NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1002248585|ref|XP_015628463|]
View 

nudix hydrolase 16, mitochondrial [Oryza sativa Japonica Group]

Protein Classification

NUDIX hydrolase( domain architecture ID 10140352)

NUDIX hydrolase such as diphosphoinositol polyphosphate phosphohydrolase that cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate), suggesting that it may play a role in signal transduction

CATH:  3.90.79.10
EC:  3.6.1.-
Gene Ontology:  GO:0016818
PubMed:  16378245|27936487
SCOP:  3000098

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
NUDIX_DIPP2_like_Nudt4 cd04666
diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5', ...
21-160 1.47e-28

diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 (DIPP2), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 4; Nudt4, and other proteins including DIPP1/Nudt3, DIPP3a;APS2/Nudt10 and DIPP3beta;APS1/Nudt11. DIPP regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


:

Pssm-ID: 467551 [Multi-domain]  Cd Length: 128  Bit Score: 102.99  E-value: 1.47e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002248585  21 LVAGCIPFRYRTSNdetsddepkkiVEVLMINSQSGPGLLFPKGGWENDETVEQAAAREAVEEAGVRGDIV-QFLGFYDF 99
Cdd:cd04666     1 LQAGALPYRITKGE-----------LEVLLITSRKTGRWILPKGGPEKGETPAEAAAREAWEEAGVRGKVLkRPLGVYRY 69
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002248585 100 KSKTHqdacCPEGMCRAAVFALHVKEELDSWPEQSTRRRTWLTVPEATSQCRYQWMQEALL 160
Cdd:cd04666    70 RKRLK----GRGLPCRVHVFPLEVTEELDDWPEKHERKRRWFSPEEAAELVDEPELRELLR 126
 
Name Accession Description Interval E-value
NUDIX_DIPP2_like_Nudt4 cd04666
diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5', ...
21-160 1.47e-28

diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 (DIPP2), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 4; Nudt4, and other proteins including DIPP1/Nudt3, DIPP3a;APS2/Nudt10 and DIPP3beta;APS1/Nudt11. DIPP regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467551 [Multi-domain]  Cd Length: 128  Bit Score: 102.99  E-value: 1.47e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002248585  21 LVAGCIPFRYRTSNdetsddepkkiVEVLMINSQSGPGLLFPKGGWENDETVEQAAAREAVEEAGVRGDIV-QFLGFYDF 99
Cdd:cd04666     1 LQAGALPYRITKGE-----------LEVLLITSRKTGRWILPKGGPEKGETPAEAAAREAWEEAGVRGKVLkRPLGVYRY 69
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002248585 100 KSKTHqdacCPEGMCRAAVFALHVKEELDSWPEQSTRRRTWLTVPEATSQCRYQWMQEALL 160
Cdd:cd04666    70 RKRLK----GRGLPCRVHVFPLEVTEELDDWPEKHERKRRWFSPEEAAELVDEPELRELLR 126
 
Name Accession Description Interval E-value
NUDIX_DIPP2_like_Nudt4 cd04666
diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5', ...
21-160 1.47e-28

diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 (DIPP2), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 4; Nudt4, and other proteins including DIPP1/Nudt3, DIPP3a;APS2/Nudt10 and DIPP3beta;APS1/Nudt11. DIPP regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467551 [Multi-domain]  Cd Length: 128  Bit Score: 102.99  E-value: 1.47e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1002248585  21 LVAGCIPFRYRTSNdetsddepkkiVEVLMINSQSGPGLLFPKGGWENDETVEQAAAREAVEEAGVRGDIV-QFLGFYDF 99
Cdd:cd04666     1 LQAGALPYRITKGE-----------LEVLLITSRKTGRWILPKGGPEKGETPAEAAAREAWEEAGVRGKVLkRPLGVYRY 69
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1002248585 100 KSKTHqdacCPEGMCRAAVFALHVKEELDSWPEQSTRRRTWLTVPEATSQCRYQWMQEALL 160
Cdd:cd04666    70 RKRLK----GRGLPCRVHVFPLEVTEELDDWPEKHERKRRWFSPEEAAELVDEPELRELLR 126
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH