange of Ras-bound GDP by GTP, thereby regulating the RAS signaling pathway. RasGRF1 and RasGRF2 form homooligomers and heterooligomers. GRF1 has 3 isoforms and GRF2 has 2 isoforms. The longest isoforms of RasGRF1 and RasGRF2 contain the following domains: a Rho-GEF domain sandwiched between 2 PH domains, IQ domains, a REM (Ras exchanger motif) domain, and a Ras-GEF domainwhich gives them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. Their IQ domains allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. GRF1 also mediates the action of dopamine receptors that signal through cAMP. GRF1 and GRF2 play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270081  Cd Length: 136  Bit Score: 46.26  E-value: 1.57e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 165 GTKEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECS---------AVQFDYSQERVNCFCLVFPF- 234
Cdd:cd13261    5 GTKRGYLSKKTSDSGKWHERWFALYQNLLFYFENESSSRPSGLYLLEGCYcerlptpkgALKGKDHLEKQHYFTISFRHe 84
                         90       100
                 ....*....|....*....|...
gi 807066331 235 --RTFYLCAKTGVEADEWIKILR 255
Cdd:cd13261   85 nqRQYELRAETESDCDEWVEAIK 107
BAR-PH_APPL cd13247
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin ...
167-251 2.68e-06

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin/Rvs167 (BAR)-Pleckstrin homology (PH) domain; APPL (also called DCC-interacting protein (DIP)-13alpha) interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270067  Cd Length: 125  Bit Score: 45.44  E-value: 2.68e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYL---TKQGGLVKTW-KTRWFTLHRNELKYFKDQMSPEpiRILDLTECSaVQFDYSQERVNCFCLVFPF--RTFYLC 240
Cdd:cd13247   29 KAGYLfirSKTGLVTNKWdRTYFFTQGGNLMSQPRDEVAGS--LVLDLDNCS-VQAADCEDRRNVFQITSPDgkKAIVLQ 105
                         90
                 ....*....|.
gi 807066331 241 AKTGVEADEWI 251
Cdd:cd13247  106 AESKKDYEEWI 116
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
169-256 3.36e-06

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 44.62  E-value: 3.36e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 169 GYLTKQGGLVKTWKTRWFTL--HRNELKYFKDQMSPEPIRILDLTECSavqFDYSQERVNC-FCLVFPFRTFYLCAKTGV 245
Cdd:cd01265    7 NKLETRGLGLKGWKRRWFVLdeSKCQLYYYRSPQDATPLGSIDLSGAA---FSYDPEAEPGqFEIHTPGRVHILKASTRQ 83
                         90
                 ....*....|....
gi 807066331 246 EADEWIKIL---RW 256
Cdd:cd01265   84 AMLYWLQALqskRR 97
SH2_SH2D2A_SH2D7 cd10349
Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); ...
35-109 3.59e-06

Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); SH2D2A and SH7 both contain a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199830  Cd Length: 77  Bit Score: 44.05  E-value: 3.59e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 807066331  35 WYHGNLTRHAAEAlLLSNGCDGSYLLRDSNETTGlYSLSVRAKDSVKHFHVEYTG---YSFKFGFNEFSSLKDFVKHF 109
Cdd:cd10349    2 WFHGFITRREAER-LLEPKPQGCYLVRFSESAVT-FVLSYRSRTCCRHFLLAQLRdgrHVVLGEDSAHARLQDLLLHY 77
SH2_Tec_Txk cd10398
Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine ...
35-86 3.72e-06

Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198261  Cd Length: 106  Bit Score: 44.55  E-value: 3.72e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNEtTGLYSLSV--RAKDS----VKHFHVE 86
Cdd:cd10398    8 WYHKNITRNQAERLLRQESKEGAFIVRDSRH-LGSYTISVftRARRSteasIKHYQIK 64
PH_GAP1_mammal-like cd13371
GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras ...
167-254 4.36e-06

GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241522  Cd Length: 125  Bit Score: 45.03  E-value: 4.36e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTK--QG----GLvKTWKTRWFTLHRNELKYFKDQmSPEPIRILDLTECSAVQF--DYSQERVNCFCLVFPFRTFY 238
Cdd:cd13371   18 KEGFMIKraQGrkrfGM-KNFKKRWFRLTNHEFTYHKSK-GDHPLCSIPIENILAVERleEESFKMKNMFQVIQPERALY 95
                         90
                 ....*....|....*.
gi 807066331 239 LCAKTGVEADEWIKIL 254
Cdd:cd13371   96 IQANNCVEAKDWIDIL 111
SH2_Tec_Btk cd10397
Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of ...
35-85 4.47e-06

Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of the Tec protein tyrosine kinase Btk is expressed in bone marrow, spleen, all hematopoietic cells except T lymphocytes and plasma cells where it plays a crucial role in B cell maturation and mast cell activation. Btk has been shown to interact with GNAQ, PLCG2, protein kinase D1, B-cell linker, SH3BP5, caveolin 1, ARID3A, and GTF2I. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is implicated in the primary immunodeficiency disease X-linked agammaglobulinemia (Bruton's agammaglobulinemia). The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. Two tyrosine phosphorylation (pY) sites have been identified in Btk: one located in the activation loop of the catalytic domain which regulates the transition between open (active) and closed (inactive) states and the other in its SH3 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198260 [Multi-domain]  Cd Length: 106  Bit Score: 44.44  E-value: 4.47e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 807066331  35 WYHGNLTRHAAEALLLSNGCDGSYLLRDSNEtTGLYSLSVRAKDS------VKHFHV 85
Cdd:cd10397    8 WYSKNMTRSQAEQLLKQEGKEGGFIVRDSSK-AGKYTVSVFAKSAgdpqgvIRHYVV 63
PH_PLEKHJ1 cd13258
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ...
167-255 6.01e-06

Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270078  Cd Length: 123  Bit Score: 44.62  E-value: 6.01e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLvktwKTRWFTLHRNELKYFK-DQMSP--EPIRILDLTECSaVQFDYSQERVNCFCLVF---PFRTFYLC 240
Cdd:cd13258   26 QMGGPKKSEVF----KERWFKLKGNLLFYFRtNEFGDcsEPIGAIVLENCR-VQMEEITEKPFAFSIVFndePEKKYIFS 100
                         90
                 ....*....|....*
gi 807066331 241 AKTGVEADEWIKILR 255
Cdd:cd13258  101 CRSEEQCEQWIEALR 115
PH_RhoGAP2 cd13378
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ...
167-204 6.32e-06

Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241529  Cd Length: 116  Bit Score: 44.17  E-value: 6.32e-06
                         10        20        30
                 ....*....|....*....|....*....|....*...
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEP 204
Cdd:cd13378    5 KAGWLKKQRSIMKNWQQRWFVLRGDQLFYYKDEEETKP 42
SH2_SHB cd10389
Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in ...
35-123 8.28e-06

Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198252  Cd Length: 97  Bit Score: 43.54  E-value: 8.28e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALL-LSNGCdgSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNE--FSSLKDFVKHFAN 111
Cdd:cd10389    3 WYHGAISRGDAENLLrLCKEC--SYLVRNSQTSKHDYSLSLKSNQGFMHMKLAKTKEKYVLGQNSppFDSVPEVIHYYTT 80
                         90
                 ....*....|....
gi 807066331 112 Q--PLIGSETGTLM 123
Cdd:cd10389   81 RklPIKGAEHLSLL 94
SH2_SH2B2 cd10411
Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B2 (APS), ...
30-114 1.36e-05

Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B2 (APS), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B1 and SH2B2 function in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. SH2B2beta, a new isoform of SH2B2, is an endogenous inhibitor of SH2B1 and/or SH2B2 (SH2B2alpha), negatively regulating insulin signaling and/or JAK2-mediated cellular responses. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198274  Cd Length: 97  Bit Score: 43.07  E-value: 1.36e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  30 LQDLGWYHGNLTRHAAEALLLSNG--CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGY-SFKFGFNEFSSLKDFV 106
Cdd:cd10411    5 LSDYPWFHGTLSRVKAAQLVLAGGprSHGLFVIRQSETRPGEYVLTFNFQGKAKHLRLSLNGHgQCHVQHLWFQSVFDML 84

                 ....*...
gi 807066331 107 KHFANQPL 114
Cdd:cd10411   85 RHFHTHPI 92
PH_GAP1m_mammal-like cd13370
GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS ...
160-254 1.47e-05

GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS p21 protein activator (GTPase activating protein) 2) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(IP4BP), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(m) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1IP4BP, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(m) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(m) binds inositol tetrakisphosphate (IP4). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241521  Cd Length: 133  Bit Score: 43.78  E-value: 1.47e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 160 TAPSLGTKEGYLTKQGGLVK-----------TWKTRWFTLHRNELKYFKdQMSPEPIRILDLTECSAVQ-FDYSQ-ERVN 226
Cdd:cd13370    5 SKESSGVSESVHLKEGEMHKraqgrtrigkkNFKKRWFCLTSRELTYHK-QKGKEAIFTIPVKNILAVEkLEESAfNKKN 83
                         90       100
                 ....*....|....*....|....*...
gi 807066331 227 CFCLVFPFRTFYLCAKTGVEADEWIKIL 254
Cdd:cd13370   84 MFQVIHSEKPLYVQANNCVEANEWIEVL 111
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
168-251 1.52e-05

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 43.20  E-value: 1.52e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 168 EGYLTKQGGLVKTWKT----RWFTLHRNE------LKYFKDQMSPEPIRILDLTECSAV----QFDY-SQERVNC-FCLV 231
Cdd:cd13384    6 EGWLTKSPPEKRIWRAkwrrRYFVLRQSEipgqyfLEYYTDRTCRKLKGSIDLDQCEQVdaglTFETkNKLKDQHiFDIR 85
                         90       100
                 ....*....|....*....|
gi 807066331 232 FPFRTFYLCAKTGVEADEWI 251
Cdd:cd13384   86 TPKRTYYLVADTEDEMNKWV 105
PH_M-RIP cd13275
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ...
167-216 1.66e-05

Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270094  Cd Length: 104  Bit Score: 42.71  E-value: 1.66e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNELKYFKD---QMSPEPIRILDLTECSAV 216
Cdd:cd13275    1 KKGWLMKQGSRQGEWSKHWFVLRGAALKYYRDpsaEEAGELDGVIDLSSCTEV 53
SH2_Grb14 cd10414
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 14 (Grb14) ...
35-109 1.86e-05

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 14 (Grb14) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. Grb14 is part of the Grb7 family of proteins which also includes Grb7, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR) and weakly to the erbB2 receptor. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198277  Cd Length: 108  Bit Score: 42.61  E-value: 1.86e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKDSVKHFH---VEYTG---YSFKFGFNEFSSLKDFVK 107
Cdd:cd10414    7 WFHHKISRDEAQRLIIQQGlVDGVFLVRDSQSNPRTFVLSMSHGQKIKHFQiipVEDDGelfHTLDDGHTRFTDLIQLVE 86

                 ..
gi 807066331 108 HF 109
Cdd:cd10414   87 FY 88
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
166-251 2.26e-05

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 42.20  E-value: 2.26e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLtecSAVQFDYSQE------RVNCFCLVFPFRTFYL 239
Cdd:cd01233    7 SKRGYLLFLEDATDGWVRRWVVLRRPYLHIYSSEKDGDERGVINL---STARVEYSPDqeallgRPNVFAVYTPTNSYLL 83
                         90
                 ....*....|..
gi 807066331 240 CAKTGVEADEWI 251
Cdd:cd01233   84 QARSEKEMQDWL 95
SH2_SHD cd10390
Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD); The expression ...
35-114 2.36e-05

Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD); The expression of SHD is restricted to the brain. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198253  Cd Length: 98  Bit Score: 42.38  E-value: 2.36e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEAlLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYS-FKFGFNE--FSSLKDFVKHFAN 111
Cdd:cd10390    3 WFHGPLSRADAEN-LLSLCKEGSYLVRLSETRPQDCSLSLRSSQGFLHLKFARTRENqVVLGQHSgpFPSVPELVLHYSS 81

                 ...
gi 807066331 112 QPL 114
Cdd:cd10390   82 RPL 84
SH2_Vav1 cd10405
Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the ...
35-114 2.40e-05

Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198268  Cd Length: 103  Bit Score: 42.31  E-value: 2.40e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNE-FSSLKDFVKHFANQP 113
Cdd:cd10405    7 WYAGPMERAGAESIL-ANRSDGTYLVRQRVKDAAEFAISIKYNVEVKHIKIMTAEGLYRITEKKaFRGLTELVEFYQQNS 85

                 .
gi 807066331 114 L 114
Cdd:cd10405   86 L 86
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
167-255 2.89e-05

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 42.99  E-value: 2.89e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTK--QG----GLVkTWKTRWFTLHRNELKYF----------KDQMSPEPIRILDltecsAVQFDYSQERVNCFCL 230
Cdd:cd01238    1 LEGLLVKrsQGkkrfGPV-NYKERWFVLTKSSLSYYegdgekrgkeKGSIDLSKVRCVE-----EVKDEAFFERKYPFQV 74
                         90       100
                 ....*....|....*....|....*
gi 807066331 231 VFPFRTFYLCAKTGVEADEWIKILR 255
Cdd:cd01238   75 VYDDYTLYVFAPSEEDRDEWIAALR 99
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
166-254 3.29e-05

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 41.96  E-value: 3.29e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQ--GGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRiLDLTECsavQFDYSQERVNCFCLVFPFRTFYLCAKT 243
Cdd:cd13251   11 EKSGYLLKKseGKIRKVWQKRRCSIKDGFLTISHADENKPPAK-LNLLTC---QVKLVPEDKKCFDLISHNRTYHFQAED 86
                         90
                 ....*....|.
gi 807066331 244 GVEADEWIKIL 254
Cdd:cd13251   87 ENDANAWMSVL 97
SH2_Vav3 cd10407
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ...
35-114 3.60e-05

Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198270  Cd Length: 103  Bit Score: 41.91  E-value: 3.60e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLsNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFN-EFSSLKDFVKHFANQP 113
Cdd:cd10407    7 WYAGAMERLQAETELI-NRVNSTYLVRHRTKESGEYAISIKYNNEVKHIKILTRDGFFHIAENrKFKSLMELVEYYKHHS 85

                 .
gi 807066331 114 L 114
Cdd:cd10407   86 L 86
SH2_SH2B3 cd10412
Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B3 (Lnk), ...
35-114 3.83e-05

Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B3 (Lnk), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B3 negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Sh2b3/Lnk also functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198275  Cd Length: 97  Bit Score: 41.42  E-value: 3.83e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGCD--GSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGY-SFKFGFNEFSSLKDFVKHFAN 111
Cdd:cd10412   10 WFHGPISRVKAAQLVQLQGPDahGVFLVRQSETRRGEYVLTFNFQGRAKHLRLSLTERgQCRVQHLHFPSVVDMLHHFQR 89

                 ...
gi 807066331 112 QPL 114
Cdd:cd10412   90 SPI 92
PH_SKIP cd13309
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ...
166-254 4.57e-05

SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270119  Cd Length: 103  Bit Score: 41.60  E-value: 4.57e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYL---TKQGGLVK-TWKTRWFTLHRNELKYFKDQMSPEPIRILDLTE--CSAVQFDYSQERVNCFCLVFPFRTFY- 238
Cdd:cd13309    1 TKEGMLmykTGTSYLGGeTWKPGYFLLKNGVLYQYPDRSDRLPLLSISLGGeqCGGCRRINNTERPHTFELILTDRSSLe 80
                         90
                 ....*....|....*.
gi 807066331 239 LCAKTGVEADEWIKIL 254
Cdd:cd13309   81 LAAPDEYEASEWLQSL 96
SH2_SOCS3 cd10384
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
28-92 4.96e-05

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198247  Cd Length: 101  Bit Score: 41.26  E-value: 4.96e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 807066331  28 ELLQDLGWYHGNLTrhAAEA-LLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSF 92
Cdd:cd10384    5 RKLQESGFYWSTVS--GKEAnLLLSAEPAGTFLIRDSSDQRHFFTLSVKTESGTKNLRIQCEGGSF 68
PH_PLEKHM3_2 cd13327
Pleckstrin homology domain-containing family M member 3 Pleckstrin homology domain 2; PLEKHM3 ...
181-254 7.87e-05

Pleckstrin homology domain-containing family M member 3 Pleckstrin homology domain 2; PLEKHM3 (also called differentiation associated protein/DAPR)(also called differentiation associated protein/DAPR) exists as three alternatively spliced isoforms that participate in metal ion binding. It contains 2 PH domains and 1 phorbol-ester/DAG-type zinc finger domain. PLEKHM3 is found in Humans, canines, bovine, mouse, rat, chicken and zebrafish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270136  Cd Length: 88  Bit Score: 40.41  E-value: 7.87e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 807066331 181 WKTRWFTLHRNELKYFK-DQMSPEPIRILDLTECSAVQFDYSQERVNCFCLVFPFRTFYLCAKTGVEADEWIKIL 254
Cdd:cd13327   14 WKAFTFVLSRSYLMAFQpGCLDEDPLLSYNVDVCLAVQMDMLDGCDSCFQVIFPQDVLRLRAETRQRAQEWMEAL 88
PH_evt cd13265
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ...
166-250 8.59e-05

Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270085  Cd Length: 108  Bit Score: 40.75  E-value: 8.59e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTKQGGLVKTWKTRWFTLHRN-ELKYFKDQ----------MSPEPIRILDLTECSAVQFDYSQERVNCFCLVFPF 234
Cdd:cd13265    4 VKSGWLLRQSTILKRWKKNWFVLYGDgNLVYYEDEtrrevegrinMPRECRNIRVGLECRDVQPPEGRSRDCLLQIVLRD 83
                         90
                 ....*....|....*..
gi 807066331 235 R-TFYLCAKTGVEADEW 250
Cdd:cd13265   84 GsTLFLCAESADDALAW 100
PH_PHLDB1_2 cd14673
Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; ...
169-199 9.18e-05

Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; PHLDB2 (also called LL5beta) and PHLDB1 (also called LL5alpha) are cytoskeleton- and membrane-associated proteins. PHLDB2 has been identified as a key component of the synaptic podosomes that play an important role in in postsynaptic maturation. Both are large proteins containing an N-terminal pleckstrin (PH) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270192  Cd Length: 105  Bit Score: 40.64  E-value: 9.18e-05
                         10        20        30
                 ....*....|....*....|....*....|...
gi 807066331 169 GYLTKQGGLVKTWKTRWFTLHRNE--LKYFKDQ 199
Cdd:cd14673    7 GFLTKMGGKIKTWKKRWFVFDRNKrtLSYYVDK 39
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
169-254 1.26e-04

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 40.32  E-value: 1.26e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 169 GYLTKQGGLVKTWKTRWFTLHRNELKY-FKDQ-----MSPEPI---RILDLTECSAVQFDYSQERVNCFCLVFPFRTFYL 239
Cdd:cd13238    3 GYLKLKTNGRKTWSRRWFALQPDFVLYsYKSQedklpLTATPVpgfLVTLLEKGSAVDPLNDPKRPRTFKMFHVKKSYYF 82
                         90
                 ....*....|....*
gi 807066331 240 CAKTGVEADEWIKIL 254
Cdd:cd13238   83 QANDGDEQKKWVLTL 97
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
166-255 1.27e-04

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 40.77  E-value: 1.27e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 166 TKEGYLTK--QGGL-------VKTWKTRWFTLHRNE-----LKYFKDQMSPEPIRILDLTECSAVqfdYSQERVNCFClv 231
Cdd:cd13267    7 TKEGYLYKgpENSSdsfislaMKSFKRRFFHLKQLVdgsyiLEFYKDEKKKEAKGTIFLDSCTGV---VQNSKRRKFC-- 81
                         90       100
                 ....*....|....*....|....*....
gi 807066331 232 FPFR-----TFYLCAKTGVEADEWIKILR 255
Cdd:cd13267   82 FELRmqdkkSYVLAAESEAEMDEWISKLN 110
SH2_CIS cd10718
Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS ...
30-109 1.46e-04

Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS family members are known to be cytokine-inducible negative regulators of cytokine signaling. The expression of the CIS gene can be induced by IL2, IL3, GM-CSF and EPO in hematopoietic cells. Proteasome-mediated degradation of this protein has been shown to be involved in the inactivation of the erythropoietin receptor. Suppressor of cytokine signalling (SOCS) was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198285  Cd Length: 88  Bit Score: 39.74  E-value: 1.46e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  30 LQDLGWYHGNLTRHAAEALLLSNGcDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFN--------EFSS 101
Cdd:cd10718    1 LRESGWYWGSITASEAHQALQKAP-EGTFLVRDSSHPSYMLTLSVKTTRGPTNVRIEYSDGSFRLDSSslarprllSFPD 79

                 ....*...
gi 807066331 102 LKDFVKHF 109
Cdd:cd10718   80 VVSLVQHY 87
SH2_SOCS2 cd10383
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
30-93 2.51e-04

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198246  Cd Length: 103  Bit Score: 39.48  E-value: 2.51e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 807066331  30 LQDLGWYHGNLTrhAAEAL-LLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFK 93
Cdd:cd10383    4 LSQTGWYWGSMT--VNEAKeKLQDAPEGTFLVRDSSHSDYLLTISVKTSAGPTNLRIEYQDGKFR 66
PH_Cla4_Ste20 cd13279
Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), ...
167-251 2.58e-04

Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), Cla4 and Ste20. The yeast Ste20 protein kinase is involved in pheromone response, though the function of Ste20 mammalian homologs is unknown. Cla4 is involved in budding and cytokinesis and interacts with Cdc42, a GTPase required for polarized cell growth as is Pak. Cla4 and Ste20 kinases share a function in localizing cell growth with respect to the septin ring. They both contain a PH domain, a Cdc42/Rac interactive binding (CRIB) domain, and a C-terminal Protein Kinase catalytic (PKc) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270097  Cd Length: 92  Bit Score: 39.15  E-value: 2.58e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLT-KQGGLVK-TWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQfdYSQERVNCFCLVFP--FRTFYLCAK 242
Cdd:cd13279    3 KSGWVSvKEDGLLSfRWSKRYLVLREQSLDFYKNESSSSASLSIPLKDISNVS--RTDLKPYCFEIVRKssTKSIYISVK 80

                 ....*....
gi 807066331 243 TGVEADEWI 251
Cdd:cd13279   81 SDDELYDWM 89
PH_PKB cd01241
Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the ...
167-252 3.27e-04

Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the AGC kinase family, is a phosphatidylinositol 3'-kinase (PI3K)-dependent Ser/Thr kinase which alters the activity of the targeted protein. The name AGC is based on the three proteins that it is most similar to cAMP-dependent protein kinase 1 (PKA; also known as PKAC), cGMP-dependent protein kinase (PKG; also known as CGK1) and protein kinase C (PKC). Human Akt has three isoforms derived for distinct genes: Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. All Akts have an N-terminal PH domain with an activating Thr phosphorylation site, a kinase domain, and a short C-terminal regulatory tail with an activating Ser phosphorylation site. The PH domain recruits Akt to the plasma membrane by binding to phosphoinositides (PtdIns-3,4-P2) and is required for activation. The phosphorylation of Akt at its Thr and Ser phosphorylation sites leads to increased Akt activity toward forkhead transcription factors, the mammalian target of rapamycin (mTOR), and the Bcl-xL/Bcl-2-associated death promoter (BAD), all of which possess a consensus motif R-X-R-XX-ST-B (X = amino acid, B = bulky hydrophobic residue) for Akt phosphorylation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269947  Cd Length: 107  Bit Score: 39.15  E-value: 3.27e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRN-ELKYFKDQ----MSPEPIRILDLTECSAVQFDysQERVNCF---CL---VFPFR 235
Cdd:cd01241    5 KEGWLLKRGEYIKNWRPRYFVLKSDgSFIGYKEKpkpnQDPPPLNNFSVAECQLMKTE--KPKPNTFiirCLqwtTVIER 82
                         90
                 ....*....|....*..
gi 807066331 236 TFYLCakTGVEADEWIK 252
Cdd:cd01241   83 TFHVE--SEEEREEWMK 97
SH2_SH2D2A cd10416
Src homology 2 domain found in the SH2 domain containing protein 2A (SH2D2A); SH2D2A contains ...
35-114 3.36e-04

Src homology 2 domain found in the SH2 domain containing protein 2A (SH2D2A); SH2D2A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198279  Cd Length: 102  Bit Score: 39.25  E-value: 3.36e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNGcDGSYLLRDSnETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSS---LKDFVKHFAN 111
Cdd:cd10416    9 WFHGFITRREAERLLEPKP-QGCYLVRFS-ESAVTFVLTYRSRTCCRHFLLAQLRDGRHVVLGEDSAharLQDLLLHYTA 86

                 ...
gi 807066331 112 QPL 114
Cdd:cd10416   87 HPL 89
SH2_Grb10 cd10415
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 10 (Grb10) ...
35-109 3.49e-04

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 10 (Grb10) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. Grb10 is part of the Grb7 family of proteins which also includes Grb7, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198278  Cd Length: 108  Bit Score: 39.23  E-value: 3.49e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV---EYTG---YSFKFGFNEFSSLKDFVK 107
Cdd:cd10415    7 WFHGRISREESHRIIKQQGlVDGLFLLRDSQSNPKAFVLTLCHHQKIKNFQIlpcEDDGqtfFSLDDGNTKFSDLIQLVD 86

                 ..
gi 807066331 108 HF 109
Cdd:cd10415   87 FY 88
SH2_C-SH2_Syk_like cd10401
C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins; ZAP-70 ...
35-131 3.72e-04

C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Syk. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198264  Cd Length: 99  Bit Score: 38.72  E-value: 3.72e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRdSNETTGLYSLSVRAKDSVKHFHVEY--TG-YSFKFGfNEFSSLKDFVKHFA 110
Cdd:cd10401    5 WFHGKISREESEQILLIGSkTNGKFLIR-ERDNNGSYALCLLHDGKVLHYRIDKdkTGkLSIPDG-KKFDTLWQLVEHYS 82
                         90       100
                 ....*....|....*....|.
gi 807066331 111 NQPligseTGTLMVLKHPYPR 131
Cdd:cd10401   83 YKP-----DGLLRVLTEPCPR 98
PH_Osh1p_Osh2p_yeast cd13292
Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p ...
169-199 4.25e-04

Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241446  Cd Length: 103  Bit Score: 38.83  E-value: 4.25e-04
                         10        20        30
                 ....*....|....*....|....*....|.
gi 807066331 169 GYLTKQGGLVKTWKTRWFTLHRNELKYFKDQ 199
Cdd:cd13292    6 GYLKKWTNYAKGYKTRWFVLEDGVLSYYRHQ 36
SH2_SOCS1 cd10382
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
29-113 4.56e-04

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198245  Cd Length: 98  Bit Score: 38.50  E-value: 4.56e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  29 LLQDLGWYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKF-GFNE-FSSLKDFV 106
Cdd:cd10382    6 MLDASGFYWGPLSVEEAHAKL-KREPVGTFLIRDSRQKNCFFALSVKMASGPVSIRILFKAGKFSLdGSKEsFDCLFKLL 84

                 ....*..
gi 807066331 107 KHFANQP 113
Cdd:cd10382   85 EHYVASP 91
SH2_SOCS4 cd10385
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
36-94 5.42e-04

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198248  Cd Length: 101  Bit Score: 38.52  E-value: 5.42e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 807066331  36 YHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKF 94
Cdd:cd10385   13 YWGVMDKYAAEALL-EGKPEGTFLLRDSAQEDYLFSVSFRRYSRSLHARIEQWNHNFSF 70
PH2_Pleckstrin_2 cd13302
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in ...
167-255 5.47e-04

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270114  Cd Length: 109  Bit Score: 38.65  E-value: 5.47e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQGGLVKTWKTRWFTLHRNE--LKYFKDQMSPEPIRILDLTEC--SAVQFD----YSQERVNCFCLVFPFRT-F 237
Cdd:cd13302    9 KQGCLLKQGHRRKNWKVRKFVLRDDPayLHYYDPAKGEDPLGAIHLRGCvvTAVEDNsnprKGSVEGNLFEIITADEVhY 88
                         90
                 ....*....|....*...
gi 807066331 238 YLCAKTGVEADEWIKILR 255
Cdd:cd13302   89 YLQAATPAERTEWIKAIQ 106
SH2_Grb7 cd10413
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) ...
35-107 9.70e-04

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. Grb7 is part of the Grb7 family of proteins which also includes Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198276  Cd Length: 108  Bit Score: 37.97  E-value: 9.70e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHV---EYTG---YSFKFGFNEFSSLKDFVK 107
Cdd:cd10413    7 WFHGRISREESQRLIGQQGlVDGVFLVRESQRNPQGFVLSLCHLQKVKHYLIlpsEEEGrlyFSMDDGQTRFTDLLQLVE 86
SH2_SOCS5 cd10386
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ...
36-94 1.19e-03

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198249  Cd Length: 81  Bit Score: 36.98  E-value: 1.19e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 807066331  36 YHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKF 94
Cdd:cd10386    3 YWGVMDRYEAEALL-EGKPEGTFLLRDSAQEDYLFSVSFRRYNRSLHARIEQWNHNFSF 60
SH2_SH2B_family cd10346
Src homology 2 (SH2) domain found in SH2B adapter protein family; The SH2B adapter protein ...
30-120 1.31e-03

Src homology 2 (SH2) domain found in SH2B adapter protein family; The SH2B adapter protein family has 3 members: SH2B1 (SH2-B, PSM), SH2B2 (APS), and SH2B3 (Lnk). SH2B family members contain a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B1 and SH2B2 function in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. SH2B2beta, a new isoform of SH2B2, is an endogenous inhibitor of SH2B1 and/or SH2B2 (SH2B2alpha), negatively regulating insulin signaling and/or JAK2-mediated cellular responses. SH2B3 negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Sh2b3/Lnk also functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198209  Cd Length: 97  Bit Score: 37.40  E-value: 1.31e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  30 LQDLGWYHGNLTRHAAEALLLSNGCD--GSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGY-SFKFGFNEFSSLKDFV 106
Cdd:cd10346    5 LSEYPWFHGTLSRSDAAQLVLHSGADghGVFLVRQSETRRGEFVLTFNFQGRAKHLRLTLNEKgQCRVQHLWFPSIFDML 84
                         90
                 ....*....|....
gi 807066331 107 KHFANQPlIGSETG 120
Cdd:cd10346   85 EHFRQNP-IPLESG 97
PH3_MyoX-like cd13297
Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a ...
169-255 1.35e-03

Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the third MyoX PH repeat. PLEKHH3/Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) member 3 is also part of this CD and like MyoX contains a FERM domain, a MyTH4 domain, and a single PH domain. Not much is known about the function of PLEKHH3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270109  Cd Length: 126  Bit Score: 37.80  E-value: 1.35e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 169 GYLTKQGG--LVKTW---KTRWFTLHRNELKYFKdqmSPE----PIRILDLTE-CSAVQFDYS-QERVNCFCLVFPFR-- 235
Cdd:cd13297   17 GWLYKEGGkgGARGNltkKKRWFVLTGNSLDYYK---SSEknslKLGTLVLNSlCSVVPPDEKmAKETGYWTFTVHGRkh 93
                         90       100
                 ....*....|....*....|
gi 807066331 236 TFYLCAKTGVEADEWIKILR 255
Cdd:cd13297   94 SFRLYTKLQEEAMRWVNAIQ 113
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
167-251 1.90e-03

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 37.12  E-value: 1.90e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQ----GGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECS---AVQFDYSQERVNCFCLVFPF-RTFY 238
Cdd:cd13266    3 KAGYLEKRrkdhSFFGSEWQKRWCAISKNVFYYYGSDKDKQQKGEFAINGYDvrmNPTLRKDGKKDCCFELVCPDkRTYQ 82
                         90
                 ....*....|...
gi 807066331 239 LCAKTGVEADEWI 251
Cdd:cd13266   83 FTAASPEDAEDWV 95
SH2_C-SH2_Zap70_Syk_like cd10345
C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
35-83 2.14e-03

C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198208  Cd Length: 95  Bit Score: 36.59  E-value: 2.14e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTRHAAEALLLSNG-CDGSYLLRDSNEtTGLYSLSVRAKDSVKHF 83
Cdd:cd10345    2 WFHGKISREESEQIVLIGSkTNGKFLIRARDN-NGSYALCLLHEGKVLHY 50
PH1_ADAP cd13252
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called ...
165-255 2.26e-03

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270072  Cd Length: 109  Bit Score: 36.85  E-value: 2.26e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 165 GTKEGYLTKQGGLVKTWKTRWFTLHRNE--LKYFKDQMSPEPIRILDLTECSAV------------QFDYSQERVNcfcl 230
Cdd:cd13252    1 GSKEGFLWKRGKDNNQFKQRKFVLSEREgtLKYFVKEDAKEPKAVISIEELNATfqpekighpnglQITYLKDGST---- 76
                         90       100
                 ....*....|....*....|....*
gi 807066331 231 vfpfRTFYLCAKTGVEADEWIKILR 255
Cdd:cd13252   77 ----RNIFVYHEDGKEIVDWYNAIR 97
PH_MELT_VEPH1 cd01264
Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone ...
168-254 2.27e-03

Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269965  Cd Length: 105  Bit Score: 36.67  E-value: 2.27e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 168 EGYLTKQGG---LVKTWKTRWFTLHRNELKYfKDQMSPEPIRILDLTECSAVQFDYSQERV--NCFCLVFPFRTFYLCAK 242
Cdd:cd01264    5 EGQLKEKKGrwkFFKRWRTRYFTLSGAQLSY-RGGKSKPDAPPIELSKIRSVKVVRKKDRSipKAFEIFTDDKTYVLKAK 83
                         90
                 ....*....|..
gi 807066331 243 TGVEADEWIKIL 254
Cdd:cd01264   84 DEKNAEEWLQCL 95
SH2_Tensin_like cd09927
Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. ...
35-75 2.29e-03

Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. The Tensins are a family of intracellular proteins that interact with receptor tyrosine kinases (RTKs), integrins, and actin. They are thought act as signaling bridges between the extracellular space and the cytoskeleton. There are four homologues: Tensin1, Tensin2 (TENC1, C1-TEN), Tensin3 and Tensin4 (cten), all of which contain a C-terminal tandem SH2-PTB domain pairing, as well as actin-binding regions that may localize them to focal adhesions. The isoforms of Tensin2 and Tensin3 contain N-terminal C1 domains, which are atypical and not expected to bind to phorbol esters. Tensins 1-3 contain a phosphatase (PTPase) and C2 domain pairing which resembles PTEN (phosphatase and tensin homologue deleted on chromosome 10) protein. PTEN is a lipid phosphatase that dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to yield phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). As PtdIns(3,4,5)P3 is the product of phosphatidylinositol 3-kinase (PI3K) activity, PTEN is therefore a key negative regulator of the PI3K pathway. Because of their PTEN-like domains, the Tensins may also possess phosphoinositide-binding or phosphatase capabilities. However, only Tensin2 and Tensin3 have the potential to be phosphatases since only their PTPase domains contain a cysteine residue that is essential for catalytic activity. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198181 [Multi-domain]  Cd Length: 116  Bit Score: 37.02  E-value: 2.29e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 807066331  35 WYHGNLTRHAAEALLlSNGCDGSYLLRDSNETTGLYSLSVR 75
Cdd:cd09927    5 WYKPNISRDQAIALL-KDKPPGTFLVRDSTTYKGAYGLAVK 44
PH_CpORP2-like cd13293
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ...
168-214 2.75e-03

Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241447  Cd Length: 88  Bit Score: 36.15  E-value: 2.75e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 807066331 168 EGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILdLTECS 214
Cdd:cd13293    2 EGYLKKWTNIFNSWKPRYFILYPGILCYSKQKGGPKKGTIH-LKICD 47
PH_Phafin2-like cd01218
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ...
167-251 2.97e-03

Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269927 [Multi-domain]  Cd Length: 123  Bit Score: 36.85  E-value: 2.97e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQggLVKTWKTRWFTLhrnelkyFKDQ------MSPEPI----RILDLTECSAVQFDYSQERVNCFCLVFPFRT 236
Cdd:cd01218   32 GEGVLTKV--CRKKPKPRQFFL-------FNDIlvygsiVINKKKynkqRIIPLEDVKIEDLEDTGELKNGWQIISPKKS 102
                         90
                 ....*....|....*
gi 807066331 237 FYLCAKTGVEADEWI 251
Cdd:cd01218  103 FVVYAATATEKSEWM 117
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
169-254 3.16e-03

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 36.20  E-value: 3.16e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 169 GYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDYSQERVN--CFCLVFPF--RTFYLCAKTG 244
Cdd:cd13316    4 GWMKKRGERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPFRGsyGFKLVPPAvpKVHYFAVDEK 83
                         90
                 ....*....|
gi 807066331 245 VEADEWIKIL 254
Cdd:cd13316   84 EELREWMKAL 93
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
167-263 3.27e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 36.37  E-value: 3.27e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQ----GGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTECSAVQFDY---SQERVNCFCLVFP-FRTFY 238
Cdd:cd13380    3 KQGYLEKRskdhSFFGSEWQKRWCVLTNRAFYYYASEKSKQPKGGFLIKGYSAQMAPHlrkDSRRDSCFELTTPgRRTYQ 82
                         90       100
                 ....*....|....*....|....*
gi 807066331 239 LCAKTGVEADEWIKILRWkLVKDKS 263
Cdd:cd13380   83 FTAASPSEARDWVDQIQF-LLKDTQ 106
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
168-241 3.58e-03

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 36.07  E-value: 3.58e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 807066331 168 EGYLTKQ-GGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTE-CSAVQFD-YSQERVNCFCLVFPFRTFYLCA 241
Cdd:cd13299    9 QGYLQVLkKKGVNQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPIDDiIDVVELDpLSKSKKWCLQIITPEKRIRFCA 85
SH2_SH2B1 cd10410
Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B1 (SH2-B, ...
30-114 3.92e-03

Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B1 (SH2-B, PSM), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B1 and SH2B2 function in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. SH2B2beta, a new isoform of SH2B2, is an endogenous inhibitor of SH2B1 and/or SH2B2 (SH2B2alpha), negatively regulating insulin signaling and/or JAK2-mediated cellular responses. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198273  Cd Length: 97  Bit Score: 35.76  E-value: 3.92e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  30 LQDLGWYHGNLTRHAAEALLLSNG--CDGSYLLRDSNETTGLYSLSVRAKDSVKHfhveytgysFKFGFNE--------- 98
Cdd:cd10410    5 LSGYPWFHGMLSRLKAAQLVLEGGtgSHGVFLVRQSETRRGEYVLTFNFQGKAKH---------LRLSLNEegqcrvqhl 75
                         90
                 ....*....|....*..
gi 807066331  99 -FSSLKDFVKHFANQPL 114
Cdd:cd10410   76 wFQSIFDMLEHFRVHPI 92
PH_IRS cd01257
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ...
167-254 5.50e-03

Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 269959  Cd Length: 106  Bit Score: 35.73  E-value: 5.50e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331 167 KEGYLTKQgglvKTWKTRWFTL-------------HRNELKYfkdQMSPEPIRILDLTECSAV--QFDYSQErvncFCLV 231
Cdd:cd01257    5 KSGYLKKL----KTMRKRYFVLraeshggparleyYENEKKF---RRNAEPKRVIPLSSCFNInkRADAKHK----HLIA 73
                         90       100
                 ....*....|....*....|....*
gi 807066331 232 FPFR--TFYLCAKTGVEADEWIKIL 254
Cdd:cd01257   74 LYTKdeCFGLVAESEEEQDEWYQAL 98
SH2_PTK6_Brk cd10358
Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast ...
35-114 5.54e-03

Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast tumor kinase (Brk); Human protein-tyrosine kinase-6 (PTK6, also known as breast tumor kinase (Brk)) is a member of the non-receptor protein-tyrosine kinase family and is expressed in two-thirds of all breast tumors. PTK6 (9). PTK6 contains a SH3 domain, a SH2 domain, and catalytic domains. For the case of the non-receptor protein-tyrosine kinases, the SH2 domain is typically involved in negative regulation of kinase activity by binding to a phosphorylated tyrosine residue near to the C terminus. The C-terminal sequence of PTK6 (PTSpYENPT where pY is phosphotyrosine) is thought to be a self-ligand for the SH2 domain. The structure of the SH2 domain resembles other SH2 domains except for a centrally located four-stranded antiparallel beta-sheet (strands betaA, betaB, betaC, and betaD). There are also differences in the loop length which might be responsible for PTK6 ligand specificity. There are two possible means of regulation of PTK6: autoinhibitory with the phosphorylation of Tyr playing a role in its negative regulation and autophosphorylation at this site, though it has been shown that PTK6 might phosphorylate signal transduction-associated proteins Sam68 and signal transducing adaptor family member 2 (STAP/BKS) in vivo. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198221  Cd Length: 100  Bit Score: 35.49  E-value: 5.54e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 807066331  35 WYHGNLTR-HAAEALLLSNGCDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVeYTGYSFKFGFNE---FSSLKDFVKHFA 110
Cdd:cd10358    4 WFFGCISRsEAVRRLQAEGNATGAFLIRVSEKPSADYVLSVRDTQAVRHYKI-WRRAGGRLHLNEavsFLSLPELVNYHR 82

                 ....
gi 807066331 111 NQPL 114
Cdd:cd10358   83 AQSL 86
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH