protein farnesyltransferase subunit beta is an essential subunit of the farnesyltransferase complex that catalyzes the transfer of a farnesyl moiety from farnesyl diphosphate to a cysteine at the fourth position from the C-terminus of several proteins having the C-terminal sequence Cys-aliphatic-aliphatic-X
Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase ...
75-373
0e+00
Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). FTases are a subgroup of PTase family of lipid-modifying enzymes. PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. These proteins are heterodimers of alpha and beta subunits. Both subunits are required for catalytic activity. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids. Ftase attaches a 15-carbon farnesyl group to the cysteine within the C-terminal CaaX motif of substrate proteins when X is Ala, Met, Ser, Cys or Gln. Protein farnesylation has been shown to play critical roles in a variety of cellular processes including Ras/mitogen activated protein kinase signaling pathways in mammals and, abscisic acid signal transduction in Arabidopsis.
:
Pssm-ID: 239223 [Multi-domain] Cd Length: 299 Bit Score: 540.29 E-value: 0e+00
Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase ...
75-373
0e+00
Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). FTases are a subgroup of PTase family of lipid-modifying enzymes. PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. These proteins are heterodimers of alpha and beta subunits. Both subunits are required for catalytic activity. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids. Ftase attaches a 15-carbon farnesyl group to the cysteine within the C-terminal CaaX motif of substrate proteins when X is Ala, Met, Ser, Cys or Gln. Protein farnesylation has been shown to play critical roles in a variety of cellular processes including Ras/mitogen activated protein kinase signaling pathways in mammals and, abscisic acid signal transduction in Arabidopsis.
Pssm-ID: 239223 [Multi-domain] Cd Length: 299 Bit Score: 540.29 E-value: 0e+00
Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase ...
75-373
0e+00
Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). FTases are a subgroup of PTase family of lipid-modifying enzymes. PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. These proteins are heterodimers of alpha and beta subunits. Both subunits are required for catalytic activity. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids. Ftase attaches a 15-carbon farnesyl group to the cysteine within the C-terminal CaaX motif of substrate proteins when X is Ala, Met, Ser, Cys or Gln. Protein farnesylation has been shown to play critical roles in a variety of cellular processes including Ras/mitogen activated protein kinase signaling pathways in mammals and, abscisic acid signal transduction in Arabidopsis.
Pssm-ID: 239223 [Multi-domain] Cd Length: 299 Bit Score: 540.29 E-value: 0e+00
Protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). The ...
75-373
1.44e-141
Protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). The protein prenyltransferase family of lipid-modifying enzymes includes protein farnesyltransferase (FTase) and geranylgeranyltransferase types I and II (GGTase-I and GGTase-II). They catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between the C1 atom of farnesyl (15-carbon by FTase) or geranylgeranyl (20-carbon by GGTase-I, II) isoprenoid lipids and cysteine residues at or near the C-terminus of protein acceptors. FTase and GGTase-I prenylate the cysteine in the terminal sequence, "CAAX"; and GGTase-II prenylates both cysteines in the "CC" (or "CXC") terminal sequence. These enzymes are heterodimeric with both alpha and beta subunits required for catalytic activity. In contrast to other prenyltransferases, GGTase-II does not recognize its protein acceptor directly but requires Rab to complex with REP (Rab escort protein) before prenylation can occur. These enzymes are found exclusively in eukaryotes.
Pssm-ID: 239220 [Multi-domain] Cd Length: 286 Bit Score: 405.81 E-value: 1.44e-141
This group contains class II terpene cyclases, protein prenyltransferases beta subunit, two ...
75-373
9.81e-67
This group contains class II terpene cyclases, protein prenyltransferases beta subunit, two broadly specific proteinase inhibitors alpha2-macroglobulin (alpha (2)-M) and pregnancy zone protein (PZP) and, the C3 C4 and C5 components of vertebrate complement. Class II terpene cyclases include squalene cyclase (SQCY) and 2,3-oxidosqualene cyclase (OSQCY), these integral membrane proteins catalyze a cationic cyclization cascade converting linear triterpenes to fused ring compounds. The protein prenyltransferases include protein farnesyltransferase (FTase) and geranylgeranyltransferase types I and II (GGTase-I and GGTase-II) which catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Alpha (2)-M is a major carrier protein in serum and involved in the immobilization and entrapment of proteases. PZP is a pregnancy associated protein. Alpha (2)-M and PZP are known to bind to and, may modulate, the activity of placental protein-14 in T-cell growth and cytokine production thereby protecting the allogeneic fetus from attack by the maternal immune system.
Pssm-ID: 238362 [Multi-domain] Cd Length: 300 Bit Score: 215.11 E-value: 9.81e-67
Geranylgeranyltransferase types I (GGTase-I)-like proteins containing the protein ...
75-372
8.53e-52
Geranylgeranyltransferase types I (GGTase-I)-like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). GGTase-I s are a subgroup of the protein prenyltransferase family of lipid-modifying enzymes PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids (geranylgeranyl (20-carbon) in the case of GGTase-I ). GGTase-I prenylates the cysteine in the terminal sequence, "CAAX" when X is Leu or Phe. Substrates for GTTase-I include the gamma subunit of neural G-proteins and several Ras-related G-proteins. PTases are heterodimeric with both alpha and beta subunits required for catalytic activity.
Pssm-ID: 239225 [Multi-domain] Cd Length: 307 Bit Score: 176.32 E-value: 8.53e-52
Geranylgeranyltransferase type II (GGTase-II)_like proteins containing the protein ...
73-371
5.64e-49
Geranylgeranyltransferase type II (GGTase-II)_like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). GGTase-IIs are a subgroup of the protein prenyltransferase family of lipid-modifying enzymes. PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids (geranylgeranyl (20-carbon) in the case of GGTase-II ). GGTase-II catalyzes alkylation of both cysteine residues in Rab proteins containing carboxy-terminal "CC", "CXCX" or "CXC" motifs. PTases are heterodimeric with both alpha and beta subunits required for catalytic activity. In contrast to other prenyltransferases, GGTas-II requires an escort protein to bring the substrate protein to the catalytic heterodimer and to escort the geryanylgeranylated product to the membrane.
Pssm-ID: 239224 [Multi-domain] Cd Length: 287 Bit Score: 168.60 E-value: 5.64e-49
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options