NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|30410788|ref|NP_006756|]
View 

tumor suppressor candidate 3 isoform 1 precursor [Homo sapiens]

Protein Classification

OST3/OST6 family protein( domain architecture ID 10520659)

OST3/OST6 family protein similar to Homo sapiens magnesium transporter protein 1 and tumor suppressor candidate 3, which are required for cellular magnesium uptake and vertebrate embryonic development

Gene Ontology:  GO:0022857
PubMed:  10358084
SCOP:  4005064

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
OST3_OST6 pfam04756
OST3 / OST6 family, transporter family; The proteins in this family are part of a complex of ...
54-342 4.80e-107

OST3 / OST6 family, transporter family; The proteins in this family are part of a complex of eight ER proteins that transfers core oligosaccharide from dolichol carrier to Asn-X-Ser/Thr motifs. This family includes both OST3 and OST6, each of which contains four predicted transmembrane helices. Disruption of OST3 and OST6 leads to a defect in the assembly of the complex. Hence, the function of these genes seems to be essential for recruiting a fully active complex necessary for efficient N-glycosylation. These proteins are also thought to be novel Mg2+ transporters.


:

Pssm-ID: 461420  Cd Length: 294  Bit Score: 314.95  E-value: 4.80e-107
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788    54 EQLMEWSSRRS-IFRMNGDKFRKFIKaPPRNYSMIVMFTALQPQRQCSVCRQANEEYQILANSWRYS-SAFCNKLFFSMV 131
Cdd:pfam04756   1 EELLSLAKKSNgVIKLNDSNYKRLLS-GPRDYSVVVLLTALDPRFGCQLCREFQPEFELVAKSWFKDhKAGSSKLFFATL 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788   132 DYDEGTDVFQQLNMNSAPTFMHFPPKGRPKRA----DTFDLQRIGFAAEQLAKWIADRTDVHIRVFRPPNYSGTIALALL 207
Cdd:pfam04756  80 DFDDGKDVFQSLGLQTAPHLLLFPPTGGPKISdsepDQYDFTRGGFSAEQLAAFLSRHTGVPIPIKRPINYSKIIITFII 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788   208 VSLVGGLLYLRRNNL-EFIYNKTGWAMVSLCIVFAMTSGQMWNHIRGPPYAHKNPhNGQVSYIHGSSQAQFVAESHIILV 286
Cdd:pfam04756 160 VLGVVTLLKKARPYLlPILQNRNLWAALSLIFILLFTSGYMFNHIRGVPYVARDG-KGGISYFAGGSQNQFGIETQIVAA 238
                         250       260       270       280       290
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 30410788   287 LNAAITMGMVLLNEAATSKGDVGKRRIICLVGLGLVVFFFSFLLSIFRSKYHGYPY 342
Cdd:pfam04756 239 LYGLLALLVILLTIKVPRIKDPKVQRVAVIVWAGVLFLFFSFLLSVFRIKNPGYPF 294
 
Name Accession Description Interval E-value
OST3_OST6 pfam04756
OST3 / OST6 family, transporter family; The proteins in this family are part of a complex of ...
54-342 4.80e-107

OST3 / OST6 family, transporter family; The proteins in this family are part of a complex of eight ER proteins that transfers core oligosaccharide from dolichol carrier to Asn-X-Ser/Thr motifs. This family includes both OST3 and OST6, each of which contains four predicted transmembrane helices. Disruption of OST3 and OST6 leads to a defect in the assembly of the complex. Hence, the function of these genes seems to be essential for recruiting a fully active complex necessary for efficient N-glycosylation. These proteins are also thought to be novel Mg2+ transporters.


Pssm-ID: 461420  Cd Length: 294  Bit Score: 314.95  E-value: 4.80e-107
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788    54 EQLMEWSSRRS-IFRMNGDKFRKFIKaPPRNYSMIVMFTALQPQRQCSVCRQANEEYQILANSWRYS-SAFCNKLFFSMV 131
Cdd:pfam04756   1 EELLSLAKKSNgVIKLNDSNYKRLLS-GPRDYSVVVLLTALDPRFGCQLCREFQPEFELVAKSWFKDhKAGSSKLFFATL 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788   132 DYDEGTDVFQQLNMNSAPTFMHFPPKGRPKRA----DTFDLQRIGFAAEQLAKWIADRTDVHIRVFRPPNYSGTIALALL 207
Cdd:pfam04756  80 DFDDGKDVFQSLGLQTAPHLLLFPPTGGPKISdsepDQYDFTRGGFSAEQLAAFLSRHTGVPIPIKRPINYSKIIITFII 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788   208 VSLVGGLLYLRRNNL-EFIYNKTGWAMVSLCIVFAMTSGQMWNHIRGPPYAHKNPhNGQVSYIHGSSQAQFVAESHIILV 286
Cdd:pfam04756 160 VLGVVTLLKKARPYLlPILQNRNLWAALSLIFILLFTSGYMFNHIRGVPYVARDG-KGGISYFAGGSQNQFGIETQIVAA 238
                         250       260       270       280       290
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 30410788   287 LNAAITMGMVLLNEAATSKGDVGKRRIICLVGLGLVVFFFSFLLSIFRSKYHGYPY 342
Cdd:pfam04756 239 LYGLLALLVILLTIKVPRIKDPKVQRVAVIVWAGVLFLFFSFLLSVFRIKNPGYPF 294
TRX_family cd02947
TRX family; composed of two groups: Group I, which includes proteins that exclusively encode a ...
73-183 3.43e-03

TRX family; composed of two groups: Group I, which includes proteins that exclusively encode a TRX domain; and Group II, which are composed of fusion proteins of TRX and additional domains. Group I TRX is a small ancient protein that alter the redox state of target proteins via the reversible oxidation of an active site dithiol, present in a CXXC motif, partially exposed at the protein's surface. TRX reduces protein disulfide bonds, resulting in a disulfide bond at its active site. Oxidized TRX is converted to the active form by TRX reductase, using reducing equivalents derived from either NADPH or ferredoxins. By altering their redox state, TRX regulates the functions of at least 30 target proteins, some of which are enzymes and transcription factors. It also plays an important role in the defense against oxidative stress by directly reducing hydrogen peroxide and certain radicals, and by serving as a reductant for peroxiredoxins. At least two major types of functional TRXs have been reported in most organisms; in eukaryotes, they are located in the cytoplasm and the mitochondria. Higher plants contain more types (at least 20 TRX genes have been detected in the genome of Arabidopsis thaliana), two of which (types f amd m) are located in the same compartment, the chloroplast. Also included in the alignment are TRX-like domains which show sequence homology to TRX but do not contain the redox active CXXC motif. Group II proteins, in addition to either a redox active TRX or a TRX-like domain, also contain additional domains, which may or may not possess homology to known proteins.


Pssm-ID: 239245 [Multi-domain]  Cd Length: 93  Bit Score: 36.38  E-value: 3.43e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788  73 FRKFIKAPPRnysMIVMFTAlqpqRQCSVCRQANEEYQILANSwryssafCNKLFFSMVDYDEGTDVFQQLNMNSAPTFM 152
Cdd:cd02947   3 FEELIKSAKP---VVVDFWA----PWCGPCKAIAPVLEELAEE-------YPKVKFVKVDVDENPELAEEYGVRSIPTFL 68
                        90       100       110
                ....*....|....*....|....*....|..
gi 30410788 153 HFppKGRpKRADTFdlqrIGF-AAEQLAKWIA 183
Cdd:cd02947  69 FF--KNG-KEVDRV----VGAdPKEELEEFLE 93
 
Name Accession Description Interval E-value
OST3_OST6 pfam04756
OST3 / OST6 family, transporter family; The proteins in this family are part of a complex of ...
54-342 4.80e-107

OST3 / OST6 family, transporter family; The proteins in this family are part of a complex of eight ER proteins that transfers core oligosaccharide from dolichol carrier to Asn-X-Ser/Thr motifs. This family includes both OST3 and OST6, each of which contains four predicted transmembrane helices. Disruption of OST3 and OST6 leads to a defect in the assembly of the complex. Hence, the function of these genes seems to be essential for recruiting a fully active complex necessary for efficient N-glycosylation. These proteins are also thought to be novel Mg2+ transporters.


Pssm-ID: 461420  Cd Length: 294  Bit Score: 314.95  E-value: 4.80e-107
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788    54 EQLMEWSSRRS-IFRMNGDKFRKFIKaPPRNYSMIVMFTALQPQRQCSVCRQANEEYQILANSWRYS-SAFCNKLFFSMV 131
Cdd:pfam04756   1 EELLSLAKKSNgVIKLNDSNYKRLLS-GPRDYSVVVLLTALDPRFGCQLCREFQPEFELVAKSWFKDhKAGSSKLFFATL 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788   132 DYDEGTDVFQQLNMNSAPTFMHFPPKGRPKRA----DTFDLQRIGFAAEQLAKWIADRTDVHIRVFRPPNYSGTIALALL 207
Cdd:pfam04756  80 DFDDGKDVFQSLGLQTAPHLLLFPPTGGPKISdsepDQYDFTRGGFSAEQLAAFLSRHTGVPIPIKRPINYSKIIITFII 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788   208 VSLVGGLLYLRRNNL-EFIYNKTGWAMVSLCIVFAMTSGQMWNHIRGPPYAHKNPhNGQVSYIHGSSQAQFVAESHIILV 286
Cdd:pfam04756 160 VLGVVTLLKKARPYLlPILQNRNLWAALSLIFILLFTSGYMFNHIRGVPYVARDG-KGGISYFAGGSQNQFGIETQIVAA 238
                         250       260       270       280       290
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 30410788   287 LNAAITMGMVLLNEAATSKGDVGKRRIICLVGLGLVVFFFSFLLSIFRSKYHGYPY 342
Cdd:pfam04756 239 LYGLLALLVILLTIKVPRIKDPKVQRVAVIVWAGVLFLFFSFLLSVFRIKNPGYPF 294
TRX_family cd02947
TRX family; composed of two groups: Group I, which includes proteins that exclusively encode a ...
73-183 3.43e-03

TRX family; composed of two groups: Group I, which includes proteins that exclusively encode a TRX domain; and Group II, which are composed of fusion proteins of TRX and additional domains. Group I TRX is a small ancient protein that alter the redox state of target proteins via the reversible oxidation of an active site dithiol, present in a CXXC motif, partially exposed at the protein's surface. TRX reduces protein disulfide bonds, resulting in a disulfide bond at its active site. Oxidized TRX is converted to the active form by TRX reductase, using reducing equivalents derived from either NADPH or ferredoxins. By altering their redox state, TRX regulates the functions of at least 30 target proteins, some of which are enzymes and transcription factors. It also plays an important role in the defense against oxidative stress by directly reducing hydrogen peroxide and certain radicals, and by serving as a reductant for peroxiredoxins. At least two major types of functional TRXs have been reported in most organisms; in eukaryotes, they are located in the cytoplasm and the mitochondria. Higher plants contain more types (at least 20 TRX genes have been detected in the genome of Arabidopsis thaliana), two of which (types f amd m) are located in the same compartment, the chloroplast. Also included in the alignment are TRX-like domains which show sequence homology to TRX but do not contain the redox active CXXC motif. Group II proteins, in addition to either a redox active TRX or a TRX-like domain, also contain additional domains, which may or may not possess homology to known proteins.


Pssm-ID: 239245 [Multi-domain]  Cd Length: 93  Bit Score: 36.38  E-value: 3.43e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788  73 FRKFIKAPPRnysMIVMFTAlqpqRQCSVCRQANEEYQILANSwryssafCNKLFFSMVDYDEGTDVFQQLNMNSAPTFM 152
Cdd:cd02947   3 FEELIKSAKP---VVVDFWA----PWCGPCKAIAPVLEELAEE-------YPKVKFVKVDVDENPELAEEYGVRSIPTFL 68
                        90       100       110
                ....*....|....*....|....*....|..
gi 30410788 153 HFppKGRpKRADTFdlqrIGF-AAEQLAKWIA 183
Cdd:cd02947  69 FF--KNG-KEVDRV----VGAdPKEELEEFLE 93
PDI_a_family cd02961
Protein Disulfide Isomerase (PDIa) family, redox active TRX domains; composed of eukaryotic ...
69-182 8.99e-03

Protein Disulfide Isomerase (PDIa) family, redox active TRX domains; composed of eukaryotic proteins involved in oxidative protein folding in the endoplasmic reticulum (ER) by acting as catalysts and folding assistants. Members of this family include PDI and PDI-related proteins like ERp72, ERp57 (or ERp60), ERp44, P5, PDIR, ERp46 and the transmembrane PDIs. PDI, ERp57, ERp72, P5, PDIR and ERp46 are all oxidases, catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER. They also exhibit reductase activity in acting as isomerases to correct any non-native disulfide bonds, as well as chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. These proteins usually contain multiple copies of a redox active TRX (a) domain containing a CXXC motif, and may also contain one or more redox inactive TRX-like (b) domains. Only one a domain is required for the oxidase function but multiple copies are necessary for the isomerase function. The different types of PDIs may show different substrate specificities and tissue-specific expression, or may be induced by stress. PDIs are in their reduced form at steady state and are oxidized to the active form by Ero1, which is localized in the ER through ERp44. Some members of this family also contain a DnaJ domain in addition to the redox active a domains; examples are ERdj5 and Pfj2. Also included in the family is the redox inactive N-terminal TRX-like domain of ERp29.


Pssm-ID: 239259 [Multi-domain]  Cd Length: 101  Bit Score: 35.28  E-value: 8.99e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 30410788  69 NGDKFRKFIKAPPrnySMIVMFTAlqPQrqCSVCRQANEEYQILANSWRYSSafcnKLFFSMVDYDEGTDVFQQLNMNSA 148
Cdd:cd02961   4 TDDNFDELVKDSK---DVLVEFYA--PW--CGHCKALAPEYEKLAKELKGDG----KVVVAKVDCTANNDLCSEYGVRGY 72
                        90       100       110
                ....*....|....*....|....*....|....
gi 30410788 149 PTFMHFPPKGRPKRadTFDLQRIgfaAEQLAKWI 182
Cdd:cd02961  73 PTIKLFPNGSKEPV--KYEGPRT---LESLVEFI 101
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH