NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1482178903|ref|NP_001353103|]
View 

ribonucleoprotein PTB-binding 1 isoform 2 [Homo sapiens]

Protein Classification

ribonucleoprotein PTB-binding 1( domain architecture ID 10190505)

ribonucleoprotein PTB-binding 1 (RAVER1) cooperates with PTBP1 to modulate regulated alternative splicing events

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM3_RAVER1 cd12667
RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
219-306 5.91e-54

RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM3 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


:

Pssm-ID: 410068 [Multi-domain]  Cd Length: 92  Bit Score: 180.02  E-value: 5.91e-54
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 219 HSRCLCVDRLPPGFNDVDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCA 298
Cdd:cd12667     1 HSRCLCVDRLPPGFNDLDDLRRALSAVHAPTFCQLAYGQDGQLKGFAVLEYETAEMAEMVQQQADGLSLGGSHIRVSFCA 80

                  ....*...
gi 1482178903 299 PGPPGRSM 306
Cdd:cd12667    81 PGPPGRSM 88
RRM2_RAVER1 cd12665
RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 ...
133-209 4.10e-50

RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


:

Pssm-ID: 410066 [Multi-domain]  Cd Length: 77  Bit Score: 169.34  E-value: 4.10e-50
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTD 209
Cdd:cd12665     1 LLCIANLPPSYTQQQFEELVRPFGNLERCFLVYSETTGHSKGYGFVEYMKKDSAARAKSDLLGKQLGTRTLYVHWTD 77
RRM1_RAVER1 cd12663
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
59-129 4.21e-45

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM1 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


:

Pssm-ID: 410064 [Multi-domain]  Cd Length: 71  Bit Score: 155.07  E-value: 4.21e-45
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903  59 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 129
Cdd:cd12663     1 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 71
PHA03247 super family cl33720
large tegument protein UL36; Provisional
364-612 4.15e-05

large tegument protein UL36; Provisional


The actual alignment was detected with superfamily member PHA03247:

Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 47.24  E-value: 4.15e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  364 APPAMPLLNGPALSTAL-LQLALQTQGQKKPGILGD-----SPLGALQPGAqPANPLLGELPAGGGLP-PELPPRRGKPP 436
Cdd:PHA03247  2703 PPPPTPEPAPHALVSATpLPPGPAAARQASPALPAApappaVPAGPATPGG-PARPARPPTTAGPPAPaPPAAPAAGPPR 2781
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  437 PLLPSVLGPAGGDREALGLGPPAAqltPPPAPVGLRGSGLRGLQKDSGPLPTPPgvSLLGEPPKDYRIPLNPYlnlhslL 516
Cdd:PHA03247  2782 RLTRPAVASLSESRESLPSPWDPA---DPPAAVLAPAAALPPAASPAGPLPPPT--SAQPTAPPPPPGPPPPS------L 2850
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  517 PASNLAAPGGGSSSSKAFQlkSRLLSPLSSARLP----PEPGLSDS-YSFDYPSDMGPRrlfshPREPALGPHGPSRHKM 591
Cdd:PHA03247  2851 PLGGSVAPGGDVRRRPPSR--SPAAKPAAPARPPvrrlARPAVSRStESFALPPDQPER-----PPQPQAPPPPQPQPQP 2923
                          250       260
                   ....*....|....*....|.
gi 1482178903  592 SPPPSGFGERSSGGSGGGPLS 612
Cdd:PHA03247  2924 PPPPQPQPPPPPPPRPQPPLA 2944
 
Name Accession Description Interval E-value
RRM3_RAVER1 cd12667
RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
219-306 5.91e-54

RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM3 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410068 [Multi-domain]  Cd Length: 92  Bit Score: 180.02  E-value: 5.91e-54
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 219 HSRCLCVDRLPPGFNDVDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCA 298
Cdd:cd12667     1 HSRCLCVDRLPPGFNDLDDLRRALSAVHAPTFCQLAYGQDGQLKGFAVLEYETAEMAEMVQQQADGLSLGGSHIRVSFCA 80

                  ....*...
gi 1482178903 299 PGPPGRSM 306
Cdd:cd12667    81 PGPPGRSM 88
RRM2_RAVER1 cd12665
RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 ...
133-209 4.10e-50

RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410066 [Multi-domain]  Cd Length: 77  Bit Score: 169.34  E-value: 4.10e-50
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTD 209
Cdd:cd12665     1 LLCIANLPPSYTQQQFEELVRPFGNLERCFLVYSETTGHSKGYGFVEYMKKDSAARAKSDLLGKQLGTRTLYVHWTD 77
RRM1_RAVER1 cd12663
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
59-129 4.21e-45

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM1 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410064 [Multi-domain]  Cd Length: 71  Bit Score: 155.07  E-value: 4.21e-45
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903  59 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 129
Cdd:cd12663     1 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 71
RRM smart00360
RNA recognition motif;
136-205 7.39e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 69.93  E-value: 7.39e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:smart00360   4 VGNLPPDTTEEELRELFSKFGKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
136-204 6.44e-14

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 66.87  E-value: 6.44e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSErTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLY 204
Cdd:pfam00076   3 VGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDE-TGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
58-199 2.15e-13

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 72.28  E-value: 2.15e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  58 RRKILIRGLPGDVTNQEVHDLLSDY-ELKYCFV--DKYKGTA----FVTLLNGEQAEAAINAFHQSRLRERELSVQL-QP 129
Cdd:TIGR01661   3 KTNLIVNYLPQTMTQEEIRSLFTSIgEIESCKLvrDKVTGQSlgygFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYaRP 82
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 130 T-----DALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:TIGR01661  83 SsdsikGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNVTGLSKGVGFIRFDKRDEADRAIKTLNGtTPSG 158
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
134-205 2.70e-12

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 62.81  E-value: 2.70e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:COG0724     4 IYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
RRM smart00360
RNA recognition motif;
60-125 2.24e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 57.22  E-value: 2.24e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903   60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFV------DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFgKVESVRLvrdketGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
60-125 2.33e-09

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 54.33  E-value: 2.33e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFV--DKY----KGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYgEVTSVKLitDREtgrsRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
134-205 1.86e-08

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 56.87  E-value: 1.86e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKV 77
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
61-193 8.68e-07

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 51.56  E-value: 8.68e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  61 ILIRGLPGDVTNQEVHDL------------LSDYELKYCFvdkykGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL- 127
Cdd:TIGR01659 110 LIVNYLPQDMTDRELYALfrtigpintcriMRDYKTGYSF-----GYAFVDFGSEADSQRAIKNLNGITVRNKRLKVSYa 184
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 128 -----QPTDALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDL 193
Cdd:TIGR01659 185 rpggeSIKDTNLYVTNLPRTITDDQLDTIFGKYGQIVQKNILRDKLTGTPRGVAFVRFNKREEAQEAISAL 255
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
61-123 2.47e-06

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 45.69  E-value: 2.47e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-ELKYCFV-----DKYKGTAFVTLLNGEQAEAAINAFHQSRLREREL 123
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFgPIKSIRLvrdetGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
PHA03247 PHA03247
large tegument protein UL36; Provisional
364-612 4.15e-05

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 47.24  E-value: 4.15e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  364 APPAMPLLNGPALSTAL-LQLALQTQGQKKPGILGD-----SPLGALQPGAqPANPLLGELPAGGGLP-PELPPRRGKPP 436
Cdd:PHA03247  2703 PPPPTPEPAPHALVSATpLPPGPAAARQASPALPAApappaVPAGPATPGG-PARPARPPTTAGPPAPaPPAAPAAGPPR 2781
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  437 PLLPSVLGPAGGDREALGLGPPAAqltPPPAPVGLRGSGLRGLQKDSGPLPTPPgvSLLGEPPKDYRIPLNPYlnlhslL 516
Cdd:PHA03247  2782 RLTRPAVASLSESRESLPSPWDPA---DPPAAVLAPAAALPPAASPAGPLPPPT--SAQPTAPPPPPGPPPPS------L 2850
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  517 PASNLAAPGGGSSSSKAFQlkSRLLSPLSSARLP----PEPGLSDS-YSFDYPSDMGPRrlfshPREPALGPHGPSRHKM 591
Cdd:PHA03247  2851 PLGGSVAPGGDVRRRPPSR--SPAAKPAAPARPPvrrlARPAVSRStESFALPPDQPER-----PPQPQAPPPPQPQPQP 2923
                          250       260
                   ....*....|....*....|.
gi 1482178903  592 SPPPSGFGERSSGGSGGGPLS 612
Cdd:PHA03247  2924 PPPPQPQPPPPPPPRPQPPLA 2944
RRM smart00360
RNA recognition motif;
222-294 1.06e-04

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 41.04  E-value: 1.06e-04
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903  222 CLCVDRLPPGFNDvDALCRALSAVHSPTFCQLACGQD-GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRV 294
Cdd:smart00360   1 TLFVGNLPPDTTE-EELRELFSKFGKVESVRLVRDKEtGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
225-293 3.86e-04

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 39.14  E-value: 3.86e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 225 VDRLPPGFNDvDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLR 293
Cdd:pfam00076   3 VGNLPPDTTE-EDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
259-295 7.49e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 38.93  E-value: 7.49e-04
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1482178903 259 GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVS 295
Cdd:COG0724    40 GRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVN 76
 
Name Accession Description Interval E-value
RRM3_RAVER1 cd12667
RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
219-306 5.91e-54

RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM3 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410068 [Multi-domain]  Cd Length: 92  Bit Score: 180.02  E-value: 5.91e-54
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 219 HSRCLCVDRLPPGFNDVDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCA 298
Cdd:cd12667     1 HSRCLCVDRLPPGFNDLDDLRRALSAVHAPTFCQLAYGQDGQLKGFAVLEYETAEMAEMVQQQADGLSLGGSHIRVSFCA 80

                  ....*...
gi 1482178903 299 PGPPGRSM 306
Cdd:cd12667    81 PGPPGRSM 88
RRM2_RAVER1 cd12665
RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 ...
133-209 4.10e-50

RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410066 [Multi-domain]  Cd Length: 77  Bit Score: 169.34  E-value: 4.10e-50
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTD 209
Cdd:cd12665     1 LLCIANLPPSYTQQQFEELVRPFGNLERCFLVYSETTGHSKGYGFVEYMKKDSAARAKSDLLGKQLGTRTLYVHWTD 77
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
133-209 3.60e-45

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 155.55  E-value: 3.60e-45
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTD 209
Cdd:cd12389     1 LLCVTNLPLSFTEEQFEELVRPYGNVERCFLVYSEVTGESKGYGFVEYTSKESAIRAKNQLHGRQIGGRALQVDWLD 77
RRM1_RAVER1 cd12663
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
59-129 4.21e-45

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM1 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410064 [Multi-domain]  Cd Length: 71  Bit Score: 155.07  E-value: 4.21e-45
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903  59 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 129
Cdd:cd12663     1 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 71
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
219-306 1.79e-41

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 145.84  E-value: 1.79e-41
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 219 HSRCLCVDRLPPGFNDVDALCRALSAVHSPTFCQLACGQdGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCA 298
Cdd:cd12390     1 HSKCLFVDRLPKDFRDGSELRKLFSQVGKPTFCQLAMGN-GVPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIRVSFGN 79

                  ....*...
gi 1482178903 299 PGPPGRSM 306
Cdd:cd12390    80 PGRPGASL 87
RRM1_RAVER cd12388
RNA recognition motif 1 (RRM1) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
60-129 2.68e-40

RNA recognition motif 1 (RRM1) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM1 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409822 [Multi-domain]  Cd Length: 70  Bit Score: 141.96  E-value: 2.68e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 129
Cdd:cd12388     1 RILVRNLPNDITAQEVHDLLADYGLKYCHVDKAKGTAFVTLLNGEQAGTAILKFHQSSYRDRQLSVQLQP 70
RRM2_RAVER2 cd12666
RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
133-209 6.10e-38

RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410067 [Multi-domain]  Cd Length: 77  Bit Score: 135.40  E-value: 6.10e-38
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTD 209
Cdd:cd12666     1 LLCITNLPISFTLQEFEELVRAYGNIERCFLVYSEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLGESSLFAQWMD 77
RRM3_RAVER2 cd12668
RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 ...
219-305 3.51e-35

RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM3 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410069 [Multi-domain]  Cd Length: 98  Bit Score: 128.41  E-value: 3.51e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 219 HSRCLCVDRLPPGFNDVDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCA 298
Cdd:cd12668     1 HSKCLCVDKLPKDYSDSEELTQLFSRPYKPVFCQLAQDEGSCIGGFAVVEYETAEQAEEVQRAMDGMTIGGSRVQVSFCA 80

                  ....*..
gi 1482178903 299 PGPPGRS 305
Cdd:cd12668    81 PGSPGRS 87
RRM1_RAVER2 cd12664
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
60-129 2.84e-34

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM1 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410065 [Multi-domain]  Cd Length: 70  Bit Score: 124.97  E-value: 2.84e-34
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 129
Cdd:cd12664     1 KILIKNLPQDSTSQEVHDLLKDYELKYCYVDRNKRTAFVTLLNGEQAQDAIRTFHQHSLRGRDISVQLQP 70
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
134-205 1.35e-15

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 71.93  E-value: 1.35e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSeRTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRD-RDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKV 71
RRM smart00360
RNA recognition motif;
136-205 7.39e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 69.93  E-value: 7.39e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:smart00360   4 VGNLPPDTTEEELRELFSKFGKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
136-204 6.44e-14

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 66.87  E-value: 6.44e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSErTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLY 204
Cdd:pfam00076   3 VGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDE-TGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
58-199 2.15e-13

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 72.28  E-value: 2.15e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  58 RRKILIRGLPGDVTNQEVHDLLSDY-ELKYCFV--DKYKGTA----FVTLLNGEQAEAAINAFHQSRLRERELSVQL-QP 129
Cdd:TIGR01661   3 KTNLIVNYLPQTMTQEEIRSLFTSIgEIESCKLvrDKVTGQSlgygFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYaRP 82
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 130 T-----DALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:TIGR01661  83 SsdsikGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNVTGLSKGVGFIRFDKRDEADRAIKTLNGtTPSG 158
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
134-205 2.22e-12

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 62.99  E-value: 2.22e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12413     2 LFVRNLPYDTTDEQLEELFSDVGPVKRCFVVKDKGKDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKV 73
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
61-468 2.29e-12

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 70.22  E-value: 2.29e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-ELKYCFV-----DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL------- 127
Cdd:TIGR01628  91 IFVKNLDKSVDNKALFDTFSKFgNILSCKVatdenGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVGRfikkher 170
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 128 --QPTDAL--LCVANLPPSLTQQQFEELVRPFGSLERCfLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLG---- 199
Cdd:TIGR01628 171 eaAPLKKFtnLYVKNLDPSVNEDKLRELFAKFGEITSA-AVMKDGSGRSRGFAFVNFEKHEDAAKAVEEMNGKKIGlake 249
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 200 PRTLYVHWTDAGQLTPALL-------------HSRC--LCVDRLPPGFNDVDaLCRALSAVHSPTFCQLACGQDGQLKGF 264
Cdd:TIGR01628 250 GKKLYVGRAQKRAEREAELrrkfeelqqerkmKAQGvnLYVKNLDDTVTDEK-LRELFSECGEITSAKVMLDEKGVSRGF 328
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 265 AVLEYETAEMAEEAQQQADGLSLGG---------------SHLRVSFCAPGPPGRSMlaaliaaqatalnrgkgllpepn 329
Cdd:TIGR01628 329 GFVCFSNPEEANRAVTEMHGRMLGGkplyvalaqrkeqrrAHLQDQFMQLQPRMRQL----------------------- 385
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 330 ilQLLNNLGPSASLQLLLNPLLHGSAGGKQglLGAPPAMPLL-----NGPALSTALLQLALQTQgqkkPGILGDSPLGAL 404
Cdd:TIGR01628 386 --PMGSPMGGAMGQPPYYGQGPQQQFNGQP--LGWPRMSMMPtpmgpGGPLRPNGLAPMNAVRA----PSRNAQNAAQKP 457
                         410       420       430       440       450       460
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 405 QPGAQPANPLLGELPAGGGLP-PELPPRRGKPPPLLPSVLG--PAGGDREALG--LGPPAAQLTPPPAP 468
Cdd:TIGR01628 458 PMQPVMYPPNYQSLPLSQDLPqPQSTASQGGQNKKLAQVLAsaTPQMQKQVLGerLFPLVEAIEPALAA 526
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
134-205 2.70e-12

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 62.81  E-value: 2.70e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:COG0724     4 IYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
94-289 8.11e-12

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 68.29  E-value: 8.11e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  94 GTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQPTDALL--------CVANLPPSLTQQQFEELVRPFGSLERCFLVY 165
Cdd:TIGR01628  43 GYGYVNFQNPADAERALETMNFKRLGGKPIRIMWSQRDPSLrrsgvgniFVKNLDKSVDNKALFDTFSKFGNILSCKVAT 122
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 166 SErTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV-----HWTDAGQLTPALLHsrcLCVDRLPPGFNDvDALCR 240
Cdd:TIGR01628 123 DE-NGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVgrfikKHEREAAPLKKFTN---LYVKNLDPSVNE-DKLRE 197
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*....
gi 1482178903 241 ALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGG 289
Cdd:TIGR01628 198 LFAKFGEITSAAVMKDGSGRSRGFAFVNFEKHEDAAKAVEEMNGKKIGL 246
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
136-205 1.10e-11

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 60.74  E-value: 1.10e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12231     5 IGGLPNYLNEDQVKELLQSFGKLKAFNLVKDSATGLSKGYAFCEYVDDNVTDQAIAGLNGMQLGDKKLLV 74
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
134-210 4.51e-11

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 59.40  E-value: 4.51e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTDA 210
Cdd:cd12674     3 LFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDPETKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAKP 79
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
132-294 4.96e-11

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 65.98  E-value: 4.96e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 132 ALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTdag 211
Cdd:TIGR01628   1 ASLYVGDLDPDVTEAKLYDLFKPFGPVLSVRVCRDSVTRRSLGYGYVNFQNPADAERALETMNFKRLGGKPIRIMWS--- 77
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 212 QLTPALLHSRC--LCVDRLPPgfnDVD--ALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSL 287
Cdd:TIGR01628  78 QRDPSLRRSGVgnIFVKNLDK---SVDnkALFDTFSKFGNILSCKVATDENGKSRGYGFVHFEKEESAKAAIQKVNGMLL 154

                  ....*..
gi 1482178903 288 GGSHLRV 294
Cdd:TIGR01628 155 NDKEVYV 161
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
136-205 6.54e-11

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 58.72  E-value: 6.54e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd21608     4 VGNLSWDTTEDDLRDLFSEFGEVESAKVITDRETGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVV 73
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
134-205 1.40e-10

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 57.80  E-value: 1.40e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12375     2 LIVNYLPQSMTQEELRSLFGAIGPIESCKLVRDKITGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRLKV 73
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
134-205 2.03e-10

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 57.41  E-value: 2.03e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12650     3 LIVNYLPQNMTQDEIRSLFSSIGEIESCKLIRDKVTGQSLGYGFVNYVDPSDAEKAINTLNGLRLQNKTIKV 74
RRM smart00360
RNA recognition motif;
60-125 2.24e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 57.22  E-value: 2.24e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903   60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFV------DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFgKVESVRLvrdketGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
136-207 3.32e-10

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 56.63  E-value: 3.32e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12353     4 VGDLSPEIETEDLKEAFAPFGEISDARVVKDTQTGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
136-205 4.46e-10

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 56.41  E-value: 4.46e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSErTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12380     6 VKNFGEDVDDDELKELFEKYGKITSAKVMKDD-SGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKLYV 74
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
136-208 5.05e-10

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 55.99  E-value: 5.05e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWT 208
Cdd:cd12398     5 VGNIPYDATEEQLKEIFSEVGPVVSFRLVTDRETGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDFA 77
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
61-126 7.30e-10

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 55.75  E-value: 7.30e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-ELKYCFV-----DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQ 126
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFgEVVSVRIvrdrdGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
136-189 1.14e-09

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 55.21  E-value: 1.14e-09
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12408     4 VTNLSEDATEEDLRELFRPFGPISRVYLAKDKETGQSKGFAFVTFETREDAERA 57
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
134-207 1.26e-09

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 55.11  E-value: 1.26e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12770     4 LIVNYLPQNMTQEEFRSLFGSIGEIESCKLVRDKITGQSLGYGFVNYIDPKDAEKAINTLNGLRLQTKTIKVSY 77
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
134-207 2.03e-09

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 54.74  E-value: 2.03e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12772     7 LIVNYLPQNMTQEEFKSLFGSIGDIESCKLVRDKITGQSLGYGFVNYVDPNDADKAINTLNGLKLQTKTIKVSY 80
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
136-205 2.22e-09

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 54.83  E-value: 2.22e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12671    11 VGNIPYEATEEQLKDIFSEVGPVVSFRLVYDRETGKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRV 80
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
134-205 2.26e-09

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 54.35  E-value: 2.26e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12566     5 LFLRNLPYSTKEDDLQKLFSKFGEVSEVHVPIDKKTKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLIHI 76
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
60-125 2.33e-09

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 54.33  E-value: 2.33e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFV--DKY----KGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYgEVTSVKLitDREtgrsRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
223-295 3.49e-09

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 53.83  E-value: 3.49e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 223 LCVDRLPPGFNDvDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVS 295
Cdd:cd00590     1 LFVGNLPPDTTE-EDLRELFSKFGEVVSVRIVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
134-209 4.69e-09

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 53.40  E-value: 4.69e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV-HWTD 209
Cdd:cd12284     1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPETGRSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKVgHVTE 77
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
134-207 5.04e-09

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 53.91  E-value: 5.04e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSL--TQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd21622     6 LFVKNLDDTVitNKEDLEQLFSPFGQIVSSYLATYPGTGISKGFGFVAFSKPEDAAKAKETLNGVMVGRKRIFVSY 81
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
134-205 5.60e-09

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 53.07  E-value: 5.60e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLvysertGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12332     4 LFVGNLPNDITEEEFKELFQKYGEVSEVFL------NKGKGFGFIRLDTRANAEAAKAELDGTPRKGRQLRV 69
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
134-207 5.79e-09

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 53.58  E-value: 5.79e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12771     7 LIVNYLPQNMTQEELKSLFGSIGEIESCKLVRDKITGQSLGYGFVNYIEPKDAEKAINTLNGLRLQTKTIKVSY 80
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
134-205 8.34e-09

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 52.73  E-value: 8.34e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12316     2 LFVRNLPFTATEDELRELFEAFGKISEVHIPLDKQTKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGRLLHV 73
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
134-205 1.50e-08

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 52.14  E-value: 1.50e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRV 72
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
134-202 1.63e-08

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 51.85  E-value: 1.63e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPL-GPRT 202
Cdd:cd12363     4 LGVFGLSLYTTERDLREVFSRYGPIEKVQVVYDQQTGRSRGFGFVYFESVEDAKEAKERLNGQEIdGRRI 73
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
50-205 1.75e-08

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 57.51  E-value: 1.75e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  50 HTERQFRNRRK---ILIRGLPGDVTNQEVHDLLSDY----ELKYCFVD--KYKGTAFVtllNGEQAEAAINAF------- 113
Cdd:TIGR01628 167 KHEREAAPLKKftnLYVKNLDPSVNEDKLRELFAKFgeitSAAVMKDGsgRSRGFAFV---NFEKHEDAAKAVeemngkk 243
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 114 --------------HQSRL-RERELSVQLQPTD---------ALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSErT 169
Cdd:TIGR01628 244 iglakegkklyvgrAQKRAeREAELRRKFEELQqerkmkaqgVNLYVKNLDDTVTDEKLRELFSECGEITSAKVMLDE-K 322
                         170       180       190
                  ....*....|....*....|....*....|....*.
gi 1482178903 170 GQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:TIGR01628 323 GVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYV 358
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
134-205 1.86e-08

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 56.87  E-value: 1.86e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKV 77
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
132-199 1.88e-08

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 51.94  E-value: 1.88e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 132 ALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGK-PLG 199
Cdd:cd12652     1 ANLYVSGLPKTMTQKELEQLFSQFGRIITSRILCDNVTGLSRGVGFIRFDKRVEAERAIKALNGTiPPG 69
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
134-205 2.37e-08

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 51.63  E-value: 2.37e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12649     3 LIVNYLPQDLTDREFRALFRAIGPVNTCKIVRDKKTGYSYGFGFVDFTSEEDAQRAIKTLNGLQLQNKRLKV 74
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
134-191 4.01e-08

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 50.77  E-value: 4.01e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSErTGQSKGYGFAEYMKKDSAARAKS 191
Cdd:cd12564     3 LIVKNLPSSITEDRLRKLFSAFGTITDVQLKYTK-DGKFRRFGFVGFKSEEEAQKALK 59
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
134-205 4.06e-08

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 50.48  E-value: 4.06e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVysertgQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12340     2 LFVRPFPPDTSESAIREIFSPYGPVKEVKML------SDSNFAFVEFEELEDAIRAKDSVHGRVLNNEPLYV 67
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
20-221 4.18e-08

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 56.47  E-value: 4.18e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  20 EVEAGDAAERRAPEEELPPLDPEEirkrlehTERQfRNRRKILIRGLPGDVTNQEVHDLLSDY----ELKyCFVD----K 91
Cdd:TIGR01622  84 RRRRDDRRSRREKPRARDGTPEPL-------TEDE-RDRRTVFVQQLAARARERDLYEFFSKVgkvrDVQ-IIKDrnsrR 154
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  92 YKGTAFVTLLNGEQAEAAINAFHQsRLRERELSVQL---------------------QPTDALLCVANLPPSLTQQQFEE 150
Cdd:TIGR01622 155 SKGVGYVEFYDVDSVQAALALTGQ-KLLGIPVIVQLseaeknraaraatetsghhpnSIPFHRLYVGNLHFNITEQDLRQ 233
                         170       180       190       200       210       220       230
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 151 LVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV-HWTDAGQLTPALLHSR 221
Cdd:TIGR01622 234 IFEPFGEIEFVQLQKDPETGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKVgLGNDFTPESDANLAQR 305
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
112-462 7.88e-08

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 55.46  E-value: 7.88e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 112 AFHQSRLRERELSVQLQPTDALLC---VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAAR 188
Cdd:TIGR01645  85 AHQQQQLENQQRQQQRQQALAIMCrvyVGSISFELREDTIRRAFDPFGPIKSINMSWDPATGKHKGFAFVEYEVPEAAQL 164
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 189 AKSDLLGKPLGPRTLYVHW-TDAGQLTP--------ALLHSRcLCVDRLPPGFNDVDaLCRALSAVHSPTFCQLACGQDG 259
Cdd:TIGR01645 165 ALEQMNGQMLGGRNIKVGRpSNMPQAQPiidmvqeeAKKFNR-IYVASVHPDLSETD-IKSVFEAFGEIVKCQLARAPTG 242
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 260 QL-KGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCAPGPpgrsmlaaliaaqatalnrgKGLLPEPNILQLLNNLG 338
Cdd:TIGR01645 243 RGhKGYGFIEYNNLQSQSEAIASMNLFDLGGQYLRVGKCVTPP--------------------DALLQPATVSAIPAAAA 302
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 339 PSASLQLLLNPLLHGSAGGKQ-GLLGAPPAMPL------LNGPALSTALLQLA--LQTQGQKKPGILGDSPLGALQPGAQ 409
Cdd:TIGR01645 303 VAAAAATAKIMAAEAVAGAAVlGPRAQSPATPSsslptdIGNKAVVSSAKKEAeeVPPLPQAAPAVVKPGPMEIPTPVPP 382
                         330       340       350       360       370
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 410 PANPLLGELPAGGGLPPELPprrgkPPPLLPSVLGPAGGDREALGLGPPAAQL 462
Cdd:TIGR01645 383 PGLAIPSLVAPPGLVAPTEI-----NPSFLASPRKKMKREKLPVTFGALDDTL 430
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
134-205 1.49e-07

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 54.51  E-value: 1.49e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:TIGR01642 298 IYIGNLPLYLGEDQIKELLESFGDLKAFNLIKDIATGLSKGYAFCEYKDPSVTDVAIAALNGKDTGDNKLHV 369
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
60-127 1.51e-07

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 49.13  E-value: 1.51e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFV------DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL 127
Cdd:cd12413     1 TLFVRNLPYDTTDEQLEELFSDVgPVKRCFVvkdkgkDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKVEL 75
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
134-208 2.31e-07

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 48.57  E-value: 2.31e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWT 208
Cdd:cd21609     2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKVNIT 76
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
136-205 2.58e-07

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 48.68  E-value: 2.58e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFL--VYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd21619     6 VGNIDMTINEDALEKIFSRYGQVESVRRppIHTDKADRTTGFGFIKYTDAESAERAMQQADGILLGRRRLVV 77
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
136-207 3.32e-07

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 48.46  E-value: 3.32e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12618     7 VGDLSPEITTEDIKAAFAPFGRISDARVVKDMATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 78
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
134-207 3.90e-07

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 48.06  E-value: 3.90e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERC-FLVYSE--RTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12355     2 LWIGNLDPRLTEYHLLKLLSKYGKIKKFdFLFHKTgpLKGQPRGYCFVTFETKEEAEKAIECLNGKLALGKKLVVRW 78
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
134-205 3.92e-07

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 48.04  E-value: 3.92e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCfLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12381     4 LYVKNLDDTIDDEKLREEFSPFGTITSA-KVMTDEGGRSKGFGFVCFSSPEEATKAVTEMNGRIIGGKPLYV 74
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
136-207 5.42e-07

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 47.28  E-value: 5.42e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCflvyseRTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12354     5 VGNITKGLTEALLQQTFSPFGQILEV------RVFPDKGYAFIRFDSHEAATHAIVSVNGTIINGQAVKCSW 70
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
136-207 7.14e-07

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 47.29  E-value: 7.14e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12617     6 VGDLSPEITTEDIKSAFAPFGKISDARVVKDMATGKSKGYGFVSFYNKLDAENAIVHMGGQWLGGRQIRTNW 77
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
142-202 8.65e-07

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 47.31  E-value: 8.65e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 142 SLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRT 202
Cdd:cd12366    13 SVTEDDLREAFSPFGEIQDIWVVKDKQTKESKGIAYVKFAKSSQAARAMEEMHGKCLGDDT 73
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
61-193 8.68e-07

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 51.56  E-value: 8.68e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  61 ILIRGLPGDVTNQEVHDL------------LSDYELKYCFvdkykGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL- 127
Cdd:TIGR01659 110 LIVNYLPQDMTDRELYALfrtigpintcriMRDYKTGYSF-----GYAFVDFGSEADSQRAIKNLNGITVRNKRLKVSYa 184
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 128 -----QPTDALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDL 193
Cdd:TIGR01659 185 rpggeSIKDTNLYVTNLPRTITDDQLDTIFGKYGQIVQKNILRDKLTGTPRGVAFVRFNKREEAQEAISAL 255
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
134-199 1.06e-06

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 46.85  E-value: 1.06e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:cd12376     3 LYVSGLPKTMTQKELEQLFSQYGRIITSRILRDQLTGVSRGVGFIRFDKRIEAEEAIKGLNGqKPEG 69
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
136-198 1.66e-06

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 46.12  E-value: 1.66e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKS-----DLLGKPL 198
Cdd:cd12371     5 VASVHPDLSEDDIKSVFEAFGKIKSCSLAPDPETGKHKGYGFIEYENPQSAQDAIAsmnlfDLGGQYL 72
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
134-207 1.92e-06

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 46.18  E-value: 1.92e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12769     5 LIVNYLPQNMTQDELRSLFSSIGEVESAKLIRDKVAGHSLGYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSY 78
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
61-123 2.47e-06

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 45.69  E-value: 2.47e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-ELKYCFV-----DKYKGTAFVTLLNGEQAEAAINAFHQSRLREREL 123
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFgPIKSIRLvrdetGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
131-199 2.70e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 45.76  E-value: 2.70e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 131 DALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:cd12776     1 DANLYVSGLPKTMSQKEMEQLFSQYGRIITSRILVDQVTGVSRGVGFIRFDKRIEAEEAIKGLNGqKPLG 70
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
136-206 3.16e-06

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 45.63  E-value: 3.16e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVH 206
Cdd:cd12552     4 VSHLPHGFHEKELKKYFAQFGDLKNVRLARSKKTGNSKHYGFLEFVNPEDAMIAQKSMNNYLLMGKLLQVR 74
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
136-205 5.17e-06

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 44.87  E-value: 5.17e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCfLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12379     7 IKNLDKSIDNKALYDTFSAFGNILSC-KVATDENGGSKGYGFVHFETEEAAERAIEKVNGMLLNGKKVFV 75
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
136-207 6.17e-06

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 44.79  E-value: 6.17e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12619     6 VGDLSPEVTDAALFNAFSDFPSCSDARVMWDQKTGRSRGYGFVSFRSQQDAQNAINSMNGKWLGSRPIRCNW 77
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
134-196 6.45e-06

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 44.54  E-value: 6.45e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGK 196
Cdd:cd12361     2 LFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQTGQSKGCAFVTFSTREEALRAIEALHNK 64
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
136-189 7.19e-06

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 44.51  E-value: 7.19e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12415     5 IRNLSFDTTEEDLKEFFSKFGEVKYARIVLDKDTGHSKGTAFVQFKTKESADKC 58
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
122-205 7.24e-06

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 45.77  E-value: 7.24e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 122 ELSVQLQPTDAL--LCVANLPPSLT----QQQFEElvrpFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSD--- 192
Cdd:cd21615     7 EEDPHIADGDPYktLFVGRLDYSLTelelQKKFSK----FGEIEKIRIVRDKETGKSRGYAFIVFKSESDAKNAFKEgng 82
                          90
                  ....*....|...
gi 1482178903 193 LLGKPLGPRTLYV 205
Cdd:cd21615    83 LRGLKINDRTCIV 95
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
134-189 7.51e-06

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 44.32  E-value: 7.51e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDRETGQPKGFGYVDFSTIDSAEAA 56
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
136-197 8.36e-06

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 44.24  E-value: 8.36e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKS----DLLGKP 197
Cdd:cd12330     4 VGGLAPDVTEEEFKEYFEQFGTVVDAVVMLDHDTGRSRGFGFVTFDSESAVEKVLSkgfhELGGKK 69
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
134-205 9.24e-06

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 44.53  E-value: 9.24e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12236     4 LFVARLSYDTTESKLRREFEKYGPIKRVRLVRDKKTGKSRGYAFIEFEHERDMKAAYKHADGKKIDGRRVLV 75
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
131-195 1.13e-05

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 44.11  E-value: 1.13e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903 131 DALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG 195
Cdd:cd12651     2 DTNLYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDKLTGRPRGVAFVRYDKREEAQAAISALNG 66
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
134-192 1.27e-05

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 44.24  E-value: 1.27e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSD 192
Cdd:cd12237     7 LFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVRDIVTGFSKRYAFIEYKEERDALHAYRD 65
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
134-208 1.55e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 43.38  E-value: 1.55e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVySERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWT 208
Cdd:cd12320     3 LIVKNVPFEATRKEIRELFSPFGQLKSVRLP-KKFDGSHRGFAFVEFVTKQEAQNAMEALKSTHLYGRHLVLEYA 76
RRM_PPIL4 cd12235
RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and ...
129-189 1.62e-05

RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins; This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus.


Pssm-ID: 409681 [Multi-domain]  Cd Length: 83  Bit Score: 43.41  E-value: 1.62e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 129 PTDALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12235     1 PPENVLFVCKLNPVTTDEDLEIIFSRFGKIKSCEVIRDKKTGDSLQYAFIEFETKESCEEA 61
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
139-189 1.73e-05

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 43.07  E-value: 1.73e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 139 LPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12243     8 LPPNTTDEDLLLLCQSFGKIISTKAIIDKQTNKCKGYGFVDFDSPEAALKA 58
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
131-199 1.73e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 43.56  E-value: 1.73e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 131 DALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:cd12774     5 DANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDQVTGVSRGVGFIRFDKRIEAEEAIKGLNGqKPSG 74
RRM2_MSSP cd12244
RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) ...
134-202 2.01e-05

RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409690 [Multi-domain]  Cd Length: 82  Bit Score: 43.13  E-value: 2.01e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSlercflVYSER-----TGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRT 202
Cdd:cd12244     3 LYISNLPLDMDEQDLENMLKPFGQ------VISTRilrdsKGQSRGVGFARMESREKCEDVISKFNGKVLKTPS 70
RRM2_RBM45 cd12367
RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
140-189 2.23e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM2 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409802 [Multi-domain]  Cd Length: 74  Bit Score: 43.13  E-value: 2.23e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1482178903 140 PPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12367     9 PKSYTEEDLREKFKEFGDIEYCSIVKDKNTGESKGFGYVKFLKPSQAALA 58
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
258-291 2.30e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 43.34  E-value: 2.30e-05
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1482178903 258 DGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSH 291
Cdd:cd12278    46 TGKTKGFAFVEYATPEEAKKAVKALNGYKLDKKH 79
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
134-206 2.57e-05

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 42.77  E-value: 2.57e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTgqSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVH 206
Cdd:cd12407     3 LHVSNIPFRFRDPDLRQMFGQFGTILDVEIIFNERG--SKGFGFVTFANSADADRAREKLNGTVVEGRKIEVN 73
RRM3_HuC cd12655
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen C (HuC); This subgroup ...
136-212 2.62e-05

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM3 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410057 [Multi-domain]  Cd Length: 85  Bit Score: 43.12  E-value: 2.62e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTDAGQ 212
Cdd:cd12655     6 VYNLSPEADESVLWQLFGPFGAVTNVKVIRDFTTNKCKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSFKTSKQ 82
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
136-203 2.87e-05

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 42.65  E-value: 2.87e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTL 203
Cdd:cd12393     6 VSNLPFSLTNNDLHQIFSKYGKVVKVTILKDKETRKSKGVAFVLFLDRESAHNAVRAMNNKELFGRTL 73
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
58-125 2.87e-05

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 42.67  E-value: 2.87e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903  58 RRKILIRGLPGDVTNQEVHDLLSDY-ELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd12332     1 RCRLFVGNLPNDITEEEFKELFQKYgEVSEVFLNKGKGFGFIRLDTRANAEAAKAELDGTPRKGRQLRV 69
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
136-198 2.89e-05

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 42.57  E-value: 2.89e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYsERTGQSKGYGFAEYMKKDSAARAKSDLLGKPL 198
Cdd:cd12418     5 VSNLHPDVTEEDLRELFGRVGPVKSVKINY-DRSGRSTGTAYVVFERPEDAEKAIKQFDGVLL 66
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
131-199 3.45e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 42.78  E-value: 3.45e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 131 DALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:cd12775     5 DANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDQVTGVSRGVGFIRFDKRIEAEEAIKGLNGqKPPG 74
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
251-297 4.01e-05

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 42.27  E-value: 4.01e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 1482178903 251 CQLACG-QDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFC 297
Cdd:cd12371    30 CSLAPDpETGKHKGYGFIEYENPQSAQDAIASMNLFDLGGQYLRVGRA 77
PHA03247 PHA03247
large tegument protein UL36; Provisional
364-612 4.15e-05

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 47.24  E-value: 4.15e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  364 APPAMPLLNGPALSTAL-LQLALQTQGQKKPGILGD-----SPLGALQPGAqPANPLLGELPAGGGLP-PELPPRRGKPP 436
Cdd:PHA03247  2703 PPPPTPEPAPHALVSATpLPPGPAAARQASPALPAApappaVPAGPATPGG-PARPARPPTTAGPPAPaPPAAPAAGPPR 2781
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  437 PLLPSVLGPAGGDREALGLGPPAAqltPPPAPVGLRGSGLRGLQKDSGPLPTPPgvSLLGEPPKDYRIPLNPYlnlhslL 516
Cdd:PHA03247  2782 RLTRPAVASLSESRESLPSPWDPA---DPPAAVLAPAAALPPAASPAGPLPPPT--SAQPTAPPPPPGPPPPS------L 2850
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  517 PASNLAAPGGGSSSSKAFQlkSRLLSPLSSARLP----PEPGLSDS-YSFDYPSDMGPRrlfshPREPALGPHGPSRHKM 591
Cdd:PHA03247  2851 PLGGSVAPGGDVRRRPPSR--SPAAKPAAPARPPvrrlARPAVSRStESFALPPDQPER-----PPQPQAPPPPQPQPQP 2923
                          250       260
                   ....*....|....*....|.
gi 1482178903  592 SPPPSGFGERSSGGSGGGPLS 612
Cdd:PHA03247  2924 PPPPQPQPPPPPPPRPQPPLA 2944
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
60-126 4.77e-05

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 42.11  E-value: 4.77e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFVDK-----YKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQ 126
Cdd:cd12570     2 KILVKNLPFEATKKDVRTLFSSYgQLKSVRVPKkfdqsARGFAFVEFSTAKEALNAMNALKDTHLLGRRLVLQ 74
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
61-125 5.11e-05

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 41.78  E-value: 5.11e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-------ELKYCFVDKYKGTAFVTLLNGEQAEAAInAFHQSRLRERELSV 125
Cdd:cd12254     2 VRLRGLPFSATEEDIRDFFSGLdippdgiHIVYDDDGRPTGEAYVEFASEEDAQRAL-RRHKGKMGGRYIEV 72
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
134-205 6.17e-05

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 41.93  E-value: 6.17e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVySERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12392     5 LFVKGLPFSCTKEELEELFKQHGTVKDVRLV-TYRNGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTISV 75
RRM3_PES4_MIP6 cd21603
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
61-125 6.53e-05

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410182 [Multi-domain]  Cd Length: 73  Bit Score: 41.50  E-value: 6.53e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-ELKYCF---VDKYKGT-AFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd21603     3 IFVKNLPLDTNNDEILDFFSKVgPIKSVFtspKYKYNSLwAFVTYKKGSDTEKAIKLLNGTLFKGRTIEV 72
RRM_SLIRP cd12242
RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and ...
136-177 7.09e-05

RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins; This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities.


Pssm-ID: 409688 [Multi-domain]  Cd Length: 73  Bit Score: 41.57  E-value: 7.09e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGF 177
Cdd:cd12242     4 VSNLPWTTGSSELKEYFSQFGKVKRCNLPFDKETGFHKGFGF 45
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
60-127 7.12e-05

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 41.41  E-value: 7.12e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSD-YELKYCFVD-----KYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL 127
Cdd:cd12418     2 RVRVSNLHPDVTEEDLRELFGRvGPVKSVKINydrsgRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVEL 75
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
134-207 7.29e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 41.38  E-value: 7.29e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVySERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12414     2 LIVRNLPFKCTEDDLKKLFSKFGKVLEVTIP-KKPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKGRPVAVDW 74
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
134-191 7.96e-05

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 41.24  E-value: 7.96e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKS 191
Cdd:cd12321     2 LIVLGLPWKTTEQDLKEYFSTFGEVLMVQVKKDPKTGRSKGFGFVRFASYETQVKVLS 59
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
136-207 8.11e-05

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 41.83  E-value: 8.11e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12324    11 VTGVHEEAQEEDIHDKFAEFGEIKNLHLNLDRRTGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDW 82
RRM1_RBMS3 cd12472
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, ...
126-193 8.26e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3); This subgroup corresponds to the RRM1 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines.


Pssm-ID: 409902 [Multi-domain]  Cd Length: 80  Bit Score: 41.72  E-value: 8.26e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 126 QLQPTDalLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDL 193
Cdd:cd12472     1 QLSKTN--LYIRGLPPGTTDQDLIKLCQPYGKIVSTKAILDKNTNQCKGYGFVDFDSPAAAQKAVASL 66
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
136-192 9.25e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 41.21  E-value: 9.25e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSD 192
Cdd:cd12384     5 VGGLPYHTTDDSLREYFEQFGEIEEAVVITDRQTGKSRGYGFVTMADREAAERACKD 61
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
259-294 9.65e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 41.36  E-value: 9.65e-05
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1482178903 259 GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRV 294
Cdd:cd21619    42 DRTTGFGFIKYTDAESAERAMQQADGILLGRRRLVV 77
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
136-199 1.06e-04

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 41.25  E-value: 1.06e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903 136 VANLPPSLTQQQFEEL-VRPFGSLERCFLVYSERtGQSKGYGFAEYMKKDSAARAKSDLLGKPLG 199
Cdd:cd12267     5 VSNLPKDVTEAQIREYfVSQIGPIKRVLLSYNEG-GKSTGIANITFKRAGDATKAYDKFNGRLDD 68
RRM smart00360
RNA recognition motif;
222-294 1.06e-04

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 41.04  E-value: 1.06e-04
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903  222 CLCVDRLPPGFNDvDALCRALSAVHSPTFCQLACGQD-GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRV 294
Cdd:smart00360   1 TLFVGNLPPDTTE-EELRELFSKFGKVESVRLVRDKEtGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM2_PSF cd12590
RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
134-189 1.28e-04

RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM2 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. It promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). Moreover, PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410003 [Multi-domain]  Cd Length: 80  Bit Score: 41.15  E-value: 1.28e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERtGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12590     2 LSVRNLSPYVSNELLEEAFSQFGPIERAVVIVDDR-GRSTGKGIVEFASKPAARKA 56
RRM3_HuD cd12656
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup ...
136-207 1.31e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM3 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells. And it also regulates the neurite elongation and morphological differentiation. HuD specifically bound poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241100 [Multi-domain]  Cd Length: 86  Bit Score: 41.23  E-value: 1.31e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12656     8 VYNLSPDSDESVLWQLFGPFGAVNNVKVIRDFNTNKCKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSF 79
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
134-205 1.65e-04

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 40.46  E-value: 1.65e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKsDLLGKPLGPRTLYV 205
Cdd:cd12450     2 LFVGNLSWSATQDDLENFFSDCGEVVDVRIAMDRDDGRSKGFGHVEFASAESAQKAL-EKSGQDLGGREIRL 72
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
136-198 1.70e-04

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 40.67  E-value: 1.70e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVySERTGQSKGYGFAEYMKKDSAARAKSD-----LLGKPL 198
Cdd:cd12412     7 VGGIDWDTTEEELREFFSKFGKVKDVKII-KDRAGVSKGYGFVTFETQEDAEKIQKWganlvFKGKKL 73
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
136-205 2.34e-04

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 40.00  E-value: 2.34e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12377     4 VYNLAPDADESLLWQLFGPFGAVQNVKIIRDFTTNKCKGYGFVTMTNYDEAAVAIASLNGYRLGGRVLQV 73
RRM3_hnRNPR cd12494
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
133-199 2.55e-04

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains.


Pssm-ID: 409917 [Multi-domain]  Cd Length: 72  Bit Score: 40.01  E-value: 2.55e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERcflvyserTGQSKGYGFAEYMKKDSAARAKSDLLGKPLG 199
Cdd:cd12494     3 VLFVRNLATTVTEEILEKTFSQFGKLER--------VKKLKDYAFVHFEDRDAAVKAMDEMNGKEVE 61
RRM3_HuB cd12654
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup ...
136-207 2.63e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM3 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241098 [Multi-domain]  Cd Length: 86  Bit Score: 40.46  E-value: 2.63e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12654     8 VYNLAPDADESILWQMFGPFGAVTNVKVIRDFNTNKCKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSF 79
RRM2_p54nrb_like cd12333
RNA recognition motif 2 (RRM2) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
134-189 2.75e-04

RNA recognition motif 2 (RRM2) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM2 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. The family also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409770 [Multi-domain]  Cd Length: 80  Bit Score: 39.99  E-value: 2.75e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERtGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12333     2 LRVKNLSPYVSNELLEQAFSQFGDVERAVVIVDDR-GRSTGEGIVEFSRKPGAQAA 56
RRM_RBM42 cd12383
RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This ...
129-201 2.89e-04

RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409817 [Multi-domain]  Cd Length: 83  Bit Score: 39.96  E-value: 2.89e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 129 PTDALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPR 201
Cdd:cd12383     4 PNDFRIFCGDLGNEVTDEVLARAFSKYPSFQKAKVIRDKRTGKSKGYGFVSFKDPNDYLKALREMNGKYVGNR 76
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
134-196 3.10e-04

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 40.09  E-value: 3.10e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGK 196
Cdd:cd12632     8 LFIGQIPRNLEEKDLRPLFEQFGKIYELTVLKDKYTGMHKGCAFLTYCARESALKAQSALHEQ 70
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
220-297 3.10e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 39.60  E-value: 3.10e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 220 SRcLCVDRLPPGFNDvDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFC 297
Cdd:cd12564     1 SR-LIVKNLPSSITE-DRLRKLFSAFGTITDVQLKYTKDGKFRRFGFVGFKSEEEAQKALKHFNNSFIDTSRITVEEC 76
PHA03247 PHA03247
large tegument protein UL36; Provisional
352-595 3.37e-04

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 44.16  E-value: 3.37e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  352 HGSAGGKQGLLGAPPAMPLLNGPALSTAllQLALQTQGQKKPGILGDSPLGALQPGAQPAnplLGELPAGGGLPPELPPR 431
Cdd:PHA03247  2634 AANEPDPHPPPTVPPPERPRDDPAPGRV--SRPRRARRLGRAAQASSPPQRPRRRAARPT---VGSLTSLADPPPPPPTP 2708
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  432 RGKPPPLLPSVLGPAGGDREALGLGPPAAQLTPPPAPVG--LRGSGLRGL--QKDSGPL-PTPPGVSLLGEPPKDYRIPL 506
Cdd:PHA03247  2709 EPAPHALVSATPLPPGPAAARQASPALPAAPAPPAVPAGpaTPGGPARPArpPTTAGPPaPAPPAAPAAGPPRRLTRPAV 2788
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  507 NPYLNLHSLLPASNLAAPG-----GGSSSSKAFQLKSRLLSPLSSAR-----LPPEPGLSDSYSFDYPSDMGPRRLFSHP 576
Cdd:PHA03247  2789 ASLSESRESLPSPWDPADPpaavlAPAAALPPAASPAGPLPPPTSAQptappPPPGPPPPSLPLGGSVAPGGDVRRRPPS 2868
                          250       260
                   ....*....|....*....|..
gi 1482178903  577 REPALGPHGPSR---HKMSPPP 595
Cdd:PHA03247  2869 RSPAAKPAAPARppvRRLARPA 2890
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
59-112 3.69e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 40.49  E-value: 3.69e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903  59 RKILIRGLPGDVTNQEVHDLLSDY-ELKYCFV------DKYKGTAFVTLLNGEQAEAAINA 112
Cdd:cd12676     2 RTLFVRNLPFDATEDELYSHFSQFgPLKYARVvkdpatGRSKGTAFVKFKNKEDADNCLSA 62
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
225-293 3.86e-04

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 39.14  E-value: 3.86e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 225 VDRLPPGFNDvDALCRALSAVHSPTFCQLACGQDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLR 293
Cdd:pfam00076   3 VGNLPPDTTE-EDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
134-205 4.05e-04

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 39.77  E-value: 4.05e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12449     3 LFVGGLSFDTNEQSLEEVFSKYGQISEVVVVKDRETQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIRV 74
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
60-126 4.23e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 39.13  E-value: 4.23e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSdyelKYCFV---DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQ 126
Cdd:cd12343     1 KIFVGNLPDAATSEELRALFE----KYGKVtecDIVKNYAFVHMEKEEDAEDAIKALNGYEFMGSRINVE 66
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
262-294 4.37e-04

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 39.32  E-value: 4.37e-04
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1482178903 262 KGFAVLEYETAEMAEEAQQQADGLSLGGSHLRV 294
Cdd:cd12370    42 KGFAFVEYEVPEAAQLALEQMNGVMLGGRNIKV 74
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
132-199 4.69e-04

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 39.51  E-value: 4.69e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903 132 ALLCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG-KPLG 199
Cdd:cd12773     1 ANLYISGLPRTMTQKDVEDMFSRFGRIINSRVLVDQATGLSRGVAFIRFDKRSEAEEAITNFNGhKPPG 69
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
134-205 5.33e-04

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 39.14  E-value: 5.33e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSlercflVYSER------TGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12362     1 LFVYHLPNEFTDQDLYQLFAPFGN------VVSAKvfvdknTGRSKGFGFVSYDNPLSAQAAIKAMNGFQVGGKRLKV 72
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
59-112 5.49e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 39.12  E-value: 5.49e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903  59 RKILIRGLPGDVTNQEVHDLLSDY-ELKYCFV------DKYKGTAFVTLLNGEQAEAAINA 112
Cdd:cd12415     1 KTVFIRNLSFDTTEEDLKEFFSKFgEVKYARIvldkdtGHSKGTAFVQFKTKESADKCIEA 61
RRM1_RBM40_like cd12238
RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
62-126 6.10e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions.


Pssm-ID: 409684 [Multi-domain]  Cd Length: 73  Bit Score: 38.77  E-value: 6.10e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903  62 LIRGLPGDVTNQEVHDLLSDY---ELKYCFVD-KYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQ 126
Cdd:cd12238     3 LVRHLPPELSEDDKEDLLKHFgatSVRVMKRRgKLKHTAFATFDNEQAASKALSRLHQLKILGKRLVVE 71
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
134-203 6.96e-04

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 38.75  E-value: 6.96e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYsERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTL 203
Cdd:cd12680     3 LLVSNLDFGVSDADIKELFAEFGTLKKAAVHY-DRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPM 71
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
259-302 7.25e-04

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 39.13  E-value: 7.25e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1482178903 259 GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCAPGPP 302
Cdd:cd12324    45 GFVKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDWAFVKGP 88
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
259-295 7.49e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 38.93  E-value: 7.49e-04
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1482178903 259 GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVS 295
Cdd:COG0724    40 GRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVN 76
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
60-125 7.81e-04

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 38.69  E-value: 7.81e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDY-ELKYCFV--DKY----KGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFgEVESAKVitDREtgrsRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVV 73
RRM3_RBM45 cd12368
RNA recognition motif 3 (RRM3) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
141-195 7.84e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM3 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409803 [Multi-domain]  Cd Length: 75  Bit Score: 38.43  E-value: 7.84e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903 141 PSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLG 195
Cdd:cd12368     9 KSVTQEQLHRLFDLIPGLEYCDLKRDPYTGKSKGFAYVTYNNPASAIYAKEKLNG 63
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
134-207 8.09e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 38.38  E-value: 8.09e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVysertgqsKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12251     4 LYVRNLMLSTTEEKLRELFSEYGKVERVKKI--------KDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSL 69
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
134-196 9.55e-04

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 38.52  E-value: 9.55e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGK 196
Cdd:cd12637     2 LFVGSLPKTATEQEVRDLFEAYGEVEEVYLMKDPVTQQGTGCAFVKFAYKEEALAAIRSLNGT 64
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
136-186 9.83e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 39.33  E-value: 9.83e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSA 186
Cdd:cd12676     6 VRNLPFDATEDELYSHFSQFGPLKYARVVKDPATGRSKGTAFVKFKNKEDA 56
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
58-127 9.88e-04

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 38.47  E-value: 9.88e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903  58 RRKILIRGLPGDVTNQEVHDLLSDY----ELKYCFV--DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL 127
Cdd:cd12392     2 KNKLFVKGLPFSCTKEELEELFKQHgtvkDVRLVTYrnGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTISVAI 77
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
263-296 1.00e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 38.38  E-value: 1.00e-03
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1482178903 263 GFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSF 296
Cdd:cd12373    37 GFAFVEFEDPRDAEDAVRALDGRRICGSRVRVEL 70
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
134-189 1.05e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 38.74  E-value: 1.05e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 134 LCVANLPPSLTQQQFEELVR---------PFGSLERCFLVYSE------RTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12416     3 LCVRNLPKSVDDKKLKKLFLkavkerakkKGVKIKEVKVMRDKkrlnsdGKGRSKGYGFVEFTEHEHALKA 73
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
134-203 1.13e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 38.19  E-value: 1.13e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTL 203
Cdd:cd12397     1 LFVGNLSFETTEEDLRKHFAPAGKIRKVRMATFEDSGKCKGFAFVDFKEIESATNAVKGPINHSLNGRDL 70
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
134-207 1.36e-03

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 37.77  E-value: 1.36e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSerTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12352     1 LYVGNLDRQVTEDLILQLFSQIGPCKSCKMITE--HGGNDPYCFVEFYEHNHAAAALQAMNGRKILGKEVKVNW 72
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
136-205 1.37e-03

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 38.02  E-value: 1.37e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903 136 VANLPPSLTQQQFEELVRP-FGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12345     6 VGDLAPDVTDYQLYETFSArYPSVRGAKVVMDPVTGRSKGYGFVRFGDESEQDRALTEMQGVYLGSRPIRV 76
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
136-210 1.38e-03

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 38.04  E-value: 1.38e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVY---SERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHWTDA 210
Cdd:cd12223     6 VGNLPPSVTEEVLLREFGRFGPLASVKIMWprtEEERRRNRNCGFVAFMSRADAERAMRELNGKDVMGYELKLGWGKA 83
PHA03247 PHA03247
large tegument protein UL36; Provisional
359-594 1.42e-03

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 42.23  E-value: 1.42e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  359 QGLLGAPPAMPLLNGPALSTALL-------QLALQTQGQKKPGILGDSPLGALQPGAQPANPLLGELPAGGGLPPEL--- 428
Cdd:PHA03247  2457 RTILGAPFSLSLLLGELFPGAPVyrrpaeaRFPFAAGAAPDPGGGGPPDPDAPPAPSRLAPAILPDEPVGEPVHPRMltw 2536
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  429 --------PPRRGKPPPLLPSVLGPAGGDREAlglgPPAAQLTPPPAPvglrGSGLRGLQKDSGPLPTPPGVSllGEPPK 500
Cdd:PHA03247  2537 irgleelaSDDAGDPPPPLPPAAPPAAPDRSV----PPPRPAPRPSEP----AVTSRARRPDAPPQSARPRAP--VDDRG 2606
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  501 DYRIPLNPylnlHSLLPASNLAAPGGGSSSSKAFQLKsrllSPLSSARLPPEPGLSDSysfdYPSDMGPRRLFSHPREPA 580
Cdd:PHA03247  2607 DPRGPAPP----SPLPPDTHAPDPPPPSPSPAANEPD----PHPPPTVPPPERPRDDP----APGRVSRPRRARRLGRAA 2674
                          250
                   ....*....|....*..
gi 1482178903  581 LG---PHGPSRHKMSPP 594
Cdd:PHA03247  2675 QAsspPQRPRRRAARPT 2691
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
61-126 1.48e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 37.78  E-value: 1.48e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDYELK----YCFVD---KYKGTAFVTLLNGEQAEAAINaFHQSRLRERELSVQ 126
Cdd:cd12514     2 IRITNLPYDATPVDIQRFFEDHGVRpedvHLLRNkkgRGNGEALVTFKSEGDAREVLK-LNGKKLGKREAVVE 73
RRM1_MSSP1 cd12470
RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
134-193 1.52e-03

RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM1 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409900 [Multi-domain]  Cd Length: 86  Bit Score: 38.23  E-value: 1.52e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDL 193
Cdd:cd12470    10 LYIRGLPPNTTDQDLVKLCQPYGKIVSTKAILDKTTNKCKGYGFVDFDSPAAAQKAVSAL 69
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
259-294 1.58e-03

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 37.92  E-value: 1.58e-03
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1482178903 259 GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRV 294
Cdd:cd21608    38 GRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVV 73
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
134-205 1.74e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 37.76  E-value: 1.74e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12567     5 LFVRNLPYTCTEEDLEKLFSKYGPLSEVHFPIDSLTKKPKGFAFVTYMIPEHAVKAYAELDGTVFQGRLLHL 76
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
91-205 1.89e-03

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 41.59  E-value: 1.89e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  91 KYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV-------QLQPT-DAL---------LCVANLPPSLTQQQFEELVR 153
Cdd:TIGR01645 147 KHKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIKVgrpsnmpQAQPIiDMVqeeakkfnrIYVASVHPDLSETDIKSVFE 226
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1482178903 154 PFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:TIGR01645 227 AFGEIVKCQLARAPTGRGHKGYGFIEYNNLQSQSEAIASMNLFDLGGQYLRV 278
RRM1_PSP1 cd12586
RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup ...
134-207 1.91e-03

RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup corresponds to the RRM1 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Its cellular function remains unknown currently, however, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 409999 [Multi-domain]  Cd Length: 71  Bit Score: 37.59  E-value: 1.91e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLvysertGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12586     4 LFVGNLPTDITEEDFKRLFERYGEPSEVFI------NRDRGFGFIRLESRTLAEIAKAELDGTILKSRPLRIRF 71
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
59-125 1.96e-03

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 37.83  E-value: 1.96e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903  59 RKILIRGLPGDVTNQEVHDLLSDY-ELKYCFV------DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd12674     1 TTLFVRNLPFDVTLESLTDFFSDIgPVKHAVVvtdpetKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKL 74
RRM2_PSP1 cd12589
RNA recognition motif 2 (RRM2) found in vertebrate paraspeckle protein 1 (PSP1 or PSPC1); This ...
134-189 1.97e-03

RNA recognition motif 2 (RRM2) found in vertebrate paraspeckle protein 1 (PSP1 or PSPC1); This subgroup corresponds to the RRM2 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Although its cellular function remains unknown currently, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410002 [Multi-domain]  Cd Length: 80  Bit Score: 37.67  E-value: 1.97e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERtGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12589     2 LTVKNLSPVVSNELLEQAFSQFGPVERAVVIVDDR-GRPTGKGFVEFAAKPPARKA 56
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
257-300 2.15e-03

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 37.68  E-value: 2.15e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1482178903 257 QDGQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSFCAPG 300
Cdd:cd12641    44 QSRRSRGFAFVYFENVDDAKEAKERANGMELDGRRIRVDFSITK 87
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
61-125 2.17e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 37.59  E-value: 2.17e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLSDY-ELKYC---------FVdkyKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd12324     9 IFVTGVHEEAQEEDIHDKFAEFgEIKNLhlnldrrtgFV---KGYALVEYETKKEAQAAIEGLNGKELLGQTISV 80
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
136-205 2.32e-03

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 40.69  E-value: 2.32e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:TIGR01661 274 VYNLSPDTDETVLWQLFGPFGAVQNVKIIRDLTTNQCKGYGFVSMTNYDEAAMAILSLNGYTLGNRVLQV 343
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
259-295 2.58e-03

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 37.22  E-value: 2.58e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1482178903 259 GQLKGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVS 295
Cdd:cd12284    37 GRSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKVG 73
PRK12323 PRK12323
DNA polymerase III subunit gamma/tau;
403-594 3.45e-03

DNA polymerase III subunit gamma/tau;


Pssm-ID: 237057 [Multi-domain]  Cd Length: 700  Bit Score: 40.63  E-value: 3.45e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 403 ALQPG-----AQPANPLLGelPAGGGLPPELPPRRGKPPPLLPSVLGPAGGDREALGLGPPAAQLTPPPAPVGL---RGS 474
Cdd:PRK12323  362 AFRPGqsgggAGPATAAAA--PVAQPAPAAAAPAAAAPAPAAPPAAPAAAPAAAAAARAVAAAPARRSPAPEALaaaRQA 439
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 475 GLRGLQKDSGPLPTPPGVSLLGEPPKDYRIPLNPYLNLHSLLPASNLAAPGGGSSSSKAFQLKSRLLSPLSSARLPPEPG 554
Cdd:PRK12323  440 SARGPGGAPAPAPAPAAAPAAAARPAAAGPRPVAAAAAAAPARAAPAAAPAPADDDPPPWEELPPEFASPAPAQPDAAPA 519
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|
gi 1482178903 555 LSDSYSFDYPSDMGPRRLFSHPREPALGPHGPSRHKMSPP 594
Cdd:PRK12323  520 GWVAESIPDPATADPDDAFETLAPAPAAAPAPRAAAATEP 559
RRM_spSet1p_like cd12303
RNA recognition motif in fission yeast Schizosaccharomyces pombe SET domain-containing protein ...
136-205 3.88e-03

RNA recognition motif in fission yeast Schizosaccharomyces pombe SET domain-containing protein 1 (spSet1p) and similar proteins; This subfamily corresponds to the RRM of spSet1p, also termed H3 lysine-4 specific histone-lysine N-methyltransferase, or COMPASS component SET1, or lysine N-methyltransferase 2, or Set1 complex component, is encoded by SET1 from the fission yeast S. pombe. It is essential for the H3 lysine-4 methylation. in vivo, and plays an important role in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. spSet1p is the homology counterpart of Saccharomyces cerevisiae Set1p (scSet1p). However, it is more closely related to Set1 found in mammalian. Moreover, unlike scSet1p, spSet1p is not required for heterochromatin assembly in fission yeast. spSet1p contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a conserved SET domain that may play a role in DNA repair and telomere function.


Pssm-ID: 409744 [Multi-domain]  Cd Length: 86  Bit Score: 36.99  E-value: 3.88e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKK--------DSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12303     3 ITGLSPLTTSNQILLHFRPHGEIEASDLKLDPRTGQSIGICWVRFAGPylrlsnaaESAKRAVSGQNGYRIGGATIRV 80
RRM2_p54nrb cd12591
RNA recognition motif 2 (RRM2) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
134-189 3.94e-03

RNA recognition motif 2 (RRM2) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM2 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. It binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. p54nrb forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manner. It also forms a heterodimer with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410004 [Multi-domain]  Cd Length: 80  Bit Score: 36.82  E-value: 3.94e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERtGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12591     2 LTVKNLPQFVSNELLEEAFSVFGQVERAVVIVDDR-GRPTGKGIVEFSGKPAARKA 56
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
133-198 4.44e-03

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 36.50  E-value: 4.44e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 133 LLCVANLPPSLTQQQFEELVRPFGSLERcflvyserTGQSKGYGFAEYMKKDSAARAKSDLLGKPL 198
Cdd:cd12495     3 VLFVRNLANTVTEEILEKAFSQFGKLER--------VKKLKDYAFIHFDERDGAVKAMDEMNGKDL 60
RRM1_p54nrb cd12588
RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
58-127 4.57e-03

RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410001 [Multi-domain]  Cd Length: 71  Bit Score: 36.47  E-value: 4.57e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1482178903  58 RRKILIRGLPGDVTNQEVHDLLSDY-ELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL 127
Cdd:cd12588     1 RSRLFVGNLPPDITEEEMRKLFEKYgKAGEVFIHKDKGFGFIRLETRTLAEIAKVELDNMPLRGKQLRVRF 71
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
262-296 4.75e-03

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 36.34  E-value: 4.75e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1482178903 262 KGFAVLEYETAEMAEEAQQQADGLSLGGSHLRVSF 296
Cdd:cd12399    40 RGFGFVELQEEESAEKAIAKLDGTDFMGRTIRVNE 74
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
136-205 4.98e-03

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 36.24  E-value: 4.98e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903 136 VANLPPSLTQQQFEELVRPFGSLERCFLVYSERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYV 205
Cdd:cd12370     5 VGSIYFELGEDTIRQAFAPFGPIKSIDMSWDPVTMKHKGFAFVEYEVPEAAQLALEQMNGVMLGGRNIKV 74
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
239-295 5.26e-03

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 36.24  E-value: 5.26e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 239 CRALSAVHSPTfcqlaCGQDGQLKGFAVLEYETAEMAEEAqQQADGLSLGGSHLRVS 295
Cdd:cd12451    27 CGEVTNVRIPT-----DRETGELKGFAYIEFSTKEAKEKA-LELNGSDIAGGNLVVD 77
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
134-207 5.32e-03

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 36.26  E-value: 5.32e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVySERTGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12614     1 LYVGNLDPRVTEDLLQEIFAVTGPVENCKII-PDKNSKGVNYGFVEYYDRRSAEIAIQTLNGRQIFGQEIKVNW 73
RRM1_PSF cd12587
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
134-207 5.99e-03

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM1 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Besides, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. Additionally, PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410000 [Multi-domain]  Cd Length: 71  Bit Score: 35.99  E-value: 5.99e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLvysertGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12587     4 LFVGNLPADITEDEFKRLFAKYGEPGEVFI------NKGKGFGFIKLESRALAEIAKAELDDTPMRGRQLRVRF 71
RRM6_RBM19 cd12571
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
134-189 6.01e-03

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409985 [Multi-domain]  Cd Length: 79  Bit Score: 36.25  E-value: 6.01e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYS-ERTGQSKGYGFAEYMKKDSAARA 189
Cdd:cd12571     3 ILVRNIPFQATVKEVRELFSTFGELKTVRLPKKmGGTGQHRGFGFVDFITKQDAKRA 59
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
63-125 6.16e-03

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 36.38  E-value: 6.16e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903  63 IRGLPGDVTNQEVHDLLSDY-ELKYCFV-----DKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd12380     6 VKNFGEDVDDDELKELFEKYgKITSAKVmkddsGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKLYV 74
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
134-199 6.26e-03

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 36.22  E-value: 6.26e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYSERtGQSKGYGFAEYMKKDSAARAKSDLLGKPLG 199
Cdd:cd12309     5 LFVGNLEITITEEELRRAFERYGVVEDVDIKRPPR-GQGNAYAFVKFLNLDMAHRAKVAMSGQYIG 69
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
134-198 6.62e-03

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 36.05  E-value: 6.62e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLVYS---ERTGQSKGYGFAEYMKKDSAARAKSDLLGKPL 198
Cdd:cd12318     3 LFVKNLNFKTTEEALKKHFEKCGPIRSVTIAKKkdpKGPLLSMGYGFVEFKSPEAAQKALKQLQGTVL 70
RRM2_MSSP1 cd12473
RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
134-178 6.66e-03

RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM2 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2). MSSP-1 is a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409903 [Multi-domain]  Cd Length: 85  Bit Score: 36.18  E-value: 6.66e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCfLVYSERTGQSKGYGFA 178
Cdd:cd12473     3 LYISNLPLSMDEQELENMLKPFGQVIST-RILRDSSGTSRGVGFA 46
RRM1_RRT5 cd12409
RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) ...
60-127 6.82e-03

RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins; This subfamily corresponds to the RRM1 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409843 [Multi-domain]  Cd Length: 84  Bit Score: 36.10  E-value: 6.82e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1482178903  60 KILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYK------------GTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL 127
Cdd:cd12409     1 RVYISNLSYSTTEEELEELLKDYKPVSVLIPSYTvrgfrsrkhrplGIAYAEFSSVEEAEKVVKDLNGKVFKGRKLFVKL 80
RRM1_p54nrb cd12588
RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
134-207 7.05e-03

RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410001 [Multi-domain]  Cd Length: 71  Bit Score: 35.70  E-value: 7.05e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1482178903 134 LCVANLPPSLTQQQFEELVRPFGSLERCFLvysertGQSKGYGFAEYMKKDSAARAKSDLLGKPLGPRTLYVHW 207
Cdd:cd12588     4 LFVGNLPPDITEEEMRKLFEKYGKAGEVFI------HKDKGFGFIRLETRTLAEIAKVELDNMPLRGKQLRVRF 71
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
61-127 9.44e-03

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 35.66  E-value: 9.44e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1482178903  61 ILIRGLPGDVTNQEVHDLLS------------DYELKycfvdKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQL 127
Cdd:cd12347     1 LYVGGLAEEVDEKVLHAAFIpfgdivdiqiplDYETE-----KHRGFAFVEFEEAEDAAAAIDNMNESELFGRTIRVNL 74
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
66-125 9.84e-03

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 35.34  E-value: 9.84e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1482178903  66 LPGDVTNQEVHDLLSDYE-------LKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSV 125
Cdd:cd12393     9 LPFSLTNNDLHQIFSKYGkvvkvtiLKDKETRKSKGVAFVLFLDRESAHNAVRAMNNKELFGRTLKC 75
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH