NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|827342564|ref|NP_001296377|]
View 

pleckstrin homology domain-containing family B member 2 isoform 11 [Homo sapiens]

Protein Classification

PH domain-containing protein( domain architecture ID 106840)

Pleckstrin homology (PH) domain-containing protein may be involved in targeting a protein to the appropriate cellular location or interacting with a binding partner

CATH:  2.30.29.30
Gene Ontology:  GO:0005515

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH-like super family cl17171
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ...
1-60 1.20e-34

Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins.


The actual alignment was detected with superfamily member cd13265:

Pssm-ID: 473070  Cd Length: 108  Bit Score: 117.40  E-value: 1.20e-34
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 827342564   1 MPMDCINIRTGQECRDTQPPDGKSKDCMLQIVCRDGKTISLCAESTDDCLAWKFTLQDSR 60
Cdd:cd13265   49 MPRECRNIRVGLECRDVQPPEGRSRDCLLQIVLRDGSTLFLCAESADDALAWKLALQDAR 108
 
Name Accession Description Interval E-value
PH_evt cd13265
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ...
1-60 1.20e-34

Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270085  Cd Length: 108  Bit Score: 117.40  E-value: 1.20e-34
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 827342564   1 MPMDCINIRTGQECRDTQPPDGKSKDCMLQIVCRDGKTISLCAESTDDCLAWKFTLQDSR 60
Cdd:cd13265   49 MPRECRNIRVGLECRDVQPPEGRSRDCLLQIVLRDGSTLFLCAESADDALAWKLALQDAR 108
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
13-52 3.47e-04

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 38.30  E-value: 3.47e-04
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|
gi 827342564    13 ECRDTQPPDGKSKDCMLQIVCRDGKTISLCAESTDDCLAW 52
Cdd:smart00233  54 TVREAPDPDSSKKPHCFEIKTSDRKTLLLQAESEEEREKW 93
 
Name Accession Description Interval E-value
PH_evt cd13265
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ...
1-60 1.20e-34

Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270085  Cd Length: 108  Bit Score: 117.40  E-value: 1.20e-34
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 827342564   1 MPMDCINIRTGQECRDTQPPDGKSKDCMLQIVCRDGKTISLCAESTDDCLAWKFTLQDSR 60
Cdd:cd13265   49 MPRECRNIRVGLECRDVQPPEGRSRDCLLQIVLRDGSTLFLCAESADDALAWKLALQDAR 108
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
13-52 3.47e-04

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 38.30  E-value: 3.47e-04
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|
gi 827342564    13 ECRDTQPPDGKSKDCMLQIVCRDGKTISLCAESTDDCLAW 52
Cdd:smart00233  54 TVREAPDPDSSKKPHCFEIKTSDRKTLLLQAESEEEREKW 93
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
2-52 1.14e-03

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 36.37  E-value: 1.14e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 827342564   2 PMDCINIRTGQECRDTQPpdgKSKDCMLQIVCRDGKTISLCAESTDDCLAW 52
Cdd:cd00821   41 PKGSIPLSGILEVEEVSP---KERPHCFELVTPDGRTYYLQADSEEERQEW 88
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH