NADPH oxidase 5 isoform 1 [Homo sapiens]
ferric reductase family protein( domain architecture ID 13419158)
ferric reductase family protein functions as an oxidoreductase, such as human NADPH oxidase 1, a voltage-gated proton channel that mediates the H(+) currents of resting phagocytes and other tissues
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
NOX_Duox_like_FAD_NADP | cd06186 | NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as ... |
448-765 | 1.05e-43 | ||||||
NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. ROS were originally identified as bactericidal agents in phagocytes, but are now also implicated in cell signaling and metabolism. NOX has a 6-alpha helix heme-binding transmembrane domain fused to a flavoprotein with the nucleotide binding domain located in the cytoplasm. Duox enzymes link a peroxidase domain to the NOX domain via a single transmembrane and EF-hand Ca2+ binding sites. The flavoprotein module has a ferredoxin like FAD/NADPH binding domain. In classical phagocytic NOX2, electron transfer occurs from NADPH to FAD to the heme of cytb to oxygen leading to superoxide formation. : Pssm-ID: 99783 [Multi-domain] Cd Length: 210 Bit Score: 156.70 E-value: 1.05e-43
|
||||||||||
FRQ1 | COG5126 | Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; |
42-197 | 3.49e-16 | ||||||
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; : Pssm-ID: 444056 [Multi-domain] Cd Length: 137 Bit Score: 75.98 E-value: 3.49e-16
|
||||||||||
Ferric_reduct | pfam01794 | Ferric reductase like transmembrane component; This family includes a common region in the ... |
296-402 | 5.75e-08 | ||||||
Ferric reductase like transmembrane component; This family includes a common region in the transmembrane proteins mammalian cytochrome B-245 heavy chain (gp91-phox), ferric reductase transmembrane component in yeast and respiratory burst oxidase from mouse-ear cress. This may be a family of flavocytochromes capable of moving electrons across the plasma membrane. The Frp1 protein from S. pombe is a ferric reductase component and is required for cell surface ferric reductase activity, mutants in frp1 are deficient in ferric iron uptake. Cytochrome B-245 heavy chain is a FAD-dependent dehydrogenase it is also has electron transferase activity which reduces molecular oxygen to superoxide anion, a precursor in the production of microbicidal oxidants. Mutations in the sequence of cytochrome B-245 heavy chain (gp91-phox) lead to the X-linked chronic granulomatous disease. The bacteriocidal ability of phagocytic cells is reduced and is characterized by the absence of a functional plasma membrane associated NADPH oxidase. The chronic granulomatous disease gene codes for the beta chain of cytochrome B-245 and cytochrome B-245 is missing from patients with the disease. : Pssm-ID: 426438 [Multi-domain] Cd Length: 121 Bit Score: 51.89 E-value: 5.75e-08
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
NOX_Duox_like_FAD_NADP | cd06186 | NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as ... |
448-765 | 1.05e-43 | ||||||||
NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. ROS were originally identified as bactericidal agents in phagocytes, but are now also implicated in cell signaling and metabolism. NOX has a 6-alpha helix heme-binding transmembrane domain fused to a flavoprotein with the nucleotide binding domain located in the cytoplasm. Duox enzymes link a peroxidase domain to the NOX domain via a single transmembrane and EF-hand Ca2+ binding sites. The flavoprotein module has a ferredoxin like FAD/NADPH binding domain. In classical phagocytic NOX2, electron transfer occurs from NADPH to FAD to the heme of cytb to oxygen leading to superoxide formation. Pssm-ID: 99783 [Multi-domain] Cd Length: 210 Bit Score: 156.70 E-value: 1.05e-43
|
||||||||||||
PLN02844 | PLN02844 | oxidoreductase/ferric-chelate reductase |
381-610 | 4.16e-29 | ||||||||
oxidoreductase/ferric-chelate reductase Pssm-ID: 215453 [Multi-domain] Cd Length: 722 Bit Score: 123.80 E-value: 4.16e-29
|
||||||||||||
NAD_binding_6 | pfam08030 | Ferric reductase NAD binding domain; |
582-750 | 1.11e-26 | ||||||||
Ferric reductase NAD binding domain; Pssm-ID: 429792 [Multi-domain] Cd Length: 149 Bit Score: 106.27 E-value: 1.11e-26
|
||||||||||||
COG4097 | COG4097 | Predicted ferric reductase [Inorganic ion transport and metabolism]; |
282-759 | 7.39e-21 | ||||||||
Predicted ferric reductase [Inorganic ion transport and metabolism]; Pssm-ID: 443273 [Multi-domain] Cd Length: 442 Bit Score: 96.12 E-value: 7.39e-21
|
||||||||||||
FRQ1 | COG5126 | Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; |
42-197 | 3.49e-16 | ||||||||
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; Pssm-ID: 444056 [Multi-domain] Cd Length: 137 Bit Score: 75.98 E-value: 3.49e-16
|
||||||||||||
EFh | cd00051 | EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ... |
97-192 | 3.72e-09 | ||||||||
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers. Pssm-ID: 238008 [Multi-domain] Cd Length: 63 Bit Score: 53.32 E-value: 3.72e-09
|
||||||||||||
Ferric_reduct | pfam01794 | Ferric reductase like transmembrane component; This family includes a common region in the ... |
296-402 | 5.75e-08 | ||||||||
Ferric reductase like transmembrane component; This family includes a common region in the transmembrane proteins mammalian cytochrome B-245 heavy chain (gp91-phox), ferric reductase transmembrane component in yeast and respiratory burst oxidase from mouse-ear cress. This may be a family of flavocytochromes capable of moving electrons across the plasma membrane. The Frp1 protein from S. pombe is a ferric reductase component and is required for cell surface ferric reductase activity, mutants in frp1 are deficient in ferric iron uptake. Cytochrome B-245 heavy chain is a FAD-dependent dehydrogenase it is also has electron transferase activity which reduces molecular oxygen to superoxide anion, a precursor in the production of microbicidal oxidants. Mutations in the sequence of cytochrome B-245 heavy chain (gp91-phox) lead to the X-linked chronic granulomatous disease. The bacteriocidal ability of phagocytic cells is reduced and is characterized by the absence of a functional plasma membrane associated NADPH oxidase. The chronic granulomatous disease gene codes for the beta chain of cytochrome B-245 and cytochrome B-245 is missing from patients with the disease. Pssm-ID: 426438 [Multi-domain] Cd Length: 121 Bit Score: 51.89 E-value: 5.75e-08
|
||||||||||||
EF-hand_7 | pfam13499 | EF-hand domain pair; |
95-189 | 2.70e-05 | ||||||||
EF-hand domain pair; Pssm-ID: 463900 [Multi-domain] Cd Length: 67 Bit Score: 42.63 E-value: 2.70e-05
|
||||||||||||
EFh | smart00054 | EF-hand, calcium binding motif; EF-hands are calcium-binding motifs that occur at least in ... |
63-89 | 2.29e-03 | ||||||||
EF-hand, calcium binding motif; EF-hands are calcium-binding motifs that occur at least in pairs. Links between disease states and genes encoding EF-hands, particularly the S100 subclass, are emerging. Each motif consists of a 12 residue loop flanked on either side by a 12 residue alpha-helix. EF-hands undergo a conformational change unpon binding calcium ions. Pssm-ID: 197492 [Multi-domain] Cd Length: 29 Bit Score: 35.82 E-value: 2.29e-03
|
||||||||||||
XopAW | NF041410 | XopAW family type III secretion system calcium-binding effector; |
42-87 | 3.98e-03 | ||||||||
XopAW family type III secretion system calcium-binding effector; Pssm-ID: 469301 [Multi-domain] Cd Length: 227 Bit Score: 39.66 E-value: 3.98e-03
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
NOX_Duox_like_FAD_NADP | cd06186 | NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as ... |
448-765 | 1.05e-43 | ||||||||
NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. ROS were originally identified as bactericidal agents in phagocytes, but are now also implicated in cell signaling and metabolism. NOX has a 6-alpha helix heme-binding transmembrane domain fused to a flavoprotein with the nucleotide binding domain located in the cytoplasm. Duox enzymes link a peroxidase domain to the NOX domain via a single transmembrane and EF-hand Ca2+ binding sites. The flavoprotein module has a ferredoxin like FAD/NADPH binding domain. In classical phagocytic NOX2, electron transfer occurs from NADPH to FAD to the heme of cytb to oxygen leading to superoxide formation. Pssm-ID: 99783 [Multi-domain] Cd Length: 210 Bit Score: 156.70 E-value: 1.05e-43
|
||||||||||||
PLN02844 | PLN02844 | oxidoreductase/ferric-chelate reductase |
381-610 | 4.16e-29 | ||||||||
oxidoreductase/ferric-chelate reductase Pssm-ID: 215453 [Multi-domain] Cd Length: 722 Bit Score: 123.80 E-value: 4.16e-29
|
||||||||||||
NAD_binding_6 | pfam08030 | Ferric reductase NAD binding domain; |
582-750 | 1.11e-26 | ||||||||
Ferric reductase NAD binding domain; Pssm-ID: 429792 [Multi-domain] Cd Length: 149 Bit Score: 106.27 E-value: 1.11e-26
|
||||||||||||
PLN02631 | PLN02631 | ferric-chelate reductase |
299-616 | 1.90e-23 | ||||||||
ferric-chelate reductase Pssm-ID: 178238 [Multi-domain] Cd Length: 699 Bit Score: 105.89 E-value: 1.90e-23
|
||||||||||||
FNR_like | cd00322 | Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a ... |
458-763 | 3.68e-22 | ||||||||
Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a chloroplast reductase activity, catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and has a variety of physiological functions including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methane assimilation in many organisms. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one- electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and 2 electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). Pssm-ID: 99778 [Multi-domain] Cd Length: 223 Bit Score: 95.59 E-value: 3.68e-22
|
||||||||||||
PLN02292 | PLN02292 | ferric-chelate reductase |
305-615 | 2.25e-21 | ||||||||
ferric-chelate reductase Pssm-ID: 215165 [Multi-domain] Cd Length: 702 Bit Score: 99.56 E-value: 2.25e-21
|
||||||||||||
COG4097 | COG4097 | Predicted ferric reductase [Inorganic ion transport and metabolism]; |
282-759 | 7.39e-21 | ||||||||
Predicted ferric reductase [Inorganic ion transport and metabolism]; Pssm-ID: 443273 [Multi-domain] Cd Length: 442 Bit Score: 96.12 E-value: 7.39e-21
|
||||||||||||
FAD_binding_8 | pfam08022 | FAD-binding domain; |
451-575 | 1.89e-18 | ||||||||
FAD-binding domain; Pssm-ID: 285293 [Multi-domain] Cd Length: 108 Bit Score: 81.23 E-value: 1.89e-18
|
||||||||||||
FNR_like_3 | cd06198 | NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer ... |
467-765 | 2.45e-17 | ||||||||
NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) domain, which varies in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99795 [Multi-domain] Cd Length: 216 Bit Score: 81.53 E-value: 2.45e-17
|
||||||||||||
FRQ1 | COG5126 | Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; |
42-197 | 3.49e-16 | ||||||||
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; Pssm-ID: 444056 [Multi-domain] Cd Length: 137 Bit Score: 75.98 E-value: 3.49e-16
|
||||||||||||
Mcr1 | COG0543 | NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; ... |
448-609 | 2.82e-11 | ||||||||
NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; Pssm-ID: 440309 [Multi-domain] Cd Length: 247 Bit Score: 64.50 E-value: 2.82e-11
|
||||||||||||
Fpr | COG1018 | Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; |
458-763 | 2.09e-09 | ||||||||
Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; Pssm-ID: 440641 [Multi-domain] Cd Length: 231 Bit Score: 58.65 E-value: 2.09e-09
|
||||||||||||
FRQ1 | COG5126 | Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; |
17-158 | 2.37e-09 | ||||||||
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]; Pssm-ID: 444056 [Multi-domain] Cd Length: 137 Bit Score: 56.34 E-value: 2.37e-09
|
||||||||||||
EFh | cd00051 | EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ... |
97-192 | 3.72e-09 | ||||||||
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers. Pssm-ID: 238008 [Multi-domain] Cd Length: 63 Bit Score: 53.32 E-value: 3.72e-09
|
||||||||||||
Ferric_reduct | pfam01794 | Ferric reductase like transmembrane component; This family includes a common region in the ... |
296-402 | 5.75e-08 | ||||||||
Ferric reductase like transmembrane component; This family includes a common region in the transmembrane proteins mammalian cytochrome B-245 heavy chain (gp91-phox), ferric reductase transmembrane component in yeast and respiratory burst oxidase from mouse-ear cress. This may be a family of flavocytochromes capable of moving electrons across the plasma membrane. The Frp1 protein from S. pombe is a ferric reductase component and is required for cell surface ferric reductase activity, mutants in frp1 are deficient in ferric iron uptake. Cytochrome B-245 heavy chain is a FAD-dependent dehydrogenase it is also has electron transferase activity which reduces molecular oxygen to superoxide anion, a precursor in the production of microbicidal oxidants. Mutations in the sequence of cytochrome B-245 heavy chain (gp91-phox) lead to the X-linked chronic granulomatous disease. The bacteriocidal ability of phagocytic cells is reduced and is characterized by the absence of a functional plasma membrane associated NADPH oxidase. The chronic granulomatous disease gene codes for the beta chain of cytochrome B-245 and cytochrome B-245 is missing from patients with the disease. Pssm-ID: 426438 [Multi-domain] Cd Length: 121 Bit Score: 51.89 E-value: 5.75e-08
|
||||||||||||
EFh | cd00051 | EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ... |
62-151 | 3.02e-07 | ||||||||
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers. Pssm-ID: 238008 [Multi-domain] Cd Length: 63 Bit Score: 47.93 E-value: 3.02e-07
|
||||||||||||
EFh | cd00051 | EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ... |
42-87 | 1.00e-05 | ||||||||
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers. Pssm-ID: 238008 [Multi-domain] Cd Length: 63 Bit Score: 43.69 E-value: 1.00e-05
|
||||||||||||
flavin_oxioreductase | cd06189 | NAD(P)H dependent flavin oxidoreductases use flavin as a substrate in mediating electron ... |
451-611 | 2.12e-05 | ||||||||
NAD(P)H dependent flavin oxidoreductases use flavin as a substrate in mediating electron transfer from iron complexes or iron proteins. Structurally similar to ferredoxin reductases, but with only 15% sequence identity, flavin reductases reduce FAD, FMN, or riboflavin via NAD(P)H. Flavin is used as a substrate, rather than a tightly bound prosthetic group as in flavoenzymes; weaker binding is due to the absence of a binding site for the AMP moeity of FAD. Pssm-ID: 99786 [Multi-domain] Cd Length: 224 Bit Score: 46.39 E-value: 2.12e-05
|
||||||||||||
EF-hand_7 | pfam13499 | EF-hand domain pair; |
95-189 | 2.70e-05 | ||||||||
EF-hand domain pair; Pssm-ID: 463900 [Multi-domain] Cd Length: 67 Bit Score: 42.63 E-value: 2.70e-05
|
||||||||||||
EF-hand_7 | pfam13499 | EF-hand domain pair; |
62-108 | 3.81e-05 | ||||||||
EF-hand domain pair; Pssm-ID: 463900 [Multi-domain] Cd Length: 67 Bit Score: 42.24 E-value: 3.81e-05
|
||||||||||||
EFh_DMD_DYTN_DTN | cd15901 | EF-hand-like motif found in the dystrophin/dystrobrevin/dystrotelin family; The dystrophin ... |
68-106 | 3.91e-05 | ||||||||
EF-hand-like motif found in the dystrophin/dystrobrevin/dystrotelin family; The dystrophin/dystrobrevin/dystrotelin family has been characterized by a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. Dystrophin is the founder member of this family. It is a sub-membrane cytoskeletal protein associated with the inner surface membrane. Dystrophin and its close paralog utrophin have a large N-terminal extension of actin-binding CH domains, up to 24 spectrin repeats, and a WW domain. Its further paralog, dystrophin-related protein 2 (DRP-2), retains only two of the spectrin repeats. Dystrophin, utrophin or DRP2 can form the core of a membrane-bound complex consisting of dystroglycan, sarcoglycans and syntrophins, known as the dystrophin-glycoprotein complex (DGC) that plays an important role in brain development and disease, as well as in the prevention of muscle damage. Dystrobrevins, including alpha- and beta-dystrobrevin, lack the large N-terminal extension found in dystrophin, but alpha-dystrobrevin has a characteristic C-terminal extension. Dystrobrevins are part of the DGC. They physically associate with members of the dystrophin family and with the syntrophins through their homologous C-terminal coiled coil motifs. In contrast, dystrotelins lack both the large N-terminal extension found in dystrophin and the obvious syntrophin-binding sites (SBSs). Dystrotelins are not critical for mammalian development. They may be involved in other forms of cytokinesis. Moreover, dystrotelin is unable to heterodimerize with members of the dystrophin or dystrobrevin families, or to homodimerize. Pssm-ID: 319999 Cd Length: 163 Bit Score: 44.57 E-value: 3.91e-05
|
||||||||||||
O2ase_reductase_like | cd06187 | The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial ... |
448-610 | 5.75e-05 | ||||||||
The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial oxygenases which oxidize hydrocarbons using oxygen as the oxidant. Electron transfer is from NADH via FAD (in the oxygenase reductase) and an [2FE-2S] ferredoxin center (fused to the FAD/NADH domain and/or discrete) to the oxygenase. Dioxygenases add both atoms of oxygen to the substrate, while mono-oxygenases (aka mixed oxygenases) add one atom to the substrate and one atom to water. In dioxygenases, Class I enzymes are 2 component, containing a reductase with Rieske type [2Fe-2S] redox centers and an oxygenase. Class II are 3 component, having discrete flavin and ferredoxin proteins and an oxygenase. Class III have 2 [2Fe-2S] centers, one fused to the flavin domain and the other separate. Pssm-ID: 99784 [Multi-domain] Cd Length: 224 Bit Score: 45.28 E-value: 5.75e-05
|
||||||||||||
EFh_PEF_Group_II_CAPN_like | cd16182 | Penta-EF hand, calcium binding motifs, found in PEF calpain family; The PEF calpain family ... |
30-190 | 6.53e-05 | ||||||||
Penta-EF hand, calcium binding motifs, found in PEF calpain family; The PEF calpain family belongs to the second group of penta-EF hand (PEF) proteins. It includes classical (also called conventional or typical) calpain (referring to a calcium-dependent papain-like enzymes, EC 3.4.22.17) large catalytic subunits (CAPN1, 2, 3, 8, 9, 11, 12, 13, 14) and two calpain small subunits (CAPNS1 and CAPNS2), which are largely confined to animals (metazoans). These PEF-containing are nonlysosomal intracellular calcium-activated intracellular cysteine proteases that play important roles in the degradation or functional modulation in a variety of substrates in response to calcium signalling. The classical mu- and m-calpains are heterodimers consisting of homologous but a distinct (large) L-subunit/chain (CAPN1 or CAPN2) and a common (small) S-subunit/chain (CAPNS1 or CAPNS2). These L-subunits (CAPN1 and CAPN2) and S-subunit CAPNS1 are ubiquitously found in all tissues. Other calpains likely consist of an isolated L-subunit/chain alone. Many of them, such as CAPNS2, CAPN3 (in skeletal muscle, or lens), CAPN8 (in stomach), CAPN9 (in digestive tracts), CAPN11 (in testis), CAPN12 (in follicles), are tissue-specific and have specific functions in distinct organs. The L-subunits of similar structure (called CALPA and B) also have been found in Drosophila melanogaster. The S-subunit seems to have a chaperone-like function for proper folding of the L-subunit. The catalytic L-subunits contain a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. The S-subunits only have the PEF domain following an N-terminal Gly-rich hydrophobic domain. The calpains undergo a rearrangement of the protein backbone upon Ca2+-binding. Pssm-ID: 320057 [Multi-domain] Cd Length: 167 Bit Score: 44.14 E-value: 6.53e-05
|
||||||||||||
FNR1 | cd06195 | Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible ... |
463-601 | 2.41e-04 | ||||||||
Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. Pssm-ID: 99792 [Multi-domain] Cd Length: 241 Bit Score: 43.32 E-value: 2.41e-04
|
||||||||||||
EF-hand_6 | pfam13405 | EF-hand domain; |
63-89 | 3.33e-04 | ||||||||
EF-hand domain; Pssm-ID: 463869 [Multi-domain] Cd Length: 30 Bit Score: 38.31 E-value: 3.33e-04
|
||||||||||||
phenol_2-monooxygenase_like | cd06211 | Phenol 2-monooxygenase (phenol hydroxylase) is a flavoprotein monooxygenase, able to use ... |
457-611 | 3.52e-04 | ||||||||
Phenol 2-monooxygenase (phenol hydroxylase) is a flavoprotein monooxygenase, able to use molecular oxygen as a substrate in the microbial degredation of phenol. This protein is encoded by a single gene and uses a tightly bound FAD cofactor in the NAD(P)H dependent conversion of phenol and O2 to catechol and H2O. This group is related to the NAD binding ferredoxin reductases. Pssm-ID: 99807 Cd Length: 238 Bit Score: 42.70 E-value: 3.52e-04
|
||||||||||||
EF-hand_1 | pfam00036 | EF hand; The EF-hands can be divided into two classes: signalling proteins and buffering ... |
63-89 | 4.68e-04 | ||||||||
EF hand; The EF-hands can be divided into two classes: signalling proteins and buffering/transport proteins. The first group is the largest and includes the most well-known members of the family such as calmodulin, troponin C and S100B. These proteins typically undergo a calcium-dependent conformational change which opens a target binding site. The latter group is represented by calbindin D9k and do not undergo calcium dependent conformational changes. Pssm-ID: 425435 [Multi-domain] Cd Length: 29 Bit Score: 37.77 E-value: 4.68e-04
|
||||||||||||
EFh_PEF_ALG-2_like | cd16185 | EF-hand, calcium binding motif, found in homologs of mammalian apoptosis-linked gene 2 protein ... |
42-106 | 7.42e-04 | ||||||||
EF-hand, calcium binding motif, found in homologs of mammalian apoptosis-linked gene 2 protein (ALG-2); The family includes some homologs of mammalian apoptosis-linked gene 2 protein (ALG-2) mainly found in lower eukaryotes, such as a parasitic protist Leishmarua major and a cellular slime mold Dictyostelium discoideum. These homologs contains five EF-hand motifs. Due to the presence of unfavorable residues at the Ca2+-coordinating positions, their non-canonical EF4 and EF5 hands may not bind Ca2+. Two Dictyostelium PEF proteins are the prototypes of this family. They may bind to cytoskeletal proteins and/or signal-transducing proteins localized to detergent-resistant membranes named lipid rafts, and occur as monomers or weak homo- or heterodimers like ALG-2. They can serve as a mediator for Ca2+ signaling-related Dictyostehum programmed cell death (PCD). Pssm-ID: 320060 [Multi-domain] Cd Length: 163 Bit Score: 41.05 E-value: 7.42e-04
|
||||||||||||
flavohem_like_fad_nad_binding | cd06184 | FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain ... |
585-632 | 7.74e-04 | ||||||||
FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain containing a B-type heme fused with a ferredoxin reductase-like FAD/NAD-binding domain. Flavohemoglobins detoxify nitric oxide (NO) via an NO dioxygenase reaction. The hemoglobin domain adopts a globin fold with an embedded heme molecule. Flavohemoglobins also have a C-terminal reductase domain with bindiing sites for FAD and NAD(P)H. This domain catalyzes the conversion of NO + O2 + NAD(P)H to NO3- + NAD(P)+. Instead of the oxygen transport function of hemoglobins, flavohemoglobins seem to act in NO dioxygenation and NO signalling. Pssm-ID: 99781 Cd Length: 247 Bit Score: 41.77 E-value: 7.74e-04
|
||||||||||||
EFh_PEF_Group_I | cd16180 | Penta-EF hand, calcium binding motifs, found in Group I PEF proteins; The family corresponds ... |
62-197 | 1.08e-03 | ||||||||
Penta-EF hand, calcium binding motifs, found in Group I PEF proteins; The family corresponds to Group I PEF proteins that have been found not only in higher animals but also in lower animals, plants, fungi and protists. Group I PEF proteins include apoptosis-linked gene 2 protein (ALG-2), peflin and similar proteins. ALG-2, also termed programmed cell death protein 6 (PDCD6), is a widely expressed calcium-binding modulator protein associated with cell proliferation and death, as well as cell survival. It forms a homodimer in the cell or a heterodimer with its closest paralog peflin. Among the PEF proteins, ALG-2 can bind three Ca2+ ions through its EF1, EF3, and EF5 hands, where it is unique in that its EF5 hand binds Ca2+ ion in a canonical coordination. Peflin is a ubiquitously expressed 30-kD PEF protein containing five EF-hand motifs in its C-terminal domain and a longer N-terminal hydrophobic domain (NHB domain) than any other member of the PEF family. The NHB domain harbors nine repeats of a nonapeptide (A/PPGGPYGGP). Peflin may modulate the function of ALG-2 in Ca2+ signaling. It exists only as a heterodimer with ALG-2, and binds two Ca2+ ions through its EF1 and EF3 hands. Its additional EF5 hand is unpaired and does not bind Ca2+ ion but mediates the heterodimerization with ALG-2. The dissociation of heterodimer occurs in the presence of Ca2+. Pssm-ID: 320055 [Multi-domain] Cd Length: 164 Bit Score: 40.59 E-value: 1.08e-03
|
||||||||||||
EFh | smart00054 | EF-hand, calcium binding motif; EF-hands are calcium-binding motifs that occur at least in ... |
63-89 | 2.29e-03 | ||||||||
EF-hand, calcium binding motif; EF-hands are calcium-binding motifs that occur at least in pairs. Links between disease states and genes encoding EF-hands, particularly the S100 subclass, are emerging. Each motif consists of a 12 residue loop flanked on either side by a 12 residue alpha-helix. EF-hands undergo a conformational change unpon binding calcium ions. Pssm-ID: 197492 [Multi-domain] Cd Length: 29 Bit Score: 35.82 E-value: 2.29e-03
|
||||||||||||
EFh_PEF_CalpA_B | cd16196 | Penta-EF hand, calcium binding motifs, found in Drosophila melanogaster calpain-A (CalpA), ... |
35-152 | 2.49e-03 | ||||||||
Penta-EF hand, calcium binding motifs, found in Drosophila melanogaster calpain-A (CalpA), calpain-B (CalpB), and similar proteins; The family contains two calpains that have been found in Drosophila, CalpA and CalpB. CalpA, also termed calcium-activated neutral proteinase A (CANP A), or calpain-A catalytic subunit, is a Drosophila calpain homolog specifically expressed in a few neurons in the central nervous system, in scattered endocrine cells in the midgut, and in blood cells. CalpB, also termed calcium-activated neutral proteinase B (CANP B), contains calpain-B catalytic subunit 1 and calpain-B catalytic subunit 2. Both CalpA and CalpB are closely related to that of vertebrate calpains, and they share similar domain architecture, which consists of four domains: the N-terminal domain I, the catalytic domain II carrying the three active site residues, Cys, His and Asn, the Ca2+-regulated phospholipid-binding domain III, and penta-EF-hand Ca2+-binding domain IV. Besides, CalpA and CalpB display some distinguishing structural features that are not found in mammalian typical calpains. CalpA harbors a 76 amino acid long hydrophobic stretch inserted in domain IV, which may be involved in membrane attachment of this enzyme. CalpB has an unusually long N-terminal tail of 224 amino acids, which belongs to the class of intrinsically unstructured proteins (IUP) and may become ordered upon binding to target protein(s). Moreover, they do not need small regulatory subunits for their catalytic activity, and their proteolytic function is not regulated by an intrinsic inhibitor as the Drosophila genome contains neither regulatory subunit nor calpastatin orthologs. As a result, they may exist as a monomer or perhaps as a homo- or heterodimer together with a second large subunit. Furthermore, both CalpA and CalpB are dispensable for viability and fertility and do not share vital functions during Drosophila development. Phosphatidylinositol 4,5-diphosphate, phosphatidylinositol 4-monophosphate, phosphatidylinositol, and phosphatidic acid can stimulate the activity and the rate of activation of CalpA, but not CalpB. Calpain A modulates Toll responses by limited Cactus/IkappaB proteolysis. CalpB directly interacts with talin, an important component of the focal adhesion complex, and functions as an important modulator in border cell migration within egg chambers, which may act via the digestion of talin. CalpB can be phosphorylated by cAMP-dependent protein kinase (protein kinase A, PKA; EC 2.7.11.11) at Ser240 and Ser845, as well as by mitogen-activated protein kinase (ERK1 and ERK2; EC 2.7.11.24) at Thr747. The activation of the ERK pathway by extracellular signals results in the phosphorylation and activation of calpain B. In Schneider cells (S2), calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes. Pssm-ID: 320071 [Multi-domain] Cd Length: 167 Bit Score: 39.49 E-value: 2.49e-03
|
||||||||||||
PA_degradation_oxidoreductase_like | cd06214 | NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation ... |
569-613 | 2.81e-03 | ||||||||
NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation oxidoreductase. PA oxidoreductases of E. coli hydroxylate PA-CoA in the second step of PA degradation. Members of this group typically fuse a ferredoxin reductase-like domain with an iron-sulfur binding cluster domain. Ferredoxins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal portion may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria and participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. Pssm-ID: 99810 [Multi-domain] Cd Length: 241 Bit Score: 40.22 E-value: 2.81e-03
|
||||||||||||
DHOD_e_trans_like | cd06192 | FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like ... |
469-601 | 3.56e-03 | ||||||||
FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99789 [Multi-domain] Cd Length: 243 Bit Score: 40.00 E-value: 3.56e-03
|
||||||||||||
EFh_PEF_Group_I | cd16180 | Penta-EF hand, calcium binding motifs, found in Group I PEF proteins; The family corresponds ... |
43-87 | 3.91e-03 | ||||||||
Penta-EF hand, calcium binding motifs, found in Group I PEF proteins; The family corresponds to Group I PEF proteins that have been found not only in higher animals but also in lower animals, plants, fungi and protists. Group I PEF proteins include apoptosis-linked gene 2 protein (ALG-2), peflin and similar proteins. ALG-2, also termed programmed cell death protein 6 (PDCD6), is a widely expressed calcium-binding modulator protein associated with cell proliferation and death, as well as cell survival. It forms a homodimer in the cell or a heterodimer with its closest paralog peflin. Among the PEF proteins, ALG-2 can bind three Ca2+ ions through its EF1, EF3, and EF5 hands, where it is unique in that its EF5 hand binds Ca2+ ion in a canonical coordination. Peflin is a ubiquitously expressed 30-kD PEF protein containing five EF-hand motifs in its C-terminal domain and a longer N-terminal hydrophobic domain (NHB domain) than any other member of the PEF family. The NHB domain harbors nine repeats of a nonapeptide (A/PPGGPYGGP). Peflin may modulate the function of ALG-2 in Ca2+ signaling. It exists only as a heterodimer with ALG-2, and binds two Ca2+ ions through its EF1 and EF3 hands. Its additional EF5 hand is unpaired and does not bind Ca2+ ion but mediates the heterodimerization with ALG-2. The dissociation of heterodimer occurs in the presence of Ca2+. Pssm-ID: 320055 [Multi-domain] Cd Length: 164 Bit Score: 38.66 E-value: 3.91e-03
|
||||||||||||
XopAW | NF041410 | XopAW family type III secretion system calcium-binding effector; |
42-87 | 3.98e-03 | ||||||||
XopAW family type III secretion system calcium-binding effector; Pssm-ID: 469301 [Multi-domain] Cd Length: 227 Bit Score: 39.66 E-value: 3.98e-03
|
||||||||||||
EFh_PEF_sorcin | cd16187 | Penta-EF hand, calcium binding motifs, found in sorcin; Sorcin, also termed 22 kDa Ca2 ... |
43-87 | 4.93e-03 | ||||||||
Penta-EF hand, calcium binding motifs, found in sorcin; Sorcin, also termed 22 kDa Ca2+-binding protein, CP-22, or V19, is a soluble resistance-related calcium-binding protein that is expressed in normal mammalian tissues, such as the liver, lungs and heart. The up-regulation of sorcin is correlated with a number of cancer types, including colorectal, gastric and breast cancer. It may represent a therapeutic target for reversing tumor multidrug resistance (MDR). Sorcin participates in the regulation of calcium homeostasis in cells and is necessary for the activation of mitosis and cytokinesis. It enhances metastasis and promotes epithelial-to-mesenchymal transition of colorectal cancer. Moreover, sorcin has been implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. It displays the anti-apoptotic properties via the modulation of mitochondrial Ca2+ handling in cardiac myocytes. It can target and activate the sarcolemmal Na+/Ca2+ exchanger (NCX1) in cardiac muscle. Meanwhile, sorcin modulates cardiac L-type Ca2+ current by functional interaction with the alpha1C subunit. It also associates with calcium/calmodulin-dependent protein kinase IIdeltaC (CaMKIIdelta(C)) and further modulates ryanodine receptor (RyR) function in cardiac myocytes. Furthermore, sorcin may act as a Ca2+ sensor for glucose-induced nuclear translocation and the activation of carbohydrate-responsive element-binding protein (ChREBP)-dependent genes. As a mitochondrial chaperone TRAP1 interactor, sorcin involves in mitochondrial metabolism through the TRAP1 pathway. In addition, sorcin may regulate the inhibition of type I interferon response in cells through interacting with foot-and-mouth disease virus (FMDV) VP1. Sorcin contains a flexible glycine and proline-rich N-terminal extension and five EF-hand motifs that associate with membranes in a calcium-dependent manner. It may harbor three potential Ca2+ binding sites through its EF1, EF2 and EF3 hands. However, binding of only two Ca2+/monomer suffices to trigger the conformational change that exposes hydrophobic regions and leads to interaction with the respective targets. Sorcin forms homodimers through the association of the unpaired EF5 hand. Among the PEF proteins, sorcin is unique in that it contains potential phosphorylation sites by cAMP-dependent protein kinase (PKA), and it can form a tetramer at slightly acid pH values although remaining a stable dimer at neutral pH. Pssm-ID: 320062 [Multi-domain] Cd Length: 165 Bit Score: 38.73 E-value: 4.93e-03
|
||||||||||||
EFh_HEF | cd15902 | EF-hand, calcium binding motif, found in the hexa-EF hand proteins family; The hexa-EF hand ... |
137-203 | 9.38e-03 | ||||||||
EF-hand, calcium binding motif, found in the hexa-EF hand proteins family; The hexa-EF hand proteins family, also named the calbindin sub-family, contains a group of six EF-hand Ca2+-binding proteins, including calretinin (CR, also termed 29 kDa calbindin), calbindin D28K (CB, also termed vitamin D-dependent calcium-binding protein, avian-type), and secretagogin (SCGN). CR is a cytosolic hexa-EF-hand calcium-binding protein predominantly expressed in a variety of normal and tumorigenic t-specific neurons of the central and peripheral nervous system. It is a multifunctional protein implicated in many biological processes, including cell proliferation, differentiation, and cell death. CB is highly expressed in brain tissue. It is a strong calcium-binding and buffering protein responsible for preventing a neuronal death as well as maintaining and controlling calcium homeostasis. SCGN is a six EF-hand calcium-binding protein expressed in neuroendocrine, pancreatic endocrine and retinal cells. It plays a crucial role in cell apoptosis, receptor signaling and differentiation. It is also involved in vesicle secretion through binding to various proteins, including interacts with SNAP25, SNAP23, DOC2alpha, ARFGAP2, rootletin, KIF5B, beta-tubulin, DDAH-2, ATP-synthase and myeloid leukemia factor 2. SCGN functions as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Although the family members share a significant amount of secondary sequence homology, they display altered structural and biochemical characteristics, and operate in distinct fashions. CB contains six EF-hand motifs in a single globular domain, where EF-hands 1, 3, 4, 5 bind four calcium ions. CR contains six EF-hand motifs within two independent domains, CR I-II and CR III-VI. They harbor two and four EF-hand motifs, respectively. The first 5 EF-hand motifs are capable of binding calcium ions, while the EF-hand 6 is inactive. SCGN consists of the three globular domains each of which contains a pair of EF-hand motifs. Human SCGN simultaneously binds four calcium ions through its EF-hands 3, 4, 5 and 6 in one high affinity and three low affinity calcium-binding sites. In contrast, SCGNs in other lower eukaryotes, such as D. rerio, X. laevis, M. domestica, G. gallus, O. anatinus, are fully competent in terms of six calcium-binding. Pssm-ID: 320075 [Multi-domain] Cd Length: 254 Bit Score: 38.49 E-value: 9.38e-03
|
||||||||||||
Blast search parameters | ||||
|