tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]; tRNA G26 N, ...
249-687
1.90e-72
tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]; tRNA G26 N,N-dimethylase Trm1 is part of the Pathway/BioSystem: tRNA modification
The actual alignment was detected with superfamily member COG1867:
Pssm-ID: 441472 Cd Length: 383 Bit Score: 240.54 E-value: 1.90e-72
tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]; tRNA G26 N, ...
249-687
1.90e-72
tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]; tRNA G26 N,N-dimethylase Trm1 is part of the Pathway/BioSystem: tRNA modification
Pssm-ID: 441472 Cd Length: 383 Bit Score: 240.54 E-value: 1.90e-72
N2,N2-dimethylguanosine tRNA methyltransferase; This enzyme EC:2.1.1.32 used S-AdoMet to ...
241-676
1.08e-43
N2,N2-dimethylguanosine tRNA methyltransferase; This enzyme EC:2.1.1.32 used S-AdoMet to methylate tRNA. The TRM1 gene of Saccharomyces cerevisiae is necessary for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNAs. The enzyme is found in both eukaryotes and archaebacteria
Pssm-ID: 396545 Cd Length: 375 Bit Score: 161.78 E-value: 1.08e-43
tRNA(guanine-26,N2-N2) methyltransferase; This enzyme is responsible for two methylations of a ...
241-676
4.42e-43
tRNA(guanine-26,N2-N2) methyltransferase; This enzyme is responsible for two methylations of a characteristic guanine of most tRNA molecules. The activity has been demonstrated for eukaryotic and archaeal proteins, which are active when expressed in E. coli, a species that lacks this enzyme. At least one Eubacterium, Aquifex aeolicus, has an ortholog, as do all completed archaeal genomes. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 273006 Cd Length: 374 Bit Score: 160.01 E-value: 4.42e-43
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; ...
277-387
6.64e-03
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; AdoMet-MTases are enzymes that use S-adenosyl-L-methionine (SAM or AdoMet) as a substrate for methyltransfer, creating the product S-adenosyl-L-homocysteine (AdoHcy). There are at least five structurally distinct families of AdoMet-MTases, class I being the largest and most diverse. Within this class enzymes can be classified by different substrate specificities (small molecules, lipids, nucleic acids, etc.) and different target atoms for methylation (nitrogen, oxygen, carbon, sulfur, etc.).
Pssm-ID: 100107 [Multi-domain] Cd Length: 107 Bit Score: 37.02 E-value: 6.64e-03
tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]; tRNA G26 N, ...
249-687
1.90e-72
tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]; tRNA G26 N,N-dimethylase Trm1 is part of the Pathway/BioSystem: tRNA modification
Pssm-ID: 441472 Cd Length: 383 Bit Score: 240.54 E-value: 1.90e-72
N2,N2-dimethylguanosine tRNA methyltransferase; This enzyme EC:2.1.1.32 used S-AdoMet to ...
241-676
1.08e-43
N2,N2-dimethylguanosine tRNA methyltransferase; This enzyme EC:2.1.1.32 used S-AdoMet to methylate tRNA. The TRM1 gene of Saccharomyces cerevisiae is necessary for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNAs. The enzyme is found in both eukaryotes and archaebacteria
Pssm-ID: 396545 Cd Length: 375 Bit Score: 161.78 E-value: 1.08e-43
tRNA(guanine-26,N2-N2) methyltransferase; This enzyme is responsible for two methylations of a ...
241-676
4.42e-43
tRNA(guanine-26,N2-N2) methyltransferase; This enzyme is responsible for two methylations of a characteristic guanine of most tRNA molecules. The activity has been demonstrated for eukaryotic and archaeal proteins, which are active when expressed in E. coli, a species that lacks this enzyme. At least one Eubacterium, Aquifex aeolicus, has an ortholog, as do all completed archaeal genomes. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 273006 Cd Length: 374 Bit Score: 160.01 E-value: 4.42e-43
Met-10+ like-protein; The methionine-10 mutant allele of N. crassa codes for a protein of ...
245-390
1.75e-04
Met-10+ like-protein; The methionine-10 mutant allele of N. crassa codes for a protein of unknown function, Swiss:O27901. However, homologous proteins have been found in yeast suggesting this protein may be involved in methionine biosynthesis, transport and/or utilization.
Pssm-ID: 396850 [Multi-domain] Cd Length: 198 Bit Score: 43.11 E-value: 1.75e-04
tRNA G37 N-methylase Trm5 [Translation, ribosomal structure and biogenesis]; tRNA G37 N-methylase Trm5 is part of the Pathway/BioSystem: tRNA modification
Pssm-ID: 442010 [Multi-domain] Cd Length: 333 Bit Score: 43.31 E-value: 3.76e-04
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; ...
277-387
6.64e-03
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; AdoMet-MTases are enzymes that use S-adenosyl-L-methionine (SAM or AdoMet) as a substrate for methyltransfer, creating the product S-adenosyl-L-homocysteine (AdoHcy). There are at least five structurally distinct families of AdoMet-MTases, class I being the largest and most diverse. Within this class enzymes can be classified by different substrate specificities (small molecules, lipids, nucleic acids, etc.) and different target atoms for methylation (nitrogen, oxygen, carbon, sulfur, etc.).
Pssm-ID: 100107 [Multi-domain] Cd Length: 107 Bit Score: 37.02 E-value: 6.64e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options