diacylglycerol kinase eta isoform 1 [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
DAGKa | smart00045 | Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger ... |
770-927 | 1.21e-80 | |||
Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known. : Pssm-ID: 214486 Cd Length: 160 Bit Score: 260.73 E-value: 1.21e-80
|
|||||||
PH_DGK_type2 | cd13274 | Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ... |
67-163 | 4.60e-60 | |||
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 270093 Cd Length: 97 Bit Score: 200.32 E-value: 4.60e-60
|
|||||||
C1_DGKeta_rpt1 | cd20848 | first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ... |
147-232 | 1.98e-56 | |||
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. : Pssm-ID: 410398 Cd Length: 86 Bit Score: 189.60 E-value: 1.98e-56
|
|||||||
DAGKc | smart00046 | Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger ... |
334-456 | 6.63e-48 | |||
Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown. : Pssm-ID: 214487 [Multi-domain] Cd Length: 124 Bit Score: 166.70 E-value: 6.63e-48
|
|||||||
C1_DGKeta_rpt2 | cd20894 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ... |
243-304 | 3.14e-41 | |||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. : Pssm-ID: 410444 Cd Length: 62 Bit Score: 145.04 E-value: 3.14e-41
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
DAGKa | smart00045 | Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger ... |
770-927 | 1.21e-80 | ||||
Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known. Pssm-ID: 214486 Cd Length: 160 Bit Score: 260.73 E-value: 1.21e-80
|
||||||||
DAGK_acc | pfam00609 | Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts ... |
770-927 | 5.26e-71 | ||||
Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. This domain is assumed to be an accessory domain: its function is unknown. Pssm-ID: 459866 Cd Length: 158 Bit Score: 233.65 E-value: 5.26e-71
|
||||||||
PH_DGK_type2 | cd13274 | Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ... |
67-163 | 4.60e-60 | ||||
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270093 Cd Length: 97 Bit Score: 200.32 E-value: 4.60e-60
|
||||||||
C1_DGKeta_rpt1 | cd20848 | first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ... |
147-232 | 1.98e-56 | ||||
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410398 Cd Length: 86 Bit Score: 189.60 E-value: 1.98e-56
|
||||||||
DAGKc | smart00046 | Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger ... |
334-456 | 6.63e-48 | ||||
Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown. Pssm-ID: 214487 [Multi-domain] Cd Length: 124 Bit Score: 166.70 E-value: 6.63e-48
|
||||||||
C1_DGKeta_rpt2 | cd20894 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ... |
243-304 | 3.14e-41 | ||||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410444 Cd Length: 62 Bit Score: 145.04 E-value: 3.14e-41
|
||||||||
DAGK_cat | pfam00781 | Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts ... |
332-449 | 5.40e-32 | ||||
Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. The catalytic domain is assumed from the finding of bacterial homologs. YegS is the Escherichia coli protein in this family whose crystal structure reveals an active site in the inter-domain cleft formed by four conserved sequence motifs, revealing a novel metal-binding site. The residues of this site are conserved across the family. Pssm-ID: 425868 [Multi-domain] Cd Length: 125 Bit Score: 121.15 E-value: 5.40e-32
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
67-157 | 1.47e-18 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 81.83 E-value: 1.47e-18
|
||||||||
C1 | smart00109 | Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ... |
176-225 | 9.29e-17 | ||||
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. Pssm-ID: 197519 Cd Length: 50 Bit Score: 75.20 E-value: 9.29e-17
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
67-156 | 1.05e-13 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 68.36 E-value: 1.05e-13
|
||||||||
C1_1 | pfam00130 | Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ... |
176-225 | 5.53e-12 | ||||
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain. Pssm-ID: 395079 Cd Length: 53 Bit Score: 61.69 E-value: 5.53e-12
|
||||||||
LCB5 | COG1597 | Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, ... |
333-455 | 2.08e-11 | ||||
Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, General function prediction only]; Pssm-ID: 441205 [Multi-domain] Cd Length: 295 Bit Score: 66.03 E-value: 2.08e-11
|
||||||||
C1 | smart00109 | Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ... |
248-293 | 6.36e-09 | ||||
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. Pssm-ID: 197519 Cd Length: 50 Bit Score: 52.86 E-value: 6.36e-09
|
||||||||
LCB5 | COG1597 | Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, ... |
773-926 | 1.45e-08 | ||||
Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, General function prediction only]; Pssm-ID: 441205 [Multi-domain] Cd Length: 295 Bit Score: 57.55 E-value: 1.45e-08
|
||||||||
C1_1 | pfam00130 | Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ... |
248-301 | 3.31e-08 | ||||
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain. Pssm-ID: 395079 Cd Length: 53 Bit Score: 50.90 E-value: 3.31e-08
|
||||||||
PRK12361 | PRK12361 | hypothetical protein; Provisional |
385-455 | 3.63e-07 | ||||
hypothetical protein; Provisional Pssm-ID: 183473 [Multi-domain] Cd Length: 547 Bit Score: 54.24 E-value: 3.63e-07
|
||||||||
TIGR00147 | TIGR00147 | lipid kinase, YegS/Rv2252/BmrU family; The E. coli member of this family, YegS has been ... |
378-428 | 1.67e-03 | ||||
lipid kinase, YegS/Rv2252/BmrU family; The E. coli member of this family, YegS has been purified and shown to have phosphatidylglycerol kinase activity. The member from M. tuberculosis, Rv2252, has diacylglycerol kinase activity. BmrU from B. subtilis is in an operon with multidrug efflux transporter Bmr, but is uncharacterized. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 161732 [Multi-domain] Cd Length: 293 Bit Score: 41.72 E-value: 1.67e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
DAGKa | smart00045 | Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger ... |
770-927 | 1.21e-80 | ||||
Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known. Pssm-ID: 214486 Cd Length: 160 Bit Score: 260.73 E-value: 1.21e-80
|
||||||||
DAGK_acc | pfam00609 | Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts ... |
770-927 | 5.26e-71 | ||||
Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. This domain is assumed to be an accessory domain: its function is unknown. Pssm-ID: 459866 Cd Length: 158 Bit Score: 233.65 E-value: 5.26e-71
|
||||||||
PH_DGK_type2 | cd13274 | Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ... |
67-163 | 4.60e-60 | ||||
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270093 Cd Length: 97 Bit Score: 200.32 E-value: 4.60e-60
|
||||||||
C1_DGKeta_rpt1 | cd20848 | first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ... |
147-232 | 1.98e-56 | ||||
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410398 Cd Length: 86 Bit Score: 189.60 E-value: 1.98e-56
|
||||||||
DAGKc | smart00046 | Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger ... |
334-456 | 6.63e-48 | ||||
Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown. Pssm-ID: 214487 [Multi-domain] Cd Length: 124 Bit Score: 166.70 E-value: 6.63e-48
|
||||||||
C1_DGKdelta_rpt1 | cd20847 | first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta ... |
152-236 | 4.71e-47 | ||||
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta (DAG kinase delta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase delta, also called 130 kDa diacylglycerol kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. DAG kinase delta contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410397 Cd Length: 85 Bit Score: 162.58 E-value: 4.71e-47
|
||||||||
C1_DGKeta_rpt2 | cd20894 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ... |
243-304 | 3.14e-41 | ||||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410444 Cd Length: 62 Bit Score: 145.04 E-value: 3.14e-41
|
||||||||
C1_DGK_typeII_rpt1 | cd20800 | first protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; ... |
172-231 | 9.17e-39 | ||||
first protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type II DAG kinases (DGKs) contain pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. Three DGK isozymes (delta, eta and kappa) are classified as type II. DAG kinase delta, also called 130 kDa DAG kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. The DAG kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase kappa is also called diglyceride kinase kappa (DGK-kappa) or 142 kDa DAG kinase. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410350 Cd Length: 60 Bit Score: 138.22 E-value: 9.17e-39
|
||||||||
C1_DGKdelta_rpt2 | cd20893 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta ... |
243-303 | 9.98e-37 | ||||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta (DAG kinase delta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase delta, also called 130 kDa diacylglycerol kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. DAG kinase delta contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410443 Cd Length: 61 Bit Score: 132.49 E-value: 9.98e-37
|
||||||||
C1_DGK_typeII_rpt2 | cd20852 | second protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; ... |
248-301 | 2.53e-33 | ||||
second protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type II DAG kinases (DGKs) contain pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. Three DGK isozymes (delta, eta and kappa) are classified as type II. DAG kinase delta, also called 130 kDa DAG kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. The DAG kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase kappa is also called diglyceride kinase kappa (DGK-kappa) or 142 kDa DAG kinase. Members of this family contain two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410402 Cd Length: 54 Bit Score: 122.43 E-value: 2.53e-33
|
||||||||
DAGK_cat | pfam00781 | Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts ... |
332-449 | 5.40e-32 | ||||
Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. The catalytic domain is assumed from the finding of bacterial homologs. YegS is the Escherichia coli protein in this family whose crystal structure reveals an active site in the inter-domain cleft formed by four conserved sequence motifs, revealing a novel metal-binding site. The residues of this site are conserved across the family. Pssm-ID: 425868 [Multi-domain] Cd Length: 125 Bit Score: 121.15 E-value: 5.40e-32
|
||||||||
C1_DGK_rpt2 | cd20805 | second protein kinase C conserved region 1 (C1 domain) found in the diacylglycerol kinase ... |
248-301 | 2.05e-20 | ||||
second protein kinase C conserved region 1 (C1 domain) found in the diacylglycerol kinase family; The diacylglycerol kinase (DGK, EC 2.7.1.107) family of enzymes plays critical roles in lipid signaling pathways by converting diacylglycerol to phosphatidic acid, thereby downregulating signaling by the former and upregulating signaling by the latter second messenger. Ten DGK family isozymes have been identified to date, which possess different interaction motifs imparting distinct temporal and spatial control of DGK activity to each isozyme. They have been classified into five types (I-V), according to domain architecture and some common features. All DGK isozymes, except for DGKtheta, contain two copies of the C1 domain. This model corresponds to the second one. DGKtheta harbors three C1 domains. Its third C1 domain is included here. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410355 Cd Length: 55 Bit Score: 85.58 E-value: 2.05e-20
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
67-157 | 1.47e-18 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 81.83 E-value: 1.47e-18
|
||||||||
C1_DGKepsilon_typeIII_rpt2 | cd20853 | second protein kinase C conserved region 1 (C1 domain) found in type III diacylglycerol kinase, ... |
248-310 | 1.88e-18 | ||||
second protein kinase C conserved region 1 (C1 domain) found in type III diacylglycerol kinase, DAG kinase epsilon, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase epsilon, also called diglyceride kinase epsilon (DGK-epsilon), is the only isoform classified as type III; it possesses a hydrophobic domain in addition to C1 and catalytic domains that are present in all DGKs, and shows selectivity for acyl chains. It is highly selective for arachidonate-containing species of DAG. It may terminate signals transmitted through arachidonoyl-DAG or may contribute to the synthesis of phospholipids with defined fatty acid composition. DAG kinase epsilon contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410403 Cd Length: 63 Bit Score: 80.40 E-value: 1.88e-18
|
||||||||
C1_DGKtheta_typeV_rpt3 | cd20854 | third protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, ... |
248-310 | 3.79e-17 | ||||
third protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, DAG kinase theta, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase theta, also called diglyceride kinase theta (DGK-theta), is the only isoform classified as type V; it contains a pleckstrin homology (PH)-like domain and an additional C1 domain, compared to other DGKs. It may regulate the activity of protein kinase C by controlling the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DAG kinase theta contains three copies of the C1 domain. This model corresponds to the third one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410404 Cd Length: 63 Bit Score: 76.53 E-value: 3.79e-17
|
||||||||
C1 | smart00109 | Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ... |
176-225 | 9.29e-17 | ||||
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. Pssm-ID: 197519 Cd Length: 50 Bit Score: 75.20 E-value: 9.29e-17
|
||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
68-153 | 8.79e-16 | ||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 73.73 E-value: 8.79e-16
|
||||||||
PH_TAAP2-like | cd13255 | Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ... |
67-153 | 1.51e-14 | ||||
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270075 Cd Length: 110 Bit Score: 70.91 E-value: 1.51e-14
|
||||||||
PH_ACAP | cd13250 | ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ... |
68-156 | 4.87e-14 | ||||
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270070 Cd Length: 98 Bit Score: 68.79 E-value: 4.87e-14
|
||||||||
C1 | cd00029 | protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ... |
176-225 | 8.63e-14 | ||||
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme. Pssm-ID: 410341 Cd Length: 50 Bit Score: 66.77 E-value: 8.63e-14
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
67-156 | 1.05e-13 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 68.36 E-value: 1.05e-13
|
||||||||
PH_DAPP1 | cd10573 | Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ... |
68-155 | 2.24e-13 | ||||
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269977 [Multi-domain] Cd Length: 96 Bit Score: 66.96 E-value: 2.24e-13
|
||||||||
PH1_PH_fungal | cd13298 | Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ... |
67-163 | 5.14e-13 | ||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270110 Cd Length: 106 Bit Score: 66.11 E-value: 5.14e-13
|
||||||||
PH_AtPH1 | cd13276 | Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ... |
68-153 | 2.75e-12 | ||||
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270095 Cd Length: 106 Bit Score: 64.26 E-value: 2.75e-12
|
||||||||
C1_1 | pfam00130 | Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ... |
176-225 | 5.53e-12 | ||||
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain. Pssm-ID: 395079 Cd Length: 53 Bit Score: 61.69 E-value: 5.53e-12
|
||||||||
C1_PKD2_rpt2 | cd20843 | second protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and ... |
176-241 | 6.50e-12 | ||||
second protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and similar proteins; PKD2, also called PRKD2, HSPC187, or serine/threonine-protein kinase D2 (nPKC-D2), is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion. PKD2 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410393 Cd Length: 79 Bit Score: 62.30 E-value: 6.50e-12
|
||||||||
C1_DGK_typeI_rpt1 | cd20799 | first protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; ... |
174-225 | 1.02e-11 | ||||
first protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type I DAG kinases (DGKs) contain EF-hand structures that bind Ca(2+) and recoverin homology domains, in addition to C1 and catalytic domains that are present in all DGKs. Type I DGKs, regulated by calcium binding, include three DGK isozymes (alpha, beta and gamma). DAG kinase alpha, also called 80 kDa DAG kinase, or diglyceride kinase alpha (DGK-alpha), is active upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. DAG kinase beta, also called 90 kDa DAG kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. DGK-alpha contains atypical C1 domains, while DGK-beta and DGK-gamma contain typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410349 Cd Length: 62 Bit Score: 61.23 E-value: 1.02e-11
|
||||||||
LCB5 | COG1597 | Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, ... |
333-455 | 2.08e-11 | ||||
Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, General function prediction only]; Pssm-ID: 441205 [Multi-domain] Cd Length: 295 Bit Score: 66.03 E-value: 2.08e-11
|
||||||||
C1_PKD1_rpt2 | cd20842 | second protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and ... |
176-225 | 4.24e-11 | ||||
second protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and similar proteins; PKD is also called PKD1, PRKD1, protein kinase C mu type (nPKC-mu), PRKCM, serine/threonine-protein kinase D1, or nPKC-D1. It is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response. PKD contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410392 Cd Length: 94 Bit Score: 60.41 E-value: 4.24e-11
|
||||||||
C1_SpBZZ1-like | cd20824 | protein kinase C conserved region 1 (C1 domain) found in Schizosaccharomyces pombe protein ... |
175-225 | 1.04e-10 | ||||
protein kinase C conserved region 1 (C1 domain) found in Schizosaccharomyces pombe protein BZZ1 and similar proteins; BZZ1 is a syndapin-like F-BAR protein that plays a role in endocytosis and trafficking to the vacuole. It functions with type I myosins to restore polarity of the actin cytoskeleton after NaCl stress. BZZ1 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), a central coiled-coil, and two C-terminal SH3 domains. Schizosaccharomyces pombe BZZ1 also harbors a C1 domain, but Saccharomyces cerevisiae BZZ1 doesn't have any. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410374 Cd Length: 53 Bit Score: 58.10 E-value: 1.04e-10
|
||||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
68-159 | 1.99e-10 | ||||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241436 Cd Length: 96 Bit Score: 58.46 E-value: 1.99e-10
|
||||||||
PH-GRAM1_AGT26 | cd13215 | Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ... |
62-157 | 2.35e-10 | ||||
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275402 Cd Length: 116 Bit Score: 59.17 E-value: 2.35e-10
|
||||||||
C1_PKD_rpt1 | cd20795 | first protein kinase C conserved region 1 (C1 domain) found in the protein kinase D (PKD) ... |
176-225 | 4.91e-10 | ||||
first protein kinase C conserved region 1 (C1 domain) found in the protein kinase D (PKD) family; PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs contain N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410345 Cd Length: 56 Bit Score: 56.16 E-value: 4.91e-10
|
||||||||
PH_Bem3 | cd13277 | Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces ... |
66-158 | 6.94e-10 | ||||
Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces cerevisiae involves cell cycle-regulated reorganizations of cortical cytoskeletal elements and requires the action of the Rho-type GTPase Cdc42. Bem3 contains a RhoGAP domain and a PH domain. Though Bem3 and Bem2 both contain a RhoGAP, but only Bem3 is able to stimulate the hydrolysis of GTP on Cdc42. Bem3 is thought to be the GAP for Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270096 Cd Length: 111 Bit Score: 57.68 E-value: 6.94e-10
|
||||||||
PH_KIFIA_KIFIB | cd01233 | KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ... |
62-153 | 1.02e-09 | ||||
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269939 Cd Length: 103 Bit Score: 56.83 E-value: 1.02e-09
|
||||||||
PH2_PH_fungal | cd13299 | Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ... |
67-156 | 1.05e-09 | ||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270111 Cd Length: 102 Bit Score: 56.87 E-value: 1.05e-09
|
||||||||
C1_DGKtheta_typeV_rpt2 | cd20804 | second protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, ... |
176-226 | 1.57e-09 | ||||
second protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, DAG kinase theta, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase theta, also called diglyceride kinase theta (DGK-theta), is the only isoform classified as type V; it contains a pleckstrin homology (PH)-like domain and an additional C1 domain, compared to other DGKs. It may regulate the activity of protein kinase C by controlling the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DAG kinase theta contains three copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410354 Cd Length: 57 Bit Score: 54.62 E-value: 1.57e-09
|
||||||||
PH_RhoGap25-like | cd13263 | Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ... |
67-156 | 1.98e-09 | ||||
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270083 Cd Length: 114 Bit Score: 56.24 E-value: 1.98e-09
|
||||||||
C1_PKD3_rpt1 | cd20841 | first protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and ... |
176-225 | 2.70e-09 | ||||
first protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and similar proteins; PKD3 is also called PRKD3, PRKCN, serine/threonine-protein kinase D3 (nPKC-D3), protein kinase C nu type (nPKC-nu), or protein kinase EPK2. It converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. It is involved in the regulation of the cell cycle by modulating microtubule nucleation and dynamics. PKD3 acts as a key mediator in several cancer development signaling pathways. PKD3 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410391 Cd Length: 75 Bit Score: 54.66 E-value: 2.70e-09
|
||||||||
C1_CeDKF1-like_rpt1 | cd20797 | first protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine ... |
182-225 | 4.14e-09 | ||||
first protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine/threonine-protein kinase DKF-1 and similar proteins; DKF-1 converts transient diacylglycerol (DAG) signals into prolonged physiological effects, independently of PKC. It plays a role in the regulation of growth and neuromuscular control of movement. It is involved in immune response to Staphylococcus aureus bacterium by activating transcription factor hlh-30 downstream of phospholipase plc-1. Members of this group contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410347 Cd Length: 56 Bit Score: 53.63 E-value: 4.14e-09
|
||||||||
C1_nPKC_epsilon-like_rpt2 | cd20838 | second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ... |
176-225 | 4.21e-09 | ||||
second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) epsilon, eta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-epsilon has been shown to behave as an oncoprotein. Its overexpression contributes to neoplastic transformation depending on the cell type. It contributes to oncogenesis by inducing disordered cell growth and inhibiting cell death. It also plays a role in tumor invasion and metastasis. PKC-epsilon has also been found to confer cardioprotection against ischemia and reperfusion-mediated damage. Other cellular functions include the regulation of gene expression, cell adhesion, and cell motility. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410388 Cd Length: 55 Bit Score: 53.43 E-value: 4.21e-09
|
||||||||
C1_DGKbeta_rpt1 | cd20845 | first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta (DAG ... |
174-232 | 5.49e-09 | ||||
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta (DAG kinase beta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase beta, also called 90 kDa diacylglycerol kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DAG kinase beta contains two copies of the C1 domain. This model corresponds to the first one. DGK-beta contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410395 Cd Length: 66 Bit Score: 53.70 E-value: 5.49e-09
|
||||||||
C1 | smart00109 | Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ... |
248-293 | 6.36e-09 | ||||
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. Pssm-ID: 197519 Cd Length: 50 Bit Score: 52.86 E-value: 6.36e-09
|
||||||||
PH_PEPP1_2_3 | cd13248 | Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ... |
67-153 | 7.33e-09 | ||||
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270068 Cd Length: 104 Bit Score: 54.20 E-value: 7.33e-09
|
||||||||
C1_PKD3_rpt2 | cd20844 | second protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and ... |
176-225 | 1.01e-08 | ||||
second protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and similar proteins; PKD3 is also called PRKD3, PRKCN, serine/threonine-protein kinase D3 (nPKC-D3), protein kinase C nu type (nPKC-nu), or protein kinase EPK2. It converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. It is involved in the regulation of the cell cycle by modulating microtubule nucleation and dynamics. PKD3 acts as a key mediator in several cancer development signaling pathways. PKD3 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410394 Cd Length: 69 Bit Score: 53.09 E-value: 1.01e-08
|
||||||||
C1_PKD_rpt2 | cd20796 | second protein kinase C conserved region 1 (C1 domain) found in the family of protein kinase D ... |
176-225 | 1.25e-08 | ||||
second protein kinase C conserved region 1 (C1 domain) found in the family of protein kinase D (PKD); PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs contain N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410346 Cd Length: 54 Bit Score: 52.29 E-value: 1.25e-08
|
||||||||
LCB5 | COG1597 | Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, ... |
773-926 | 1.45e-08 | ||||
Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, General function prediction only]; Pssm-ID: 441205 [Multi-domain] Cd Length: 295 Bit Score: 57.55 E-value: 1.45e-08
|
||||||||
C1_cPKC_nPKC_rpt2 | cd20793 | second protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) ... |
176-225 | 1.50e-08 | ||||
second protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) protein kinase C (cPKC), novel protein kinase C (nPKC), and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. nPKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs (aPKCs) only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. This family includes classical PKCs (cPKCs) and novel PKCs (nPKCs). There are four cPKC isoforms (named alpha, betaI, betaII, and gamma) and four nPKC isoforms (delta, epsilon, eta, and theta). Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410343 Cd Length: 50 Bit Score: 51.89 E-value: 1.50e-08
|
||||||||
C1_DGKgamma_rpt1 | cd20846 | first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ... |
174-225 | 1.59e-08 | ||||
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the first one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410396 Cd Length: 73 Bit Score: 52.63 E-value: 1.59e-08
|
||||||||
C1_1 | pfam00130 | Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ... |
248-301 | 3.31e-08 | ||||
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain. Pssm-ID: 395079 Cd Length: 53 Bit Score: 50.90 E-value: 3.31e-08
|
||||||||
C1_PKD1_rpt1 | cd20839 | first protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and ... |
176-225 | 3.44e-08 | ||||
first protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and similar proteins; PKD is also called PKD1, PRKD1, protein kinase C mu type (nPKC-mu), PRKCM, serine/threonine-protein kinase D1, or nPKC-D1. It is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response. PKD contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410389 Cd Length: 72 Bit Score: 51.56 E-value: 3.44e-08
|
||||||||
PH2_ADAP | cd01251 | ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ... |
67-156 | 4.16e-08 | ||||
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241282 Cd Length: 105 Bit Score: 52.21 E-value: 4.16e-08
|
||||||||
PH_GRP1-like | cd01252 | General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ... |
66-159 | 1.74e-07 | ||||
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269954 Cd Length: 119 Bit Score: 50.78 E-value: 1.74e-07
|
||||||||
C1_DGK_typeI_like_rpt2 | cd20851 | second protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; ... |
248-301 | 2.35e-07 | ||||
second protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type I DAG kinases (DGKs) contain EF-hand structures that bind Ca(2+) and recoverin homology domains, in addition to C1 and catalytic domains that are present in all DGKs. Type I DGKs, regulated by calcium binding, include three DGK isozymes (alpha, beta and gamma). DAG kinase alpha, also called 80 kDa DAG kinase, or diglyceride kinase alpha (DGK-alpha), is active upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. DAG kinase beta, also called 90 kDa DAG kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. Members of this family contain two copies of the C1 domain. This model corresponds to the second one. DGK-alpha contains atypical C1 domains, while DGK-beta and DGK-gamma contain typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410401 Cd Length: 52 Bit Score: 48.50 E-value: 2.35e-07
|
||||||||
C1_DGKalpha_rpt2 | cd20890 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase alpha ... |
248-310 | 2.54e-07 | ||||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase alpha (DAG kinase alpha) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase alpha, also called 80 kDa diacylglycerol kinase, or diglyceride kinase alpha (DGK-alpha), converts the second messenger diacylglycerol into phosphatidate upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DAG kinase alpha contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410440 Cd Length: 62 Bit Score: 48.69 E-value: 2.54e-07
|
||||||||
C1 | cd00029 | protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ... |
248-298 | 3.62e-07 | ||||
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme. Pssm-ID: 410341 Cd Length: 50 Bit Score: 47.90 E-value: 3.62e-07
|
||||||||
PRK12361 | PRK12361 | hypothetical protein; Provisional |
385-455 | 3.63e-07 | ||||
hypothetical protein; Provisional Pssm-ID: 183473 [Multi-domain] Cd Length: 547 Bit Score: 54.24 E-value: 3.63e-07
|
||||||||
C1_DGKtheta_typeV_rpt1 | cd20803 | first protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, ... |
185-217 | 4.60e-07 | ||||
first protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, DAG kinase theta, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase theta, also called diglyceride kinase theta (DGK-theta), is the only isoform classified as type V; it contains a pleckstrin homology (PH)-like domain and an additional C1 domain, compared to other DGKs. It may regulate the activity of protein kinase C by controlling the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DAG kinase theta contains three copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410353 Cd Length: 56 Bit Score: 47.69 E-value: 4.60e-07
|
||||||||
C1_cPKC_nPKC_rpt1 | cd20792 | first protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) ... |
186-225 | 5.41e-07 | ||||
first protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) protein kinase C (cPKC), novel protein kinase C (nPKC), and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. nPKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs (aPKCs) only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. This family includes classical PKCs (cPKCs) and novel PKCs (nPKCs). There are four cPKC isoforms (named alpha, betaI, betaII, and gamma) and four nPKC isoforms (delta, epsilon, eta, and theta). Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410342 Cd Length: 53 Bit Score: 47.62 E-value: 5.41e-07
|
||||||||
PH_CpORP2-like | cd13293 | Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ... |
69-157 | 6.68e-07 | ||||
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241447 Cd Length: 88 Bit Score: 48.48 E-value: 6.68e-07
|
||||||||
PH_3BP2 | cd13308 | SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ... |
67-154 | 7.24e-07 | ||||
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270118 Cd Length: 113 Bit Score: 48.94 E-value: 7.24e-07
|
||||||||
C1_PKD2_rpt1 | cd20840 | first protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and ... |
182-225 | 7.82e-07 | ||||
first protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and similar proteins; PKD2, also called PRKD2, HSPC187, or serine/threonine-protein kinase D2 (nPKC-D2), is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion. PKD2 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410390 Cd Length: 73 Bit Score: 47.74 E-value: 7.82e-07
|
||||||||
C1_Stac | cd20817 | protein kinase C conserved region 1 (C1 domain) found in the SH3 and cysteine-rich ... |
185-217 | 8.49e-07 | ||||
protein kinase C conserved region 1 (C1 domain) found in the SH3 and cysteine-rich domain-containing protein (Stac) family; Stac proteins are putative adaptor proteins that are important for neuronal function. There are three mammalian members (Stac1, Stac2 and Stac3) of this family. Stac1 and Stac3 contain two SH3 domains while Stac2 contains a single SH3 domain at the C-terminus. Stac1 and Stac2 have been found to be expressed differently in mature dorsal root ganglia (DRG) neurons. Stac1 is mainly expressed in peptidergic neurons while Stac2 is found in a subset of nonpeptidergic and all trkB+ neurons. Stac proteins contain a cysteine-rich C1 domain and one or two SH3 domains at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410367 Cd Length: 51 Bit Score: 46.94 E-value: 8.49e-07
|
||||||||
PH_GAP1-like | cd01244 | RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ... |
68-156 | 8.84e-07 | ||||
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269950 Cd Length: 107 Bit Score: 48.44 E-value: 8.84e-07
|
||||||||
PH2_TAPP1_2 | cd13271 | Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ... |
64-159 | 1.05e-06 | ||||
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270090 Cd Length: 114 Bit Score: 48.50 E-value: 1.05e-06
|
||||||||
C1_Myosin-IX | cd20818 | protein kinase C conserved region 1 (C1 domain) found in the unconventional myosin-IX family; ... |
186-228 | 1.44e-06 | ||||
protein kinase C conserved region 1 (C1 domain) found in the unconventional myosin-IX family; Myosins IX (Myo9) is a class of unique motor proteins with a common structure of an N-terminal extension preceding a myosin head homologous to the Ras-association (RA) domain, a head (motor) domain, a neck with IQ motifs that bind light chains, and a C-terminal tail containing cysteine-rich zinc binding (C1) and Rho-GTPase activating protein (RhoGAP) domains. There are two genes for myosins IX in humans, IXa and IXb, that are different in their expression and localization. IXa is expressed abundantly in brain and testis, and IXb is expressed abundantly in tissues of the immune system. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410368 Cd Length: 56 Bit Score: 46.52 E-value: 1.44e-06
|
||||||||
C1_nPKC_theta-like_rpt1 | cd20834 | first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ... |
168-225 | 1.91e-06 | ||||
first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) theta, delta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410384 Cd Length: 61 Bit Score: 46.16 E-value: 1.91e-06
|
||||||||
C1_DGKbeta_rpt2 | cd20891 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta ... |
246-304 | 2.01e-06 | ||||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta (DAG kinase beta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase beta, also called 90 kDa diacylglycerol kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DAG kinase beta contains two copies of the C1 domain. This model corresponds to the second one. DGK-beta contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410441 Cd Length: 59 Bit Score: 46.13 E-value: 2.01e-06
|
||||||||
PH_CNK_mammalian-like | cd01260 | Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ... |
69-153 | 2.28e-06 | ||||
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269962 Cd Length: 114 Bit Score: 47.79 E-value: 2.28e-06
|
||||||||
C1_cPKC_rpt2 | cd20836 | second protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) ... |
176-225 | 2.43e-06 | ||||
second protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) protein kinase C (cPKC) family; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410386 Cd Length: 54 Bit Score: 45.79 E-value: 2.43e-06
|
||||||||
PH1_ARAP | cd13253 | ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ... |
67-156 | 2.61e-06 | ||||
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270073 Cd Length: 94 Bit Score: 47.00 E-value: 2.61e-06
|
||||||||
PH_Gab-like | cd13324 | Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ... |
81-153 | 2.71e-06 | ||||
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270133 Cd Length: 112 Bit Score: 47.41 E-value: 2.71e-06
|
||||||||
C1_nPKC_theta-like_rpt2 | cd20837 | second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ... |
186-225 | 3.95e-06 | ||||
second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) theta, delta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410387 Cd Length: 50 Bit Score: 45.12 E-value: 3.95e-06
|
||||||||
C1_RASGRP4 | cd20863 | protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 4 ... |
175-226 | 4.18e-06 | ||||
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 4 (RASGRP4) and similar proteins; RASGRP4 functions as a cation- and diacylglycerol (DAG)-regulated nucleotide exchange factor activating Ras through the exchange of bound GDP for GTP. It may function in mast cell differentiation. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410413 Cd Length: 57 Bit Score: 45.15 E-value: 4.18e-06
|
||||||||
C1_cPKC_rpt1 | cd20833 | first protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) ... |
176-217 | 4.84e-06 | ||||
first protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) protein kinase C (cPKC) family; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410383 Cd Length: 58 Bit Score: 45.09 E-value: 4.84e-06
|
||||||||
C1_Raf | cd20811 | protein kinase C conserved region 1 (C1 domain) found in the Raf (Rapidly Accelerated ... |
186-225 | 5.55e-06 | ||||
protein kinase C conserved region 1 (C1 domain) found in the Raf (Rapidly Accelerated Fibrosarcoma) kinase family; Raf kinases are serine/threonine kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. They act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain (C1), and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410361 Cd Length: 49 Bit Score: 44.59 E-value: 5.55e-06
|
||||||||
C1_MRCKalpha | cd20864 | protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related ... |
176-225 | 6.01e-06 | ||||
protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCK alpha) and similar proteins; MRCK alpha, also called Cdc42-binding protein kinase alpha, DMPK-like alpha, or myotonic dystrophy protein kinase-like alpha, is a serine/threonine-protein kinase expressed ubiquitously in many tissues. It plays a role in the regulation of peripheral actin reorganization and neurite outgrowth. It may also play a role in the transferrin iron uptake pathway. MRCK alpha is an important downstream effector of Cdc42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410414 Cd Length: 60 Bit Score: 44.62 E-value: 6.01e-06
|
||||||||
C1_DGKgamma_rpt2 | cd20892 | second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ... |
248-310 | 9.02e-06 | ||||
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the second one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410442 Cd Length: 61 Bit Score: 44.42 E-value: 9.02e-06
|
||||||||
PH2_MyoX | cd13296 | Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ... |
68-164 | 9.07e-06 | ||||
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270108 Cd Length: 103 Bit Score: 45.54 E-value: 9.07e-06
|
||||||||
C1_MTMR-like | cd20828 | protein kinase C conserved region 1 (C1 domain) found in uncharacterized proteins similar to ... |
172-226 | 1.04e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in uncharacterized proteins similar to myotubularin-related proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate myotubularin-related proteins (MTMRs), such as MTMR5 and MTMR13. MTMRs may function as guanine nucleotide exchange factors (GEFs). Vertebrate MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Members of this family contain these domains and have an additional C1 domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410378 Cd Length: 57 Bit Score: 43.97 E-value: 1.04e-05
|
||||||||
C1_CeDKF1-like_rpt2 | cd20798 | second protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine ... |
176-225 | 1.05e-05 | ||||
second protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine/threonine-protein kinase DKF-1 and similar proteins; DKF-1 converts transient diacylglycerol (DAG) signals into prolonged physiological effects, independently of PKC. It plays a role in the regulation of growth and neuromuscular control of movement. It is involved in immune response to Staphylococcus aureus bacterium by activating transcription factor hlh-30 downstream of phospholipase plc-1. Members of this group contain two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410348 Cd Length: 54 Bit Score: 44.03 E-value: 1.05e-05
|
||||||||
PH_Bud4 | cd13278 | Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the ... |
68-156 | 1.12e-05 | ||||
Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the formation and the disassembly of the double ring structure formed by the septins during cytokinesis. Bud4 acts with Bud3 and and in parallel with septin phosphorylation by the p21-activated kinase Cla4 and the septin-dependent kinase Gin4. Bud4 is regulated by the cyclin-dependent protein kinase Cdk1, the master regulator of cell cycle progression. Bud4 contains an anillin-like domain followed by a PH domain. In addition there are two consensus Cdk phosphorylation sites: one at the N-terminus and one right before the C-terminal PH domain. Anillins also have C-terminal PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241432 Cd Length: 139 Bit Score: 46.43 E-value: 1.12e-05
|
||||||||
PH_RhoGAP2 | cd13378 | Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ... |
67-156 | 1.15e-05 | ||||
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241529 Cd Length: 116 Bit Score: 45.71 E-value: 1.15e-05
|
||||||||
PH_Gab2_2 | cd13384 | Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ... |
69-153 | 1.16e-05 | ||||
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241535 Cd Length: 115 Bit Score: 45.51 E-value: 1.16e-05
|
||||||||
PH_MELT_VEPH1 | cd01264 | Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone ... |
69-153 | 1.94e-05 | ||||
Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269965 Cd Length: 105 Bit Score: 44.76 E-value: 1.94e-05
|
||||||||
PH_M-RIP | cd13275 | Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ... |
68-161 | 1.98e-05 | ||||
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270094 Cd Length: 104 Bit Score: 44.63 E-value: 1.98e-05
|
||||||||
C1_KSR | cd20812 | protein kinase C conserved region 1 (C1 domain) found in the kinase suppressor of Ras (KSR) ... |
189-226 | 2.73e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in the kinase suppressor of Ras (KSR) family; KSR is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases, but there is some debate in this designation as a few groups have reported detecting kinase catalytic activity for KSRs, specifically KSR1. Vertebrates contain two KSR proteins, KSR1 and KSR2. KSR proteins contain a SAM-like domain, a zinc finger cysteine-rich domain (C1), and a pseudokinase domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410362 Cd Length: 48 Bit Score: 42.31 E-value: 2.73e-05
|
||||||||
PH_Ses | cd13288 | Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ... |
68-163 | 2.91e-05 | ||||
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270105 [Multi-domain] Cd Length: 120 Bit Score: 44.54 E-value: 2.91e-05
|
||||||||
C1_RASGRP1 | cd20860 | protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 1 ... |
176-226 | 3.73e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 1 (RASGRP1) and similar proteins; RASGRP1, also called calcium and DAG-regulated guanine nucleotide exchange factor II (CalDAG-GEFII) or Ras guanyl-releasing protein, functions as a calcium- and diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating Ras through the exchange of bound GDP for GTP. It activates the Erk/MAP kinase cascade and regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-lymphocyte/B-lymphocyte antigen receptors to Ras. RASGRP1 also regulates NK cell cytotoxicity and ITAM-dependent cytokine production by activation of Ras-mediated ERK and JNK pathways. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410410 Cd Length: 55 Bit Score: 42.23 E-value: 3.73e-05
|
||||||||
C1_TNS2 | cd20887 | protein kinase C conserved region 1 (C1 domain) found in tensin-2 and similar proteins; ... |
189-225 | 4.31e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in tensin-2 and similar proteins; Tensin-2 (TNS2), also called C1 domain-containing phosphatase and tensin (C1-TEN), or tensin-like C1 domain-containing phosphatase (TENC1), is an essential component for the maintenance of glomerular basement membrane (GBM) structures. It regulates cell motility and proliferation. It may have phosphatase activity. TNS2 reduces AKT1 phosphorylation, lowers AKT1 kinase activity, and interferes with AKT1 signaling. It contains an N-terminal region with a zinc finger (C1 domain), a protein tyrosine phosphatase (PTP)-like domain and a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410437 Cd Length: 53 Bit Score: 42.07 E-value: 4.31e-05
|
||||||||
C1_nPKC_epsilon-like_rpt1 | cd20835 | first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ... |
176-217 | 4.49e-05 | ||||
first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) epsilon, eta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-epsilon has been shown to behave as an oncoprotein. Its overexpression contributes to neoplastic transformation depending on the cell type. It contributes to oncogenesis by inducing disordered cell growth and inhibiting cell death. It also plays a role in tumor invasion and metastasis. PKC-epsilon has also been found to confer cardioprotection against ischemia and reperfusion-mediated damage. Other cellular functions include the regulation of gene expression, cell adhesion, and cell motility. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410385 Cd Length: 64 Bit Score: 42.45 E-value: 4.49e-05
|
||||||||
C1_CHN | cd20806 | protein kinase C conserved region 1 (C1 domain) found in the chimaerin family; Chimaerins are ... |
176-226 | 4.59e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in the chimaerin family; Chimaerins are a family of phorbolester- and diacylglycerol-responsive GTPase activating proteins (GAPs) specific for the Rho-like GTPase Rac. Alpha1-chimerin (formerly known as N-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. Alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410356 Cd Length: 53 Bit Score: 41.91 E-value: 4.59e-05
|
||||||||
C1_Stac1 | cd20880 | protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich ... |
185-218 | 5.09e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich domain-containing protein (Stac1) and similar proteins; Stac1, also called Src homology 3 and cysteine-rich domain-containing protein, promotes expression of the ion channel CACNA1H at the cell membrane, and thereby contributes to the regulation of channel activity. It plays a minor and redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. It slows down the inactivation rate of the calcium channel CACNA1C. Stac1 contains a cysteine-rich C1 domain and two SH3 domains at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410430 Cd Length: 57 Bit Score: 42.24 E-value: 5.09e-05
|
||||||||
PRK13057 | PRK13057 | lipid kinase; |
384-428 | 5.35e-05 | ||||
lipid kinase; Pssm-ID: 183857 [Multi-domain] Cd Length: 287 Bit Score: 46.45 E-value: 5.35e-05
|
||||||||
PRK13054 | PRK13054 | lipid kinase; Reviewed |
384-428 | 6.73e-05 | ||||
lipid kinase; Reviewed Pssm-ID: 237281 [Multi-domain] Cd Length: 300 Bit Score: 46.40 E-value: 6.73e-05
|
||||||||
C1_MRCK | cd20809 | protein kinase C conserved region 1 (C1 domain) found in the Myotonic dystrophy kinase-related ... |
166-225 | 8.50e-05 | ||||
protein kinase C conserved region 1 (C1 domain) found in the Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) family; MRCK is thought to be a coincidence detector of signaling by the small GTPase Cdc42 and phosphoinositides. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. MRCK has been shown to promote cytoskeletal reorganization, which affects many biological processes. Three isoforms of MRCK are known, named alpha, beta and gamma. MRCKgamma is expressed in heart and skeletal muscles, unlike MRCKalpha and MRCKbeta, which are expressed ubiquitously. MRCK consists of a serine/threonine kinase domain, a cysteine rich (C1) region, a PH domain and a p21 binding motif. This model corresponds to C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410359 Cd Length: 53 Bit Score: 41.10 E-value: 8.50e-05
|
||||||||
PH_ARHGAP21-like | cd01253 | ARHGAP21 and related proteins pleckstrin homology (PH) domain; ARHGAP family genes encode Rho ... |
82-155 | 9.20e-05 | ||||
ARHGAP21 and related proteins pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with a RhoGAP domain. These proteins functions as a GTPase-activating protein (GAP) for RHOA and CDC42. ARHGAP21 controls the Arp2/3 complex and F-actin dynamics at the Golgi complex by regulating the activity of the small GTPase Cdc42. It is recruited to the Golgi by to GTPase, ARF1, through its PH domain and its helical motif. It is also required for CTNNA1 recruitment to adherens junctions. ARHGAP21 and it related proteins all contains a PH domain and a RhoGAP domain. Some of the members have additional N-terminal domains including PDZ, SH3, and SPEC. The ARHGAP21 PH domain interacts with the GTPbound forms of both ARF1 and ARF6 ARF-binding domain/ArfBD. The members here include: ARHGAP15, ARHGAP21, and ARHGAP23. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269955 Cd Length: 113 Bit Score: 43.13 E-value: 9.20e-05
|
||||||||
C1_ARHGEF-like | cd20832 | protein kinase C conserved region 1 (C1 domain) found in uncharacterized Rho guanine ... |
176-217 | 1.04e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in uncharacterized Rho guanine nucleotide exchange factor (ARHGEF)-like proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate Rho guanine nucleotide exchange factors ARHGEF11 and ARHGEF12, which may play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Unlike typical ARHGEF11 and ARHGEF12, members of this family contain a C1 domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410382 Cd Length: 53 Bit Score: 41.20 E-value: 1.04e-04
|
||||||||
C1_TNS2-like | cd20826 | protein kinase C conserved region 1 (C1 domain) found in tensin-2 like (TNS2-like) proteins; ... |
185-217 | 1.17e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in tensin-2 like (TNS2-like) proteins; The TNS2-like group includes TNS2, and variants of TNS1 and TNS3. Tensin-2 (TNS2), also called C1 domain-containing phosphatase and tensin (C1-TEN), or tensin-like C1 domain-containing phosphatase (TENC1), is an essential component for the maintenance of glomerular basement membrane (GBM) structures. It regulates cell motility and proliferation. It may have phosphatase activity. TNS2 reduces AKT1 phosphorylation, lowers AKT1 kinase activity and interferes with AKT1 signaling. Tensin-1 (TNS1) plays a role in fibrillar adhesion formation. It may be involved in cell migration, cartilage development and in linking signal transduction pathways to the cytoskeleton. Tensin-3 (TNS3), also called tensin-like SH2 domain-containing protein 1 (TENS1), or tumor endothelial marker 6 (TEM6), may play a role in actin remodeling. It is involved in the dissociation of the integrin-tensin-actin complex. Typical TNS1 and TNS3 do not contain C1 domains, but some isoforms/variants do. Members of this family contain an N-terminal region with a zinc finger (C1 domain), a protein tyrosine phosphatase (PTP)-like domain and a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. This model corresponds to C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410376 Cd Length: 52 Bit Score: 40.83 E-value: 1.17e-04
|
||||||||
PH_TBC1D2A | cd01265 | TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ... |
82-155 | 1.41e-04 | ||||
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269966 Cd Length: 102 Bit Score: 42.31 E-value: 1.41e-04
|
||||||||
PH1_FGD5_FGD6 | cd13389 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ... |
67-155 | 1.44e-04 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275424 Cd Length: 124 Bit Score: 42.64 E-value: 1.44e-04
|
||||||||
C1_Stac2 | cd20881 | protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich ... |
175-218 | 1.45e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich domain-containing protein 2 (Stac2) and similar proteins; Stac2, also called 24b2/Stac2, or Src homology 3 and cysteine-rich domain-containing protein 2, plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. It slows down the inactivation rate of the calcium channel CACNA1C. Stac2 contains a cysteine-rich C1 domain and one SH3 domain at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410431 Cd Length: 59 Bit Score: 40.97 E-value: 1.45e-04
|
||||||||
C1_RASSF1 | cd20885 | protein kinase C conserved region 1 (C1 domain) found in Ras association domain-containing ... |
176-226 | 1.46e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in Ras association domain-containing protein 1 (RASSF1) and similar proteins; RASSF1 is a member of a family of RAS effectors, of which there are currently 8 members (RASSF1-8), all containing a Ras-association (RA) domain of the Ral-GDS/AF6 type. RASSF1 has eight transcripts (A-H) arising from alternative splicing and differential promoter usage. RASSF1A and 1C are the most extensively studied RASSF1 with both localized to microtubules and involved in regulation of growth and migration. RASSF1 is a potential tumor suppressor that is required for death receptor-dependent apoptosis. It contains a C1 domain, which is descibed in this model. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410435 Cd Length: 54 Bit Score: 40.72 E-value: 1.46e-04
|
||||||||
C1_TNS1_v | cd20888 | protein kinase C conserved region 1 (C1 domain) found in tensin-1 (TNS1) variant and similar ... |
189-225 | 1.58e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in tensin-1 (TNS1) variant and similar proteins; Tensin-1 (TNS1) plays a role in fibrillar adhesion formation. It may be involved in cell migration, cartilage development and in linking signal transduction pathways to the cytoskeleton. This model corresponds to the C1 domain found in TNS1 variant. Typical TNS1 does not contain C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410438 Cd Length: 57 Bit Score: 40.63 E-value: 1.58e-04
|
||||||||
C1_RASSF1-like | cd20820 | protein kinase C conserved region 1 (C1 domain) found in the Ras association domain-containing ... |
176-225 | 1.75e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in the Ras association domain-containing protein 1 (RASSF1)-like family; The RASSF1-like family includes RASSF1 and RASSF5. RASSF1 and RASSF5 are members of a family of RAS effectors, of which there are currently 8 members (RASSF1-8), all containing a Ras-association (RA) domain of the Ral-GDS/AF6 type. RASSF1 has eight transcripts (A-H) arising from alternative splicing and differential promoter usage. RASSF1A and 1C are the most extensively studied RASSF1; both are localized to microtubules and involved in the regulation of growth and migration. RASSF1 is a potential tumor suppressor that is required for death receptor-dependent apoptosis. RASSF5, also called new ras effector 1 (NORE1), or regulator for cell adhesion and polarization enriched in lymphoid tissues (RAPL), is expressed as three transcripts (A-C) via differential promoter usage and alternative splicing. RASSF5A is a pro-apoptotic Ras effector and functions as a Ras regulated tumor suppressor. RASSF5C is regulated by Ras related protein and modulates cellular adhesion. RASSF5 is a potential tumor suppressor that seems to be involved in lymphocyte adhesion by linking RAP1A activation upon T-cell receptor or chemokine stimulation to integrin activation. RASSF1 and RASSF5 contain a C1 domain, which is descibed in this model. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410370 Cd Length: 52 Bit Score: 40.50 E-value: 1.75e-04
|
||||||||
C1_RASGRP | cd20808 | protein kinase C conserved region 1 (C1 domain) found in the RAS guanyl-releasing protein ... |
176-226 | 1.79e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in the RAS guanyl-releasing protein (RASGRP) family; The RASGRP family includes RASGRP1-4. They function as cation-, usually calcium-, and diacylglycerol (DAG)-regulated nucleotide exchange factor activating Ras through the exchange of bound GDP for GTP. RASGRP1, also called calcium and DAG-regulated guanine nucleotide exchange factor II (CalDAG-GEFII) or Ras guanyl-releasing protein, activates the Erk/MAP kinase cascade and regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-lymphocyte/B-lymphocyte antigen receptors to Ras. RASGRP1 also regulates NK cell cytotoxicity and ITAM-dependent cytokine production by activation of Ras-mediated ERK and JNK pathways. RASGRP2, also called calcium and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), Cdc25-like protein (CDC25L), or F25B3.3 kinase-like protein, specifically activates Rap and may also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. RASGRP2 is involved in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation, as well as in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. RASGRP3, also called calcium and DAG-regulated guanine nucleotide exchange factor III (CalDAG-GEFIII), or guanine nucleotide exchange factor for Rap1, is a guanine nucleotide-exchange factor activating H-Ras, R-Ras and Ras-associated protein-1/2. It functions as an important mediator of signaling downstream from receptor coupled phosphoinositide turnover in B and T cells. RASGRP4 may function in mast cell differentiation. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410358 Cd Length: 52 Bit Score: 40.40 E-value: 1.79e-04
|
||||||||
PH_ORP_plant | cd13294 | Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ... |
70-157 | 2.08e-04 | ||||
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241448 Cd Length: 100 Bit Score: 41.71 E-value: 2.08e-04
|
||||||||
PH1_FGD1-4_like | cd13388 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, ... |
67-153 | 2.16e-04 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. They play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275423 Cd Length: 94 Bit Score: 41.54 E-value: 2.16e-04
|
||||||||
C1_TNS3_v | cd20889 | protein kinase C conserved region 1 (C1 domain) found in tensin-3 (TNS3) variant and similar ... |
181-225 | 2.61e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in tensin-3 (TNS3) variant and similar proteins; Tensin-3 (TNS3), also called tensin-like SH2 domain-containing protein 1 (TENS1), or tumor endothelial marker 6 (TEM6), may play a role in actin remodeling. It is involved in the dissociation of the integrin-tensin-actin complex. This model corresponds to the C1 domain found in TNS3 variant. Typical TNS3 does not contain C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410439 Cd Length: 56 Bit Score: 39.87 E-value: 2.61e-04
|
||||||||
PRK13059 | PRK13059 | putative lipid kinase; Reviewed |
385-428 | 2.65e-04 | ||||
putative lipid kinase; Reviewed Pssm-ID: 183858 Cd Length: 295 Bit Score: 44.26 E-value: 2.65e-04
|
||||||||
C1_p190RhoGEF-like | cd20815 | protein kinase C conserved region 1 (C1 domain) found in the 190 kDa guanine nucleotide ... |
248-296 | 3.41e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in the 190 kDa guanine nucleotide exchange factor (p190RhoGEF)-like family; The p190RhoGEF-like protein family includes p190RhoGEF, Rho guanine nucleotide exchange factor 2 (ARHGEF2), A-kinase anchor protein 13 (AKAP-13) and similar proteins. p190RhoGEF is a brain-enriched, RhoA-specific guanine nucleotide exchange factor that regulates signaling pathways downstream of integrins and growth factor receptors. It is involved in axonal branching, synapse formation and dendritic morphogenesis, as well as in focal adhesion formation, cell motility and B-lymphocytes activation. ARHGEF2 acts as a guanine nucleotide exchange factor (GEF) that activates Rho-GTPases by promoting the exchange of GDP for GTP. It is thought to play a role in actin cytoskeleton reorganization in different tissues since its activation induces formation of actin stress fibers. AKAP-13 is a scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. It activates RhoA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor. It may also activate other Rho family members. AKAP-13 plays a role in cell growth, cell development and actin fiber formation. Members of this family share a common domain architecture containing C1, RhoGEF or Dbl-homologous (DH), and Pleckstrin Homology (PH) domains. Some members may contain additional domains such as the DUF5401 domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410365 Cd Length: 54 Bit Score: 39.71 E-value: 3.41e-04
|
||||||||
C1_Munc13-1 | cd20858 | protein kinase C conserved region 1 (C1 domain) found in Munc13-1 and similar proteins; ... |
176-226 | 4.72e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in Munc13-1 and similar proteins; Munc13-1, also called protein unc-13 homolog A (Unc13A), is a diacylglycerol (DAG) receptor that plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. It is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-dependent refilling of readily releasable vesicle pool (RRP). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410408 Cd Length: 60 Bit Score: 39.30 E-value: 4.72e-04
|
||||||||
PH_GAP1_mammal-like | cd13371 | GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras ... |
56-156 | 4.77e-04 | ||||
GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241522 Cd Length: 125 Bit Score: 41.17 E-value: 4.77e-04
|
||||||||
C1_Sbf-like | cd20827 | protein kinase C conserved region 1 (C1 domain) found in the myotubularin-related protein Sbf ... |
186-225 | 6.57e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in the myotubularin-related protein Sbf and similar proteins; This group includes Drosophila melanogaster SET domain binding factor (Sbf), the single homolog of human MTMR5/MTMR13, and similar proteins, that show high sequence similarity to vertebrate myotubularin-related proteins (MTMRs) which may function as guanine nucleotide exchange factors (GEFs). Sbf is a pseudophosphatase that coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. It also functions as a GEF that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Vertebrate MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Members of this family contain these domains and have an additional C1 domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410377 Cd Length: 53 Bit Score: 38.94 E-value: 6.57e-04
|
||||||||
C1_alphaCHN | cd20856 | protein kinase C conserved region 1 (C1 domain) found in alpha-chimaerin and similar proteins; ... |
172-226 | 6.70e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in alpha-chimaerin and similar proteins; Alpha-chimaerin, also called A-chimaerin, N-chimaerin (CHN), alpha-chimerin, N-chimerin (NC), or Rho GTPase-activating protein 2 (ARHGAP2), is a GTPase-activating protein (GAP) for p21-rac and a phorbol ester receptor. It is involved in the assembly of neuronal locomotor circuits as a direct effector of EPHA4 in axon guidance. Alpha-chimaerin contains a functional SH2 domain that can bind to phosphotyrosine motifs within receptors, a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410406 Cd Length: 57 Bit Score: 38.90 E-value: 6.70e-04
|
||||||||
C1_dGM13116p-like | cd20831 | protein kinase C conserved region 1 (C1 domain) found in Drosophila melanogaster GM13116p and ... |
176-225 | 7.34e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in Drosophila melanogaster GM13116p and similar proteins; This group contains uncharacterized proteins including Drosophila melanogaster GM13116p and Caenorhabditis elegans hypothetical protein R11G1.4, both of which contain C2 (a calcium-binding domain) and C1 domains. This model describes the C1 domain, a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410381 Cd Length: 58 Bit Score: 38.86 E-value: 7.34e-04
|
||||||||
PH_Brdg1 | cd13268 | BCR downstream signaling 1 Pleckstrin homology (PH) domain; Brdg1 is thought to function as a ... |
69-156 | 8.25e-04 | ||||
BCR downstream signaling 1 Pleckstrin homology (PH) domain; Brdg1 is thought to function as a docking protein acting downstream of Tec, a protein tyrosine kinases (PTK), in B-cell antigen receptor (BCR) signaling. BRDG1 contains a proline-rich (PR) motif which is thought to bind SH3 or WW domains, a PH domain, and multiple tyrosine residues which are potential target sites for SH2 domains. Since PH domains bind phospholipids it is thought to be involved in the tethering of Tec and BRDG1 to the cell membrane.Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induces phosphorylation of BRDG1 on tyrosine residues. Efficient phosphorylation requires both the PH and SH2 domains of BRDG1 and the kinase domain of Tec. The overexpression of BRDG1 increases theBCR-mediated activation of cAMP-response element binding protein (CREB). Phosphorylated BRDG1 is hypothesized to recruit CREB either directly or through its recruitment of downstream effectors which then recruit CREB. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270088 Cd Length: 127 Bit Score: 40.52 E-value: 8.25e-04
|
||||||||
PH_PLD | cd01254 | Phospholipase D pleckstrin homology (PH) domain; PLD hydrolyzes phosphatidylcholine to ... |
68-156 | 8.58e-04 | ||||
Phospholipase D pleckstrin homology (PH) domain; PLD hydrolyzes phosphatidylcholine to phosphatidic acid (PtdOH), which can bind target proteins. PLD contains a PH domain, a PX domain and four conserved PLD signature domains. The PLD PH domain is specific for bisphosphorylated inositides. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269956 Cd Length: 136 Bit Score: 40.71 E-value: 8.58e-04
|
||||||||
C1_RASGRP2 | cd20861 | protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 2 ... |
175-226 | 8.93e-04 | ||||
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 2 (RASGRP2) and similar proteins; RASGRP2, also called calcium and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), Cdc25-like protein (CDC25L), or F25B3.3 kinase-like protein, functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. It may also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. RASGRP2 is also involved in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation, as well as in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410411 Cd Length: 56 Bit Score: 38.33 E-value: 8.93e-04
|
||||||||
C1_PIK3R-like_rpt2 | cd20830 | second protein kinase C conserved region 1 (C1 domain) found in uncharacterized ... |
166-226 | 9.76e-04 | ||||
second protein kinase C conserved region 1 (C1 domain) found in uncharacterized phosphatidylinositol 3-kinase regulatory subunit-like proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate phosphatidylinositol 3-kinase regulatory subunits (PIK3Rs), which bind to activated (phosphorylated) protein-tyrosine kinases through its SH2 domain and regulate their kinase activity. Unlike typical PIK3Rs, members of this family have two C1 domains. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410380 Cd Length: 52 Bit Score: 38.38 E-value: 9.76e-04
|
||||||||
PH_PLEKHJ1 | cd13258 | Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ... |
64-155 | 1.08e-03 | ||||
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270078 Cd Length: 123 Bit Score: 40.00 E-value: 1.08e-03
|
||||||||
C1_Munc13 | cd20807 | protein kinase C conserved region 1 (C1 domain) found in the Munc13 family; The Munc13 gene ... |
176-217 | 1.08e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in the Munc13 family; The Munc13 gene family encodes a family of neuron-specific, synaptic molecules that bind to syntaxin, an essential mediator of neurotransmitter release. Munc13-1 is a component of presynaptic active zones in which it acts as an essential synaptic vesicle priming protein. Munc13-2 is essential for normal release probability at hippocampal mossy fiber synapses. Munc13-3 is almost exclusively expressed in the cerebellum. It acts as a tumor suppressor and plays a critical role in the formation of release sites with calcium channel nanodomains. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410357 Cd Length: 53 Bit Score: 38.23 E-value: 1.08e-03
|
||||||||
PH_SWAP-70 | cd13273 | Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ... |
67-156 | 1.13e-03 | ||||
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270092 Cd Length: 110 Bit Score: 39.59 E-value: 1.13e-03
|
||||||||
PH_APBB1IP | cd01259 | Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin ... |
82-163 | 1.23e-03 | ||||
Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin homology (PH) domain; APBB1IP consists of a Ras-associated (RA) domain, a PH domain, a family-specific BPS region, and a C-terminal SH2 domain. Grb7, Grb10 and Grb14 are paralogs that are also present in this hierarchy. These adapter proteins bind a variety of receptor tyrosine kinases, including the insulin and insulin-like growth factor-1 (IGF1) receptors. Grb10 and Grb14 are important tissue-specific negative regulators of insulin and IGF1 signaling based and may contribute to type 2 (non-insulin-dependent) diabetes in humans. RA-PH function as a single structural unit and is dimerized via a helical extension of the PH domain. The PH domain here are proposed to bind phosphoinositides non-cannonically ahd are unlikely to bind an activated GTPase. The tandem RA-PH domains are present in a second adapter-protein family, MRL proteins, Caenorhabditis elegans protein MIG-1012, the mammalian proteins RIAM and lamellipodin and the Drosophila melanogaster protein Pico12, all of which are Ena/VASP-binding proteins involved in actin-cytoskeleton rearrangement. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269961 Cd Length: 124 Bit Score: 39.91 E-value: 1.23e-03
|
||||||||
PH_evt | cd13265 | Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ... |
67-157 | 1.27e-03 | ||||
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270085 Cd Length: 108 Bit Score: 39.59 E-value: 1.27e-03
|
||||||||
C1_VAV3 | cd20869 | protein kinase C conserved region 1 (C1 domain) found in VAV3 protein; VAV3 is ubiquitously ... |
163-225 | 1.53e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in VAV3 protein; VAV3 is ubiquitously expressed and functions as a phosphorylation-dependent guanine nucleotide exchange factor (GEF) for RhoA, RhoG, and Rac1. Its function has been implicated in the hematopoietic, bone, cerebellar, and cardiovascular systems. VAV3 is essential in axon guidance in neurons that control blood pressure and respiration. It is overexpressed in prostate cancer cells and plays a role in regulating androgen receptor transcriptional activity. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410419 Cd Length: 59 Bit Score: 37.88 E-value: 1.53e-03
|
||||||||
C1_RASGRP3 | cd20862 | protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 3 ... |
175-217 | 1.60e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 3 (RASGRP3) and similar proteins; RASGRP3, also called calcium and DAG-regulated guanine nucleotide exchange factor III (CalDAG-GEFIII), or guanine nucleotide exchange factor for Rap1, is a guanine nucleotide-exchange factor activating H-Ras, R-Ras and Ras-associated protein-1/2. It functions as an important mediator of signaling downstream from receptor coupled phosphoinositide turnover in B and T cells. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410412 Cd Length: 59 Bit Score: 38.09 E-value: 1.60e-03
|
||||||||
PH_ORP10_ORP11 | cd13291 | Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin ... |
69-156 | 1.61e-03 | ||||
Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin homology (PH) domain; Human ORP10 is involvedt in intracellular transport or organelle positioning and is proposed to function as a regulator of cellular lipid metabolism. Human ORP11 localizes at the Golgi-late endosome interface and is thought to form a dimer with ORP9 functioning as an intracellular lipid sensor or transporter. Both ORP10 and ORP11 contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270106 Cd Length: 107 Bit Score: 39.20 E-value: 1.61e-03
|
||||||||
TIGR00147 | TIGR00147 | lipid kinase, YegS/Rv2252/BmrU family; The E. coli member of this family, YegS has been ... |
378-428 | 1.67e-03 | ||||
lipid kinase, YegS/Rv2252/BmrU family; The E. coli member of this family, YegS has been purified and shown to have phosphatidylglycerol kinase activity. The member from M. tuberculosis, Rv2252, has diacylglycerol kinase activity. BmrU from B. subtilis is in an operon with multidrug efflux transporter Bmr, but is uncharacterized. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 161732 [Multi-domain] Cd Length: 293 Bit Score: 41.72 E-value: 1.67e-03
|
||||||||
PH1_FDG_family | cd13328 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal ... |
68-153 | 1.75e-03 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275410 Cd Length: 92 Bit Score: 38.62 E-value: 1.75e-03
|
||||||||
PH_Boi | cd13316 | Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ... |
70-153 | 1.79e-03 | ||||
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270126 Cd Length: 97 Bit Score: 38.89 E-value: 1.79e-03
|
||||||||
PH_PLC_plant-like | cd13365 | Plant-like Phospholipase C (PLC) pleckstrin homology (PH) domain; PLC-gamma (PLCgamma) was the ... |
65-158 | 2.26e-03 | ||||
Plant-like Phospholipase C (PLC) pleckstrin homology (PH) domain; PLC-gamma (PLCgamma) was the second class of PLC discovered. PLC-gamma consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves internal to which is a PH domain split by two SH2 domains and a single SH3 domain, and a C-terminal C2 domain. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). This cd contains PLC members from fungi and plants. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270171 Cd Length: 115 Bit Score: 39.19 E-value: 2.26e-03
|
||||||||
PH5_ARAP | cd13259 | ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ... |
63-157 | 2.34e-03 | ||||
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270079 Cd Length: 121 Bit Score: 39.34 E-value: 2.34e-03
|
||||||||
PH_Sbf1_hMTMR5 | cd01235 | Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ... |
69-157 | 2.70e-03 | ||||
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269941 Cd Length: 106 Bit Score: 38.47 E-value: 2.70e-03
|
||||||||
C1_2 | pfam03107 | C1 domain; This short domain is rich in cysteines and histidines. The pattern of conservation ... |
188-218 | 2.71e-03 | ||||
C1 domain; This short domain is rich in cysteines and histidines. The pattern of conservation is similar to that found in pfam00130, therefore we have termed this domain DC1 for divergent C1 domain. This domain probably also binds to two zinc ions. The function of proteins with this domain is uncertain, however this domain may bind to molecules such as diacylglycerol (A Bateman pers. obs.). This family are found in plant proteins. Pssm-ID: 427141 Cd Length: 48 Bit Score: 36.97 E-value: 2.71e-03
|
||||||||
C1_A_C-Raf | cd20870 | protein kinase C conserved region 1 (C1 domain) found in A- and C-Raf (Rapidly Accelerated ... |
175-225 | 3.80e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in A- and C-Raf (Rapidly Accelerated Fibrosarcoma) kinases, and similar proteins; This group includes A-Raf and C-Raf, both of which are serine/threonine-protein kinases. A-Raf, also called proto-oncogene A-Raf or proto-oncogene A-Raf-1, cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. C-Raf, also known as proto-oncogene Raf-1 or c-Raf-1, is ubiquitously expressed and was the first Raf identified. It was characterized as the acquired oncogene from an acutely transforming murine sarcoma virus (3611-MSV) and the transforming agent from the avian retrovirus MH2. C-Raf-deficient mice embryos die around mid-gestation with increased apoptosis of embryonic tissues, especially in the fetal liver. One of the main functions of C-Raf is restricting caspase activation to promote survival in response to specific stimuli such as Fas stimulation, macrophage apoptosis, and erythroid differentiation. Both A- and C-Raf are mitogen-activated protein kinase kinase kinases (MAP3K, MKKK, MAPKKK), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain (C1), and a catalytic kinase domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410420 Cd Length: 52 Bit Score: 36.47 E-value: 3.80e-03
|
||||||||
PH_Gab3 | cd13385 | Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes ... |
82-156 | 4.03e-03 | ||||
Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1, Gab2, and Gab3 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270184 Cd Length: 125 Bit Score: 38.80 E-value: 4.03e-03
|
||||||||
C1_betaCHN | cd20857 | protein kinase C conserved region 1 (C1 domain) found in beta-chimaerin and similar proteins; ... |
171-226 | 4.04e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in beta-chimaerin and similar proteins; Beta-chimaerin, also called beta-chimerin (BCH) or Rho GTPase-activating protein 3 (ARHGAP3), is a GTPase-activating protein (GAP) for p21-rac. Insufficient expression of beta-2 chimaerin is expected to lead to higher Rac activity and could therefore play a role in the progression from low-grade to high-grade tumors. Beta-chimaerin contains a functional SH2 domain that can bind to phosphotyrosine motifs within receptors, a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410407 Cd Length: 61 Bit Score: 36.94 E-value: 4.04e-03
|
||||||||
PH_PLC_delta | cd13363 | Phospholipase C-delta (PLC-delta) pleckstrin homology (PH) domain; The PLC-delta (PLCdelta) ... |
70-159 | 4.06e-03 | ||||
Phospholipase C-delta (PLC-delta) pleckstrin homology (PH) domain; The PLC-delta (PLCdelta) consists of three family members, delta 1, 2, and 3. PLC-delta1 is the most well studied. PLC-delta is activated by high calcium levels generated by other PLC family members, and functions as a calcium amplifier within the cell. PLC-delta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves, and a C-terminal C2 domain. The PH domain binds PIP2 and promotes activation of the catalytic core as well as tethering the enzyme to the plasma membrane. The C2 domain has been shown to mediate calcium-dependent phospholipid binding as well. The PH and C2 domains operate in concert as a "tether and fix" apparatus necessary for processive catalysis by the enzyme. Its leucine-rich nuclear export signal (NES) in its EF hand motif, as well as a Nuclear localization signal within its linker region allow PLC-delta 1 to actively translocate into and out of the nucleus. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270169 Cd Length: 117 Bit Score: 38.45 E-value: 4.06e-03
|
||||||||
PH_SKIP | cd13309 | SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ... |
68-153 | 4.34e-03 | ||||
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270119 Cd Length: 103 Bit Score: 37.74 E-value: 4.34e-03
|
||||||||
PH1_FGD1 | cd01219 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin ... |
67-167 | 4.73e-03 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275392 Cd Length: 108 Bit Score: 38.08 E-value: 4.73e-03
|
||||||||
PH1_Pleckstrin_2 | cd13301 | Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ... |
67-155 | 5.44e-03 | ||||
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270113 Cd Length: 108 Bit Score: 37.74 E-value: 5.44e-03
|
||||||||
C1_ScPKC1-like_rpt1 | cd20822 | first protein kinase C conserved region 1 (C1 domain) found in Saccharomyces cerevisiae ... |
189-225 | 6.36e-03 | ||||
first protein kinase C conserved region 1 (C1 domain) found in Saccharomyces cerevisiae protein kinase C-like 1 (ScPKC1) and similar proteins; ScPKC1 is required for cell growth and for the G2 to M transition of the cell division cycle. It mediates a protein kinase cascade, activating BCK1 which itself activates MKK1/MKK2. The family also includes Schizosaccharomyces pombe PKC1 and PKC2, which are involved in the control of cell shape and act as targets of the inhibitor staurosporine. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410372 Cd Length: 52 Bit Score: 36.11 E-value: 6.36e-03
|
||||||||
PH_beta_spectrin | cd10571 | Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a ... |
82-156 | 7.21e-03 | ||||
Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a major component of the cytoskeleton underlying cellular membranes. Beta spectrin consists of multiple spectrin repeats followed by a PH domain, which binds to inositol-1,4,5-trisphosphate. The PH domain of beta-spectrin is thought to play a role in the association of spectrin with the plasma membrane of cells. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269975 Cd Length: 106 Bit Score: 37.21 E-value: 7.21e-03
|
||||||||
C1_Myosin-IXa | cd20883 | protein kinase C conserved region 1 (C1 domain) found in unconventional myosin-IXa and similar ... |
176-225 | 8.25e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in unconventional myosin-IXa and similar proteins; Myosin-IXa, also called unconventional myosin-9a (Myo9a), is a single-headed, actin-dependent motor protein of the unconventional myosin IX class. It is expressed in several tissues and is enriched in the brain and testes. Myosin-IXa contains a Ras-associating (RA) domain, a motor domain, a protein kinase C conserved region 1 (C1), and a Rho GTPase activating domain (RhoGAP). Myosin-IXa binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit, and plays a key role in controlling the molecular structure and function of hippocampal synapses. Moreover, Myosin-IXa functions in epithelial cell morphology and differentiation, such that its knockout mice develop hydrocephalus and kidney dysfunction. Myosin-IXa regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Myosin-IXa negatively regulates Rho GTPase signaling, and functions as a regulator of kidney tubule function. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410433 Cd Length: 58 Bit Score: 35.71 E-value: 8.25e-03
|
||||||||
CRIK | cd20814 | protein kinase C conserved region 1 (C1 domain) found in citron Rho-interacting kinase (CRIK) ... |
176-225 | 8.82e-03 | ||||
protein kinase C conserved region 1 (C1 domain) found in citron Rho-interacting kinase (CRIK) and similar proteins; CRIK, also called serine/threonine-protein kinase 21, is an effector of the small GTPase Rho. It plays an important function during cytokinesis and affects its contractile process. CRIK-deficient mice show severe ataxia and epilepsy as a result of abnormal cytokinesis and massive apoptosis in neuronal precursors. A Down syndrome critical region protein TTC3 interacts with CRIK and inhibits CRIK-dependent neuronal differentiation and neurite extension. CRIK contains a catalytic domain, a central coiled-coil domain, and a C-terminal region containing a Rho-binding domain (RBD), a zinc finger (C1 domain), and a pleckstrin homology (PH) domain, in addition to other motifs. This model corresponds to C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410364 Cd Length: 56 Bit Score: 35.69 E-value: 8.82e-03
|
||||||||
C1_PIK3R-like_rpt1 | cd20829 | first protein kinase C conserved region 1 (C1 domain) found in uncharacterized ... |
185-223 | 9.29e-03 | ||||
first protein kinase C conserved region 1 (C1 domain) found in uncharacterized phosphatidylinositol 3-kinase regulatory subunit-like proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate phosphatidylinositol 3-kinase regulatory subunits (PIK3Rs), which bind to activated (phosphorylated) protein-tyrosine kinases through its SH2 domain and regulate their kinase activity. Unlike typical PIK3Rs, members of this family have two C1 domains. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410379 Cd Length: 53 Bit Score: 35.40 E-value: 9.29e-03
|
||||||||
Blast search parameters | ||||
|