DNA (cytosine-5-)-methyltransferase 3 beta, duplicate a isoform X3 [Danio rerio]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
FYVE_like_SF super family | cl28890 | FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger ... |
1011-1130 | 9.77e-75 | |||||
FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger motif-containing module named after the four proteins, Fab1, YOTB, Vac1, and EEA1. The canonical FYVE domains are distinguished from other zinc fingers by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P, also termed PI3P)-binding site. They are found in many membrane trafficking regulators, including EEA1, Hrs, Vac1p, Vps27p, and FENS-1, which locate to early endosomes, specifically bind PtdIns3P, and play important roles in vesicular traffic and in signal transduction. Some proteins, such as rabphilin-3A and alpha-Rab3-interacting molecules (RIMs), are also involved in membrane trafficking and bind to members of the Rab subfamily of GTP hydrolases. However, they contain FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences. At this point, they may not bind to phosphoinositides. In addition, this superfamily also contains the third group of proteins, caspase-associated ring proteins CARP1 and CARP2. They do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, these proteins have an altered sequence in the basic ligand binding patch and lack the WxxD motif that is conserved only in phosphoinositide binding FYVE domains. Thus they constitute a family of unique FYVE-type domains called FYVE-like domains. The FYVE domain is structurally similar to the RING domain and the PHD finger. This superfamily also includes ADDz zinc finger domain, which is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. The actual alignment was detected with superfamily member cd11728: Pssm-ID: 333710 [Multi-domain] Cd Length: 120 Bit Score: 243.61 E-value: 9.77e-75
|
|||||||||
PWWP super family | cl02554 | PWWP (Pro-Trp-Trp-Pro) domain; The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, ... |
837-947 | 7.93e-41 | |||||
PWWP (Pro-Trp-Trp-Pro) domain; The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids and is composed of a five-stranded antiparallel beta-barrel followed by a helical region. It is found in numerous proteins that are involved in cell division, growth, and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. PWWP domains specifically recognize DNA and histone methylated lysines at the level of the nucleosome. Based on the fact that other regions of PWWP-domain proteins are responsible for nuclear localization and DNA-binding, is likely that the PWWP domain acts as a site for protein-protein binding interactions, influencing chromatin remodeling and thereby regulating transcriptional processes. Some PWWP-domain proteins have been linked to cancer or other diseases; some are known to function as growth factors. The actual alignment was detected with superfamily member cd20155: Pssm-ID: 470613 Cd Length: 117 Bit Score: 146.55 E-value: 7.93e-41
|
|||||||||
Dcm super family | cl43082 | DNA-cytosine methylase [Replication, recombination and repair]; |
1152-1430 | 6.08e-20 | |||||
DNA-cytosine methylase [Replication, recombination and repair]; The actual alignment was detected with superfamily member COG0270: Pssm-ID: 440040 [Multi-domain] Cd Length: 277 Bit Score: 91.41 E-value: 6.08e-20
|
|||||||||
BIM1 super family | cl34944 | Microtubule-binding protein involved in cell cycle control [Cell division and chromosome ... |
17-174 | 1.09e-13 | |||||
Microtubule-binding protein involved in cell cycle control [Cell division and chromosome partitioning / Cytoskeleton]; The actual alignment was detected with superfamily member COG5217: Pssm-ID: 227542 [Multi-domain] Cd Length: 342 Bit Score: 74.26 E-value: 1.09e-13
|
|||||||||
Name | Accession | Description | Interval | E-value | ||||||
ADDz_Dnmt3b | cd11728 | ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3b (Dnmt3b); ADDz_Dnmt3b ... |
1011-1130 | 9.77e-75 | ||||||
ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3b (Dnmt3b); ADDz_Dnmt3b is an active catalytic domain of Dnmt3b. Dnmt3b is a member of the Dnmt3 family and is a de novo DNA methyltransferases that has an N-terminal variable region followed by a conserved PWWP region and the cysteine-rich ADDz domain. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The methyltransferase activity of Dnmt3a is not only responsible for the establishment of DNA methylation pattern, but is also essential for the inheritance of these patterns during mitosis. Dnmt3b is ubiquitously expressed in most adult tissues. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. A knockout of Dnmt3b has been shown to be lethal in the mouse model. Pssm-ID: 277254 [Multi-domain] Cd Length: 120 Bit Score: 243.61 E-value: 9.77e-75
|
||||||||||
PWWP_DNMT3B | cd20155 | PWWP domain found in DNA (cytosine-5)-methyltransferase 3B (DNMT3B); DNMT3B, also called DNA ... |
837-947 | 7.93e-41 | ||||||
PWWP domain found in DNA (cytosine-5)-methyltransferase 3B (DNMT3B); DNMT3B, also called DNA methyltransferase HsaIIIB, DNA MTase HsaIIIB, or M.HsaIIIB, is required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. It may preferentially methylate nucleosomal DNA within the nucleosome core region. DNMT3B may function as a transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. In tumorigenesis, DNA methylation by DNMT3B is known to play a role in the inactivation of tumor suppressor genes. In addition, a point mutation in the PWWP domain of DNMT3B has been identified in patients with ICF (immunodeficiency, centromeric instability, and facial anomalies) syndrome, a rare autosomal recessive disorder characterized by hypomethylation of classical satellite DNA. Pssm-ID: 438983 Cd Length: 117 Bit Score: 146.55 E-value: 7.93e-41
|
||||||||||
ADD_DNMT3 | pfam17980 | Cysteine rich ADD domain in DNMT3; This is a cysteine-rich domain termed ADD ... |
996-1051 | 7.70e-31 | ||||||
Cysteine rich ADD domain in DNMT3; This is a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, AD-DATRX) found in DNMT3A proteins. The ADD domains of the DNMT3 family have a decisive role in blocking DNMT activity in the areas of the genome with chromatin containing methylated H3K4. Furthermore, the ADD domain of DNMMT3A (ADD-3A) competes with the chromodomain (CD) of heterochromatin protein 1 alpha (HP1alpha, CDHP1alpha) for binding to the H3 tail. The DNA methyltransferase (DNMT) 3 family members DNMT3A and DNMT3B and the DNMT3-like non-enzymatic regulatory factor DNMT3L, are involved in de-novo establishment of DNA methylation patterns in early mammalian development. Pssm-ID: 465603 Cd Length: 56 Bit Score: 115.46 E-value: 7.70e-31
|
||||||||||
Dcm | COG0270 | DNA-cytosine methylase [Replication, recombination and repair]; |
1152-1430 | 6.08e-20 | ||||||
DNA-cytosine methylase [Replication, recombination and repair]; Pssm-ID: 440040 [Multi-domain] Cd Length: 277 Bit Score: 91.41 E-value: 6.08e-20
|
||||||||||
Cyt_C5_DNA_methylase | cd00315 | Cytosine-C5 specific DNA methylases; Methyl transfer reactions play an important role in many ... |
1155-1423 | 5.37e-15 | ||||||
Cytosine-C5 specific DNA methylases; Methyl transfer reactions play an important role in many aspects of biology. Cytosine-specific DNA methylases are found both in prokaryotes and eukaryotes. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the mammalian genome. These effects include transcriptional repression via inhibition of transcription factor binding or the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. Pssm-ID: 238192 [Multi-domain] Cd Length: 275 Bit Score: 76.89 E-value: 5.37e-15
|
||||||||||
BIM1 | COG5217 | Microtubule-binding protein involved in cell cycle control [Cell division and chromosome ... |
17-174 | 1.09e-13 | ||||||
Microtubule-binding protein involved in cell cycle control [Cell division and chromosome partitioning / Cytoskeleton]; Pssm-ID: 227542 [Multi-domain] Cd Length: 342 Bit Score: 74.26 E-value: 1.09e-13
|
||||||||||
dcm | TIGR00675 | DNA-methyltransferase (dcm); All proteins in this family for which functions are known are ... |
1157-1420 | 8.50e-13 | ||||||
DNA-methyltransferase (dcm); All proteins in this family for which functions are known are DNA-cytosine methyltransferases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 273211 [Multi-domain] Cd Length: 315 Bit Score: 71.20 E-value: 8.50e-13
|
||||||||||
PWWP | pfam00855 | PWWP domain; The PWWP domain is named after a conserved Pro-Trp-Trp-Pro motif. The domain ... |
838-918 | 8.69e-12 | ||||||
PWWP domain; The PWWP domain is named after a conserved Pro-Trp-Trp-Pro motif. The domain binds to Histone-4 methylated at lysine-20, H4K20me, suggesting that it is methyl-lysine recognition motif. Removal of two conserved aromatic residues in a hydrophobic cavity created by this domain within the full-length protein, Pdp1, abolishes the interaction o f the protein with H4K20me3. In fission yeast, Set9 is the sole enzyme that catalyzes all three states of H4K20me, and Set9-mediated H4K20me is required for efficient recruitment of checkpoint protein Crb2 to sites of DNA damage. The methylation of H4K20 is involved in a diverse array of cellular processes, such as organizing higher-order chromatin, maintaining genome stability, and regulating cell-cycle progression. Pssm-ID: 459964 [Multi-domain] Cd Length: 92 Bit Score: 62.44 E-value: 8.69e-12
|
||||||||||
DNA_methylase | pfam00145 | C-5 cytosine-specific DNA methylase; |
1155-1287 | 2.02e-11 | ||||||
C-5 cytosine-specific DNA methylase; Pssm-ID: 395093 [Multi-domain] Cd Length: 324 Bit Score: 66.95 E-value: 2.02e-11
|
||||||||||
CH | pfam00307 | Calponin homology (CH) domain; The CH domain is found in both cytoskeletal proteins and signal ... |
15-118 | 1.27e-10 | ||||||
Calponin homology (CH) domain; The CH domain is found in both cytoskeletal proteins and signal transduction proteins. The CH domain is involved in actin binding in some members of the family. However in calponins there is evidence that the CH domain is not involved in its actin binding activity. Most member proteins have from two to four copies of the CH domain, however some proteins such as calponin have only a single copy. Pssm-ID: 425596 [Multi-domain] Cd Length: 109 Bit Score: 59.99 E-value: 1.27e-10
|
||||||||||
PWWP | smart00293 | domain with conserved PWWP motif; conservation of Pro-Trp-Trp-Pro residues |
835-890 | 4.27e-08 | ||||||
domain with conserved PWWP motif; conservation of Pro-Trp-Trp-Pro residues Pssm-ID: 214603 [Multi-domain] Cd Length: 63 Bit Score: 51.19 E-value: 4.27e-08
|
||||||||||
CH | smart00033 | Calponin homology domain; Actin binding domains present in duplicate at the N-termini of ... |
19-95 | 1.47e-04 | ||||||
Calponin homology domain; Actin binding domains present in duplicate at the N-termini of spectrin-like proteins (including dystrophin, alpha-actinin). These domains cross-link actin filaments into bundles and networks. A calponin homology domain is predicted in yeasst Cdc24p. Pssm-ID: 214479 [Multi-domain] Cd Length: 101 Bit Score: 42.30 E-value: 1.47e-04
|
||||||||||
CH_SF | cd00014 | calponin homology (CH) domain superfamily; CH domains are actin filament (F-actin) binding ... |
20-92 | 1.05e-03 | ||||||
calponin homology (CH) domain superfamily; CH domains are actin filament (F-actin) binding motifs, which may be present as a single copy or in tandem repeats (which increase binding affinity). They either function as autonomous actin binding motifs or serve a regulatory function. CH domains are found in cytoskeletal and signal transduction proteins, including actin-binding proteins like spectrin, alpha-actinin, dystrophin, utrophin, and fimbrin, as well as proteins essential for regulation of cell shape (cortexillins), and signaling proteins (Vav). Pssm-ID: 409031 [Multi-domain] Cd Length: 103 Bit Score: 40.01 E-value: 1.05e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
ADDz_Dnmt3b | cd11728 | ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3b (Dnmt3b); ADDz_Dnmt3b ... |
1011-1130 | 9.77e-75 | ||||||
ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3b (Dnmt3b); ADDz_Dnmt3b is an active catalytic domain of Dnmt3b. Dnmt3b is a member of the Dnmt3 family and is a de novo DNA methyltransferases that has an N-terminal variable region followed by a conserved PWWP region and the cysteine-rich ADDz domain. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The methyltransferase activity of Dnmt3a is not only responsible for the establishment of DNA methylation pattern, but is also essential for the inheritance of these patterns during mitosis. Dnmt3b is ubiquitously expressed in most adult tissues. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. A knockout of Dnmt3b has been shown to be lethal in the mouse model. Pssm-ID: 277254 [Multi-domain] Cd Length: 120 Bit Score: 243.61 E-value: 9.77e-75
|
||||||||||
ADDz_Dnmt3a | cd11729 | ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3a (Dnmt3a); Dnmt3a is a ... |
1009-1133 | 2.12e-45 | ||||||
ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3a (Dnmt3a); Dnmt3a is a member of the Dnmt3 family and is a protein with de novo DNA methyltransferase activity. Dnmt3 family members are Dnmt3a, Dnmt3b, and Dnmt3l the non-enzymatic regulatory factor. Dnmt3a is recruited by Dnmt3l to unmethylated histone H3 and methylates the target. Dnmt3a has a variable region at the N-terminus, followed by a conserved PWWP region and the cysteine-rich ADDz domain. ADDz_Dnmt3a is an active catalytic domain of Dnmt3a. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The methyltransferase activity of Dnmt3a is not only responsible for the establishment of DNA methylation pattern, but is also essential for the inheritance of these patterns during mitosis. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. A knockout of Dnmt3a has been shown to be lethal in the mouse model. Pssm-ID: 277255 [Multi-domain] Cd Length: 128 Bit Score: 159.79 E-value: 2.12e-45
|
||||||||||
ADDz_Dnmt3l | cd11727 | ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 like (Dnmt3l); Dnmt3l ... |
1009-1130 | 1.64e-44 | ||||||
ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 like (Dnmt3l); Dnmt3l is a regulator of DNA methylation, which acts by recognizing unmethylated histone H3 tails and interacting with Dnmt3a to stimulate its de novo DNA methylation activity. The ADDz_Dnmt3l domain is located in the C-terminal region of Dnmt3l that otherwise lacks some residues required for DNA methyltransferase activity. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. Dnmt3l is also associating with HDAC1 and acts as a transcriptional repressor. The ADDz_Dnmt3l domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277253 [Multi-domain] Cd Length: 123 Bit Score: 157.32 E-value: 1.64e-44
|
||||||||||
ADDz_Dnmt3 | cd11725 | ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 (Dnmt3); Dnmt3 is a de ... |
1011-1116 | 2.76e-44 | ||||||
ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 (Dnmt3); Dnmt3 is a de novo DNA methyltransferase family that includes two active enzymes Dnmt3a and -3b and one regulatory factor Dnmt3l. The ADDz domain of Dnmt3 is located in the C-terminal region of Dnmt3, which is an active catalytic domain in Dnmt3a and -b, but lacks some residues for enzymatic activity in Dnmt3l. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277251 [Multi-domain] Cd Length: 108 Bit Score: 156.01 E-value: 2.76e-44
|
||||||||||
PWWP_DNMT3B | cd20155 | PWWP domain found in DNA (cytosine-5)-methyltransferase 3B (DNMT3B); DNMT3B, also called DNA ... |
837-947 | 7.93e-41 | ||||||
PWWP domain found in DNA (cytosine-5)-methyltransferase 3B (DNMT3B); DNMT3B, also called DNA methyltransferase HsaIIIB, DNA MTase HsaIIIB, or M.HsaIIIB, is required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. It may preferentially methylate nucleosomal DNA within the nucleosome core region. DNMT3B may function as a transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. In tumorigenesis, DNA methylation by DNMT3B is known to play a role in the inactivation of tumor suppressor genes. In addition, a point mutation in the PWWP domain of DNMT3B has been identified in patients with ICF (immunodeficiency, centromeric instability, and facial anomalies) syndrome, a rare autosomal recessive disorder characterized by hypomethylation of classical satellite DNA. Pssm-ID: 438983 Cd Length: 117 Bit Score: 146.55 E-value: 7.93e-41
|
||||||||||
ADDz | cd11672 | ATRX, Dnmt3 and Dnmt3l PHD-like zinc finger domain (ADDz); The ADDz zinc finger domain is ... |
1011-1109 | 1.19e-38 | ||||||
ATRX, Dnmt3 and Dnmt3l PHD-like zinc finger domain (ADDz); The ADDz zinc finger domain is present in the chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3) and ATRX, a SNF2 type transcription factor protein. The Dnmt3 family includes two active DNA methyltransferases, Dnmt3a and -3b, and one regulatory factor Dnmt3l. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The ADDz domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277250 [Multi-domain] Cd Length: 99 Bit Score: 139.62 E-value: 1.19e-38
|
||||||||||
PWWP_DNMT3A | cd20154 | PWWP domain found in DNA (cytosine-5)-methyltransferase 3A (DNMT3A); DNMT3A, also called DNA ... |
831-951 | 2.01e-35 | ||||||
PWWP domain found in DNA (cytosine-5)-methyltransferase 3A (DNMT3A); DNMT3A, also called DNA methyltransferase HsaIIIA, DNA MTase HsaIIIA, or M.HsaIIIA, is required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. It modifies DNA in a non-processive manner and also methylates non-CpG sites. It may preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1. DNMT3A is recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites. It contains a PWWP domain that binds methylated histone. Pssm-ID: 438982 Cd Length: 134 Bit Score: 131.63 E-value: 2.01e-35
|
||||||||||
ADD_DNMT3 | pfam17980 | Cysteine rich ADD domain in DNMT3; This is a cysteine-rich domain termed ADD ... |
996-1051 | 7.70e-31 | ||||||
Cysteine rich ADD domain in DNMT3; This is a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, AD-DATRX) found in DNMT3A proteins. The ADD domains of the DNMT3 family have a decisive role in blocking DNMT activity in the areas of the genome with chromatin containing methylated H3K4. Furthermore, the ADD domain of DNMMT3A (ADD-3A) competes with the chromodomain (CD) of heterochromatin protein 1 alpha (HP1alpha, CDHP1alpha) for binding to the H3 tail. The DNA methyltransferase (DNMT) 3 family members DNMT3A and DNMT3B and the DNMT3-like non-enzymatic regulatory factor DNMT3L, are involved in de-novo establishment of DNA methylation patterns in early mammalian development. Pssm-ID: 465603 Cd Length: 56 Bit Score: 115.46 E-value: 7.70e-31
|
||||||||||
PWWP_DNMT3 | cd05835 | PWWP domain found in the DNA (cytosine-5)-methyltransferase 3 (DNMT3) family; The DNMT3 family ... |
837-922 | 9.37e-30 | ||||||
PWWP domain found in the DNA (cytosine-5)-methyltransferase 3 (DNMT3) family; The DNMT3 family includes DNMT3A and DNMT3B, which are required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNMT3A, also called DNA methyltransferase HsaIIIA, DNA MTase HsaIIIA, or M.HsaIIIA, modifies DNA in a non-processive manner and also methylates non-CpG sites. It may preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1. DNMT3A is recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites. DNMT3B, also called DNA methyltransferase HsaIIIB, DNA MTase HsaIIIB, or M.HsaIIIB, may preferentially methylate nucleosomal DNA within the nucleosome core region. DNMT3B may function as a transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Members of this family contains a PWWP domain that is responsible for establishing DNA methylation patterns during embryogenesis and gametogenesis. In tumorigenesis, DNA methylation by DNMT3B is known to play a role in the inactivation of tumor suppressor genes. In addition, a point mutation in the PWWP domain of DNMT3B has been identified in patients with ICF (immunodeficiency, centromeric instability, and facial anomalie) syndrome , a rare autosomal recessive disorder characterized by hypomethylation of classical satellite DNA. Pssm-ID: 438960 [Multi-domain] Cd Length: 89 Bit Score: 113.51 E-value: 9.37e-30
|
||||||||||
Dcm | COG0270 | DNA-cytosine methylase [Replication, recombination and repair]; |
1152-1430 | 6.08e-20 | ||||||
DNA-cytosine methylase [Replication, recombination and repair]; Pssm-ID: 440040 [Multi-domain] Cd Length: 277 Bit Score: 91.41 E-value: 6.08e-20
|
||||||||||
Cyt_C5_DNA_methylase | cd00315 | Cytosine-C5 specific DNA methylases; Methyl transfer reactions play an important role in many ... |
1155-1423 | 5.37e-15 | ||||||
Cytosine-C5 specific DNA methylases; Methyl transfer reactions play an important role in many aspects of biology. Cytosine-specific DNA methylases are found both in prokaryotes and eukaryotes. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the mammalian genome. These effects include transcriptional repression via inhibition of transcription factor binding or the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. Pssm-ID: 238192 [Multi-domain] Cd Length: 275 Bit Score: 76.89 E-value: 5.37e-15
|
||||||||||
BIM1 | COG5217 | Microtubule-binding protein involved in cell cycle control [Cell division and chromosome ... |
17-174 | 1.09e-13 | ||||||
Microtubule-binding protein involved in cell cycle control [Cell division and chromosome partitioning / Cytoskeleton]; Pssm-ID: 227542 [Multi-domain] Cd Length: 342 Bit Score: 74.26 E-value: 1.09e-13
|
||||||||||
PWWP | cd05162 | PWWP (Pro-Trp-Trp-Pro) domain; The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, ... |
838-917 | 4.06e-13 | ||||||
PWWP (Pro-Trp-Trp-Pro) domain; The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids and is composed of a five-stranded antiparallel beta-barrel followed by a helical region. It is found in numerous proteins that are involved in cell division, growth, and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. PWWP domains specifically recognize DNA and histone methylated lysines at the level of the nucleosome. Based on the fact that other regions of PWWP-domain proteins are responsible for nuclear localization and DNA-binding, is likely that the PWWP domain acts as a site for protein-protein binding interactions, influencing chromatin remodeling and thereby regulating transcriptional processes. Some PWWP-domain proteins have been linked to cancer or other diseases; some are known to function as growth factors. Pssm-ID: 438958 [Multi-domain] Cd Length: 86 Bit Score: 66.37 E-value: 4.06e-13
|
||||||||||
ADDz_ATRX | cd11726 | ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked); ADDz_ATRX is a ... |
1014-1109 | 8.30e-13 | ||||||
ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked); ADDz_ATRX is a PHD-like zinc finger domain of ATRX, which belongs to the SNF2 family of chromatin remodeling proteins. ATRX is a large chromatin-associated nuclear protein with two domains, ADDz_ATRX at the N-terminus, followed by a C-terminal ATPase/helicase domain. The ADDz_ATRX domain recognizes a specific methylated histone, and this interaction is required for heterochromatin localization of the ATRX protein. Missense mutations in either of the two ATRX domains lead to the X-linked alpha-thalassemia and mental retardation syndrome; however the mutations in the ADDz_ATRX domain produce a more severe disease phenotype that may also relate to disturbing unknown functions or interaction sites of this domain. The ADDz domain is also present in chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3); it is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277252 [Multi-domain] Cd Length: 102 Bit Score: 65.79 E-value: 8.30e-13
|
||||||||||
dcm | TIGR00675 | DNA-methyltransferase (dcm); All proteins in this family for which functions are known are ... |
1157-1420 | 8.50e-13 | ||||||
DNA-methyltransferase (dcm); All proteins in this family for which functions are known are DNA-cytosine methyltransferases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 273211 [Multi-domain] Cd Length: 315 Bit Score: 71.20 E-value: 8.50e-13
|
||||||||||
PWWP | pfam00855 | PWWP domain; The PWWP domain is named after a conserved Pro-Trp-Trp-Pro motif. The domain ... |
838-918 | 8.69e-12 | ||||||
PWWP domain; The PWWP domain is named after a conserved Pro-Trp-Trp-Pro motif. The domain binds to Histone-4 methylated at lysine-20, H4K20me, suggesting that it is methyl-lysine recognition motif. Removal of two conserved aromatic residues in a hydrophobic cavity created by this domain within the full-length protein, Pdp1, abolishes the interaction o f the protein with H4K20me3. In fission yeast, Set9 is the sole enzyme that catalyzes all three states of H4K20me, and Set9-mediated H4K20me is required for efficient recruitment of checkpoint protein Crb2 to sites of DNA damage. The methylation of H4K20 is involved in a diverse array of cellular processes, such as organizing higher-order chromatin, maintaining genome stability, and regulating cell-cycle progression. Pssm-ID: 459964 [Multi-domain] Cd Length: 92 Bit Score: 62.44 E-value: 8.69e-12
|
||||||||||
DNA_methylase | pfam00145 | C-5 cytosine-specific DNA methylase; |
1155-1287 | 2.02e-11 | ||||||
C-5 cytosine-specific DNA methylase; Pssm-ID: 395093 [Multi-domain] Cd Length: 324 Bit Score: 66.95 E-value: 2.02e-11
|
||||||||||
CH | pfam00307 | Calponin homology (CH) domain; The CH domain is found in both cytoskeletal proteins and signal ... |
15-118 | 1.27e-10 | ||||||
Calponin homology (CH) domain; The CH domain is found in both cytoskeletal proteins and signal transduction proteins. The CH domain is involved in actin binding in some members of the family. However in calponins there is evidence that the CH domain is not involved in its actin binding activity. Most member proteins have from two to four copies of the CH domain, however some proteins such as calponin have only a single copy. Pssm-ID: 425596 [Multi-domain] Cd Length: 109 Bit Score: 59.99 E-value: 1.27e-10
|
||||||||||
PWWP_PWWP2 | cd20140 | PWWP domain found in the PWWP domain-containing protein 2 (PWWP2) family; The PWWP2 family ... |
832-918 | 1.34e-08 | ||||||
PWWP domain found in the PWWP domain-containing protein 2 (PWWP2) family; The PWWP2 family includes PWWP2A and its paralog PWWP2B. PWWP2A is a H2A.Z-specific chromatin binding protein which may play an important role in the neural crest stem cell migration and differentiation during early development. It is also required for proper mitosis progression. PWWP2A and PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66alpha/beta, and CHD3/4. The PWWP domain specifically recognizes DNA and histone methylated lysines. Pssm-ID: 438968 Cd Length: 92 Bit Score: 53.42 E-value: 1.34e-08
|
||||||||||
PWWP_GLYR1 | cd05836 | PWWP domain found in glyoxylate reductase 1 (GLYR1) and similar proteins; GLYR1, also called ... |
835-916 | 3.90e-08 | ||||||
PWWP domain found in glyoxylate reductase 1 (GLYR1) and similar proteins; GLYR1, also called 3-hydroxyisobutyrate dehydrogenase-like protein, cytokine-like nuclear factor N-PAC, nuclear protein NP60, or nuclear protein of 60 kDa, is a putative oxidoreductase that is recruited on chromatin and promotes KDM1B demethylase activity. It recognizes and binds trimethylated 'Lys-36' of histone H3 (H3K36me3). GLYR1 enhances the activity of MAP2K4 and MAP2K6 kinases to phosphorylate p38-alpha. In addition to the PWWP domain, GLYR1 also contains an AT-hook and a C-terminal NAD-binding domain. The PWWP domain specifically recognizes DNA and histone methylated lysines. Pssm-ID: 438961 [Multi-domain] Cd Length: 86 Bit Score: 51.84 E-value: 3.90e-08
|
||||||||||
PWWP | smart00293 | domain with conserved PWWP motif; conservation of Pro-Trp-Trp-Pro residues |
835-890 | 4.27e-08 | ||||||
domain with conserved PWWP motif; conservation of Pro-Trp-Trp-Pro residues Pssm-ID: 214603 [Multi-domain] Cd Length: 63 Bit Score: 51.19 E-value: 4.27e-08
|
||||||||||
PWWP_MBD5 | cd20141 | PWWP domain found in methyl-CpG-binding domain protein 5 (MBD5) and similar proteins; MBD5, is ... |
835-886 | 1.07e-06 | ||||||
PWWP domain found in methyl-CpG-binding domain protein 5 (MBD5) and similar proteins; MBD5, is a methyl-CpG-binding protein that binds to heterochromatin. It does not interact with either methylated or unmethylated DNA. MBD5 acts as a transcriptional regulator responsible for 2q23.1 deletion syndrome. It belongs to the MBD family proteins, which play central roles in transcriptional regulation and development. The PWWP domain specifically recognizes DNA and histone methylated lysines. Pssm-ID: 438969 Cd Length: 92 Bit Score: 48.08 E-value: 1.07e-06
|
||||||||||
PWWP_PWWP2A | cd20152 | PWWP domain found in PWWP domain-containing protein 2A (PWWP2A); PWWP2A is a H2A.Z-specific ... |
831-940 | 7.16e-06 | ||||||
PWWP domain found in PWWP domain-containing protein 2A (PWWP2A); PWWP2A is a H2A.Z-specific chromatin binding protein which may play an important role in the neural crest stem cell migration and differentiation during early development. It is also required for proper mitosis progression. PWWP2A and its paralog PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66alpha/beta, and CHD3/4. The PWWP domain specifically recognizes DNA and histone methylated lysines. Pssm-ID: 438980 Cd Length: 122 Bit Score: 46.54 E-value: 7.16e-06
|
||||||||||
PWWP_PWWP2B | cd20153 | PWWP domain found in PWWP domain-containing protein 2B (PWWP2B); PWWP2B is a paralog of PWWP2A, ... |
831-911 | 1.30e-05 | ||||||
PWWP domain found in PWWP domain-containing protein 2B (PWWP2B); PWWP2B is a paralog of PWWP2A, a H2A.Z-specific chromatin binding protein which may play an important role in the neural crest stem cell migration and differentiation during early development. PWWP2A and PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66alpha/beta, and CHD3/4. The PWWP domain specifically recognizes DNA and histone methylated lysines. Pssm-ID: 438981 Cd Length: 116 Bit Score: 45.72 E-value: 1.30e-05
|
||||||||||
CH | smart00033 | Calponin homology domain; Actin binding domains present in duplicate at the N-termini of ... |
19-95 | 1.47e-04 | ||||||
Calponin homology domain; Actin binding domains present in duplicate at the N-termini of spectrin-like proteins (including dystrophin, alpha-actinin). These domains cross-link actin filaments into bundles and networks. A calponin homology domain is predicted in yeasst Cdc24p. Pssm-ID: 214479 [Multi-domain] Cd Length: 101 Bit Score: 42.30 E-value: 1.47e-04
|
||||||||||
CH_SF | cd00014 | calponin homology (CH) domain superfamily; CH domains are actin filament (F-actin) binding ... |
20-92 | 1.05e-03 | ||||||
calponin homology (CH) domain superfamily; CH domains are actin filament (F-actin) binding motifs, which may be present as a single copy or in tandem repeats (which increase binding affinity). They either function as autonomous actin binding motifs or serve a regulatory function. CH domains are found in cytoskeletal and signal transduction proteins, including actin-binding proteins like spectrin, alpha-actinin, dystrophin, utrophin, and fimbrin, as well as proteins essential for regulation of cell shape (cortexillins), and signaling proteins (Vav). Pssm-ID: 409031 [Multi-domain] Cd Length: 103 Bit Score: 40.01 E-value: 1.05e-03
|
||||||||||
CH_PLS_FIM_rpt1 | cd21217 | first calponin homology (CH) domain found in the plastin/fimbrin family; This family includes ... |
24-68 | 8.93e-03 | ||||||
first calponin homology (CH) domain found in the plastin/fimbrin family; This family includes plastin and fimbrin. Plastin has three isoforms, plastin-1, -2, and -3, which are all actin-bundling proteins. Plastin-1, also called intestine-specific plastin, or I-plastin, is an actin-bundling protein in the absence of calcium. Plastin-2, also called L-plastin, LC64P, or lymphocyte cytosolic protein 1 (LCP-1), plays a role in the activation of T-cells in response to costimulation through TCR/CD3 and CD2 or CD28. It modulates the cell surface expression of IL2RA/CD25 and CD69. Plastin-3, also called T-plastin, is found in intestinal microvilli, hair cell stereocilia, and fibroblast filopodia. It may play a role in the regulation of bone development. Fimbrin has been found in plants and fungi. Arabidopsis thaliana fimbrin (AtFIM) includes fimbrin-1, -2, -3, -4, and -5; they cross-link actin filaments (F-actin) in a calcium independent manner. They stabilize and prevent F-actin depolymerization mediated by profilin. They act as key regulators of actin cytoarchitecture, probably involved in cell cycle, cell division, cell elongation and cytoplasmic tractus. AtFIM5 is an actin bundling factor that is required for pollen germination and pollen tube growth. Fungal fimbrin binds to actin, and functionally associates with actin structures involved in the development and maintenance of cell polarity. Members of this family contain four copies of the CH domain. This model corresponds to the first CH domain. CH domains are actin filament (F-actin) binding motifs. Pssm-ID: 409066 [Multi-domain] Cd Length: 114 Bit Score: 37.55 E-value: 8.93e-03
|
||||||||||
Blast search parameters | ||||
|