chromodomain-helicase-DNA-binding protein 4 isoform X1 [Danio rerio]
PHD finger domain-containing protein( domain architecture ID 13743171)
PHD (plant homeodomain) finger domain-containing protein; similar to the PHD domain in chromodomain-helicase-DNA-binding protein 4
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
DEXHc_CHD4 | cd18056 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4; ... |
736-967 | 1.03e-152 | ||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4; Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. CHD4 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. : Pssm-ID: 350814 [Multi-domain] Cd Length: 232 Bit Score: 469.16 E-value: 1.03e-152
|
||||||||||||
PLN03142 super family | cl33647 | Probable chromatin-remodeling complex ATPase chain; Provisional |
734-1274 | 1.30e-141 | ||||||||
Probable chromatin-remodeling complex ATPase chain; Provisional The actual alignment was detected with superfamily member PLN03142: Pssm-ID: 215601 [Multi-domain] Cd Length: 1033 Bit Score: 468.51 E-value: 1.30e-141
|
||||||||||||
CHDCT2 | pfam08074 | CHDCT2 (NUC038) domain; The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo ... |
1769-1914 | 1.15e-93 | ||||||||
CHDCT2 (NUC038) domain; The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo domain-associated CHD-like helicases. : Pssm-ID: 462358 Cd Length: 145 Bit Score: 298.96 E-value: 1.15e-93
|
||||||||||||
CHDII_SANT-like | pfam06461 | CHD subfamily II, SANT-like domain; CHD proteins (name derived from the presence of a ... |
1397-1531 | 4.18e-78 | ||||||||
CHD subfamily II, SANT-like domain; CHD proteins (name derived from the presence of a Chromodomain, SWI2/SNF2 ATPase/Helicase and a motif with sequence similarity to a DNA)binding domain) are ATP-dependent chromatin remodelers found in plant and animals. In eukaryotes, there are three subfamilies, I, II and III. This domain is found in members of subfamily II which play a role in repression of genes involved in developmental regulation, including Mi-2 from Drosophila melanogaster, CHD3/4/5 from animals and PICKLE (a CHD3/4-related protein) from Arabidopsis. Sequence analysis revealed that this domain has a considerable similarity to SANT domains suggesting that it fold into this type of domain and it is integral to the DNA binding domain of CHD remodelers in subfamily II. : Pssm-ID: 461920 Cd Length: 137 Bit Score: 254.22 E-value: 4.18e-78
|
||||||||||||
CD1_tandem_CHD3-4_like | cd18667 | repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and ... |
506-584 | 5.33e-33 | ||||||||
repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins; Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. : Pssm-ID: 349314 [Multi-domain] Cd Length: 79 Bit Score: 122.83 E-value: 5.33e-33
|
||||||||||||
CD2_tandem_CHD3-4_like | cd18662 | repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and ... |
629-683 | 1.69e-30 | ||||||||
repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins; Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. : Pssm-ID: 349309 [Multi-domain] Cd Length: 55 Bit Score: 115.05 E-value: 1.69e-30
|
||||||||||||
PHD1_CHD_II | cd15531 | PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
377-419 | 1.61e-29 | ||||||||
PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the first PHD finger. : Pssm-ID: 277006 [Multi-domain] Cd Length: 43 Bit Score: 111.93 E-value: 1.61e-29
|
||||||||||||
PHD2_CHD_II | cd15532 | PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
459-501 | 4.74e-29 | ||||||||
PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. : Pssm-ID: 277007 [Multi-domain] Cd Length: 43 Bit Score: 110.45 E-value: 4.74e-29
|
||||||||||||
CHDNT | pfam08073 | CHDNT (NUC034) domain; The CHDNT domain is found in PHD/RING finger and chromo ... |
155-210 | 1.88e-22 | ||||||||
CHDNT (NUC034) domain; The CHDNT domain is found in PHD/RING finger and chromo domain-associated helicases. : Pssm-ID: 462357 Cd Length: 54 Bit Score: 92.01 E-value: 1.88e-22
|
||||||||||||
DUF1087 super family | cl05792 | CHD subfamily II, DUF1087; This domain is found in chromatin remodelling factors (CHDs) from ... |
1308-1351 | 1.99e-14 | ||||||||
CHD subfamily II, DUF1087; This domain is found in chromatin remodelling factors (CHDs) from subfamily II including CHD3/4/5 from animals and PICKLE. from Arabidopsis. The exact function is, as yet, unknown. The actual alignment was detected with superfamily member pfam06465: Pssm-ID: 461922 Cd Length: 60 Bit Score: 69.37 E-value: 1.99e-14
|
||||||||||||
PTZ00121 super family | cl31754 | MAEBL; Provisional |
1534-1738 | 4.01e-10 | ||||||||
MAEBL; Provisional The actual alignment was detected with superfamily member PTZ00121: Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 65.55 E-value: 4.01e-10
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
DEXHc_CHD4 | cd18056 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4; ... |
736-967 | 1.03e-152 | ||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4; Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. CHD4 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350814 [Multi-domain] Cd Length: 232 Bit Score: 469.16 E-value: 1.03e-152
|
||||||||||||
PLN03142 | PLN03142 | Probable chromatin-remodeling complex ATPase chain; Provisional |
734-1274 | 1.30e-141 | ||||||||
Probable chromatin-remodeling complex ATPase chain; Provisional Pssm-ID: 215601 [Multi-domain] Cd Length: 1033 Bit Score: 468.51 E-value: 1.30e-141
|
||||||||||||
HepA | COG0553 | Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination, ... |
723-1209 | 7.51e-123 | ||||||||
Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination, and repair]; Pssm-ID: 440319 [Multi-domain] Cd Length: 682 Bit Score: 404.22 E-value: 7.51e-123
|
||||||||||||
CHDCT2 | pfam08074 | CHDCT2 (NUC038) domain; The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo ... |
1769-1914 | 1.15e-93 | ||||||||
CHDCT2 (NUC038) domain; The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo domain-associated CHD-like helicases. Pssm-ID: 462358 Cd Length: 145 Bit Score: 298.96 E-value: 1.15e-93
|
||||||||||||
SNF2-rel_dom | pfam00176 | SNF2-related domain; This domain is found in proteins involved in a variety of processes ... |
739-1035 | 5.73e-82 | ||||||||
SNF2-related domain; This domain is found in proteins involved in a variety of processes including transcription regulation (e.g., SNF2, STH1, brahma, MOT1), DNA repair (e.g., ERCC6, RAD16, RAD5), DNA recombination (e.g., RAD54), and chromatin unwinding (e.g., ISWI) as well as a variety of other proteins with little functional information (e.g., lodestar, ETL1). SNF2 functions as the ATPase component of the SNF2/SWI multisubunit complex, which utilizes energy derived from ATP hydrolysis to disrupt histone-DNA interactions, resulting in the increased accessibility of DNA to transcription factors. Pssm-ID: 425504 [Multi-domain] Cd Length: 289 Bit Score: 271.48 E-value: 5.73e-82
|
||||||||||||
CHDII_SANT-like | pfam06461 | CHD subfamily II, SANT-like domain; CHD proteins (name derived from the presence of a ... |
1397-1531 | 4.18e-78 | ||||||||
CHD subfamily II, SANT-like domain; CHD proteins (name derived from the presence of a Chromodomain, SWI2/SNF2 ATPase/Helicase and a motif with sequence similarity to a DNA)binding domain) are ATP-dependent chromatin remodelers found in plant and animals. In eukaryotes, there are three subfamilies, I, II and III. This domain is found in members of subfamily II which play a role in repression of genes involved in developmental regulation, including Mi-2 from Drosophila melanogaster, CHD3/4/5 from animals and PICKLE (a CHD3/4-related protein) from Arabidopsis. Sequence analysis revealed that this domain has a considerable similarity to SANT domains suggesting that it fold into this type of domain and it is integral to the DNA binding domain of CHD remodelers in subfamily II. Pssm-ID: 461920 Cd Length: 137 Bit Score: 254.22 E-value: 4.18e-78
|
||||||||||||
SF2_C_SNF | cd18793 | C-terminal helicase domain of the SNF family helicases; The Sucrose Non-Fermenting (SNF) ... |
1074-1185 | 1.97e-55 | ||||||||
C-terminal helicase domain of the SNF family helicases; The Sucrose Non-Fermenting (SNF) family includes chromatin-remodeling factors, such as CHD proteins and SMARCA proteins, recombination proteins Rad54, and many others. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350180 [Multi-domain] Cd Length: 135 Bit Score: 189.22 E-value: 1.97e-55
|
||||||||||||
CD1_tandem_CHD3-4_like | cd18667 | repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and ... |
506-584 | 5.33e-33 | ||||||||
repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins; Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349314 [Multi-domain] Cd Length: 79 Bit Score: 122.83 E-value: 5.33e-33
|
||||||||||||
CD2_tandem_CHD3-4_like | cd18662 | repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and ... |
629-683 | 1.69e-30 | ||||||||
repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins; Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349309 [Multi-domain] Cd Length: 55 Bit Score: 115.05 E-value: 1.69e-30
|
||||||||||||
PHD1_CHD_II | cd15531 | PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
377-419 | 1.61e-29 | ||||||||
PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the first PHD finger. Pssm-ID: 277006 [Multi-domain] Cd Length: 43 Bit Score: 111.93 E-value: 1.61e-29
|
||||||||||||
Helicase_C | pfam00271 | Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, ... |
1076-1174 | 3.00e-29 | ||||||||
Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. Pssm-ID: 459740 [Multi-domain] Cd Length: 109 Bit Score: 113.46 E-value: 3.00e-29
|
||||||||||||
PHD2_CHD_II | cd15532 | PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
459-501 | 4.74e-29 | ||||||||
PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. Pssm-ID: 277007 [Multi-domain] Cd Length: 43 Bit Score: 110.45 E-value: 4.74e-29
|
||||||||||||
DEXDc | smart00487 | DEAD-like helicases superfamily; |
730-938 | 1.14e-25 | ||||||||
DEAD-like helicases superfamily; Pssm-ID: 214692 [Multi-domain] Cd Length: 201 Bit Score: 106.42 E-value: 1.14e-25
|
||||||||||||
HELICc | smart00490 | helicase superfamily c-terminal domain; |
1090-1174 | 1.98e-24 | ||||||||
helicase superfamily c-terminal domain; Pssm-ID: 197757 [Multi-domain] Cd Length: 82 Bit Score: 98.44 E-value: 1.98e-24
|
||||||||||||
CHDNT | pfam08073 | CHDNT (NUC034) domain; The CHDNT domain is found in PHD/RING finger and chromo ... |
155-210 | 1.88e-22 | ||||||||
CHDNT (NUC034) domain; The CHDNT domain is found in PHD/RING finger and chromo domain-associated helicases. Pssm-ID: 462357 Cd Length: 54 Bit Score: 92.01 E-value: 1.88e-22
|
||||||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
459-503 | 7.56e-17 | ||||||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 75.99 E-value: 7.56e-17
|
||||||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
459-501 | 2.47e-15 | ||||||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 71.47 E-value: 2.47e-15
|
||||||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
377-419 | 1.06e-14 | ||||||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 69.83 E-value: 1.06e-14
|
||||||||||||
DUF1087 | pfam06465 | CHD subfamily II, DUF1087; This domain is found in chromatin remodelling factors (CHDs) from ... |
1308-1351 | 1.99e-14 | ||||||||
CHD subfamily II, DUF1087; This domain is found in chromatin remodelling factors (CHDs) from subfamily II including CHD3/4/5 from animals and PICKLE. from Arabidopsis. The exact function is, as yet, unknown. Pssm-ID: 461922 Cd Length: 60 Bit Score: 69.37 E-value: 1.99e-14
|
||||||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
377-419 | 7.60e-13 | ||||||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 64.54 E-value: 7.60e-13
|
||||||||||||
Chromo | pfam00385 | Chromo (CHRromatin organization MOdifier) domain; |
634-684 | 1.98e-11 | ||||||||
Chromo (CHRromatin organization MOdifier) domain; Pssm-ID: 459793 [Multi-domain] Cd Length: 52 Bit Score: 60.67 E-value: 1.98e-11
|
||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1738 | 4.01e-10 | ||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 65.55 E-value: 4.01e-10
|
||||||||||||
CHROMO | smart00298 | Chromatin organization modifier domain; |
634-686 | 1.00e-09 | ||||||||
Chromatin organization modifier domain; Pssm-ID: 214605 [Multi-domain] Cd Length: 55 Bit Score: 55.68 E-value: 1.00e-09
|
||||||||||||
PRK04914 | PRK04914 | RNA polymerase-associated protein RapA; |
876-961 | 1.37e-06 | ||||||||
RNA polymerase-associated protein RapA; Pssm-ID: 235319 [Multi-domain] Cd Length: 956 Bit Score: 53.69 E-value: 1.37e-06
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
1587-1729 | 7.56e-06 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 51.06 E-value: 7.56e-06
|
||||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
1586-1733 | 8.39e-06 | ||||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 51.15 E-value: 8.39e-06
|
||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1537-1734 | 9.29e-06 | ||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 50.78 E-value: 9.29e-06
|
||||||||||||
TNG2 | COG5034 | Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; |
366-422 | 1.38e-05 | ||||||||
Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; Pssm-ID: 227367 [Multi-domain] Cd Length: 271 Bit Score: 48.78 E-value: 1.38e-05
|
||||||||||||
DMP1 | pfam07263 | Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix ... |
1582-1730 | 2.18e-05 | ||||||||
Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralized dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralized matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown. Pssm-ID: 462128 [Multi-domain] Cd Length: 519 Bit Score: 49.15 E-value: 2.18e-05
|
||||||||||||
CHROMO | smart00298 | Chromatin organization modifier domain; |
543-585 | 3.22e-05 | ||||||||
Chromatin organization modifier domain; Pssm-ID: 214605 [Multi-domain] Cd Length: 55 Bit Score: 42.97 E-value: 3.22e-05
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
DEXHc_CHD4 | cd18056 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4; ... |
736-967 | 1.03e-152 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4; Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. CHD4 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350814 [Multi-domain] Cd Length: 232 Bit Score: 469.16 E-value: 1.03e-152
|
||||||||||||||
DEXHc_CHD3 | cd18055 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 3; ... |
736-967 | 2.35e-148 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 3; Chromodomain-helicase-DNA-binding protein 3 (CHD3) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. It is required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity. CHD3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350813 [Multi-domain] Cd Length: 232 Bit Score: 457.17 E-value: 2.35e-148
|
||||||||||||||
DEXHc_CHD5 | cd18057 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 5; ... |
736-967 | 2.04e-145 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 5; Chromodomain-helicase-DNA-binding protein 5 (CHD5) is a chromatin-remodeling protein that binds DNA through histones and regulates gene transcription. It is thought to specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3 and plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. As a tumor suppressor, it regulates the expression of genes involved in cell proliferation and differentiation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. CHD5 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350815 [Multi-domain] Cd Length: 232 Bit Score: 449.13 E-value: 2.04e-145
|
||||||||||||||
PLN03142 | PLN03142 | Probable chromatin-remodeling complex ATPase chain; Provisional |
734-1274 | 1.30e-141 | ||||||||||
Probable chromatin-remodeling complex ATPase chain; Provisional Pssm-ID: 215601 [Multi-domain] Cd Length: 1033 Bit Score: 468.51 E-value: 1.30e-141
|
||||||||||||||
DEXHc_CHD3_4_5 | cd17994 | DEAH-box helicase domain of the chromodomain helicase DNA binding proteins 3, 4 and 5; ... |
736-967 | 1.41e-138 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding proteins 3, 4 and 5; Chromodomain-helicase-DNA-binding protein 3 (CHD3) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. It is required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. Chromodomain-helicase-DNA-binding protein 5 (CHD5) is a chromatin-remodeling protein that binds DNA through histones and regulates gene transcription. It is thought to specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3 and plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. As a tumor suppressor, it regulates the expression of genes involved in cell proliferation and differentiation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. CHD3, CHD4, and CHD5 are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350752 [Multi-domain] Cd Length: 196 Bit Score: 428.40 E-value: 1.41e-138
|
||||||||||||||
HepA | COG0553 | Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination, ... |
723-1209 | 7.51e-123 | ||||||||||
Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination, and repair]; Pssm-ID: 440319 [Multi-domain] Cd Length: 682 Bit Score: 404.22 E-value: 7.51e-123
|
||||||||||||||
DEXHc_CHD6_7_8_9 | cd17995 | DEXH-box helicase domain of the chromodomain helicase DNA binding protein 6, 7, 8 and 9; ... |
736-967 | 2.40e-100 | ||||||||||
DEXH-box helicase domain of the chromodomain helicase DNA binding protein 6, 7, 8 and 9; Chromodomain-helicase-DNA-binding protein 6-9 (CHD6, CHD7, CHD8, and CHD9) are members of the DEAD-like helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350753 [Multi-domain] Cd Length: 223 Bit Score: 321.51 E-value: 2.40e-100
|
||||||||||||||
DEXHc_CHD1_2 | cd17993 | DEXH-box helicase domain of the chromodomain helicase DNA binding proteins 1 and 2, and ... |
735-967 | 2.24e-95 | ||||||||||
DEXH-box helicase domain of the chromodomain helicase DNA binding proteins 1 and 2, and similar proteins; Chromodomain-helicase-DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin-remodeling factor which functions as the substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. It regulates polymerase II transcription and is also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. It is not only involved in transcription-related chromatin-remodeling, but is also required to maintain a specific chromatin configuration across the genome. CHD1 is also associated with histone deacetylase (HDAC) activity. Chromodomain-helicase-DNA-binding protein 2 (CHD2) is a DNA-binding helicase that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. It is involved in myogenesis via interaction with MYOD1; it binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression. Both are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350751 [Multi-domain] Cd Length: 218 Bit Score: 306.97 E-value: 2.24e-95
|
||||||||||||||
CHDCT2 | pfam08074 | CHDCT2 (NUC038) domain; The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo ... |
1769-1914 | 1.15e-93 | ||||||||||
CHDCT2 (NUC038) domain; The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo domain-associated CHD-like helicases. Pssm-ID: 462358 Cd Length: 145 Bit Score: 298.96 E-value: 1.15e-93
|
||||||||||||||
SNF2-rel_dom | pfam00176 | SNF2-related domain; This domain is found in proteins involved in a variety of processes ... |
739-1035 | 5.73e-82 | ||||||||||
SNF2-related domain; This domain is found in proteins involved in a variety of processes including transcription regulation (e.g., SNF2, STH1, brahma, MOT1), DNA repair (e.g., ERCC6, RAD16, RAD5), DNA recombination (e.g., RAD54), and chromatin unwinding (e.g., ISWI) as well as a variety of other proteins with little functional information (e.g., lodestar, ETL1). SNF2 functions as the ATPase component of the SNF2/SWI multisubunit complex, which utilizes energy derived from ATP hydrolysis to disrupt histone-DNA interactions, resulting in the increased accessibility of DNA to transcription factors. Pssm-ID: 425504 [Multi-domain] Cd Length: 289 Bit Score: 271.48 E-value: 5.73e-82
|
||||||||||||||
DEXHc_Snf | cd17919 | DEXH/Q-box helicase domain of DEAD-like helicase Snf family proteins; Sucrose Non-Fermenting ... |
736-931 | 2.20e-81 | ||||||||||
DEXH/Q-box helicase domain of DEAD-like helicase Snf family proteins; Sucrose Non-Fermenting (SNF) proteins DEAD-like helicases superfamily. A diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350677 [Multi-domain] Cd Length: 182 Bit Score: 265.58 E-value: 2.20e-81
|
||||||||||||||
DEXHc_CHD2 | cd18054 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 2; ... |
720-967 | 1.60e-78 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 2; Chromodomain-helicase-DNA-binding protein 2 (CHD2) is a DNA-binding helicase that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. It is involved in myogenesis via interaction with MYOD1; it binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression. CHD2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350812 [Multi-domain] Cd Length: 237 Bit Score: 259.55 E-value: 1.60e-78
|
||||||||||||||
CHDII_SANT-like | pfam06461 | CHD subfamily II, SANT-like domain; CHD proteins (name derived from the presence of a ... |
1397-1531 | 4.18e-78 | ||||||||||
CHD subfamily II, SANT-like domain; CHD proteins (name derived from the presence of a Chromodomain, SWI2/SNF2 ATPase/Helicase and a motif with sequence similarity to a DNA)binding domain) are ATP-dependent chromatin remodelers found in plant and animals. In eukaryotes, there are three subfamilies, I, II and III. This domain is found in members of subfamily II which play a role in repression of genes involved in developmental regulation, including Mi-2 from Drosophila melanogaster, CHD3/4/5 from animals and PICKLE (a CHD3/4-related protein) from Arabidopsis. Sequence analysis revealed that this domain has a considerable similarity to SANT domains suggesting that it fold into this type of domain and it is integral to the DNA binding domain of CHD remodelers in subfamily II. Pssm-ID: 461920 Cd Length: 137 Bit Score: 254.22 E-value: 4.18e-78
|
||||||||||||||
DEXHc_SMARCA2_SMARCA4 | cd17996 | DEXH-box helicase domain of SMARCA2 and SMARCA4; SWI/SNF related, matrix associated, actin ... |
733-969 | 6.93e-71 | ||||||||||
DEXH-box helicase domain of SMARCA2 and SMARCA4; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, members 2 and 4 (SMARCA2 and SMARCA4) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350754 [Multi-domain] Cd Length: 233 Bit Score: 237.65 E-value: 6.93e-71
|
||||||||||||||
DEXHc_CHD6 | cd18058 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 6; ... |
736-967 | 1.19e-70 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 6; Chromodomain-helicase-DNA-binding protein 6 (CHD6) is a DNA-dependent ATPase that plays a role in chromatin remodeling. It regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin. It activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2.2 and acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. CHD6 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350816 [Multi-domain] Cd Length: 222 Bit Score: 236.48 E-value: 1.19e-70
|
||||||||||||||
DEXHc_HELLS_SMARCA6 | cd18009 | DEXH-box helicase domain of HELLS; HELLS (helicase, lymphoid specific, also known as Lsh or ... |
733-969 | 1.88e-70 | ||||||||||
DEXH-box helicase domain of HELLS; HELLS (helicase, lymphoid specific, also known as Lsh or SMARCA6) is a major epigenetic regulator crucial for normal heterochromatin structure and function. HELLS is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350767 [Multi-domain] Cd Length: 236 Bit Score: 236.51 E-value: 1.88e-70
|
||||||||||||||
DEXHc_CHD7 | cd18059 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 7; ... |
736-967 | 1.90e-67 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 7; Chromodomain-helicase-DNA-binding protein 7 (CHD7) is a probable transcription regulator. It may be involved in the 45S precursor rRNA production. CHD7 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350817 [Multi-domain] Cd Length: 222 Bit Score: 227.22 E-value: 1.90e-67
|
||||||||||||||
DEXHc_SMARCA1_SMARCA5 | cd17997 | DEAH-box helicase domain of SMARCA1 and SMARCA5; SWI/SNF related, matrix associated, actin ... |
733-969 | 5.26e-66 | ||||||||||
DEAH-box helicase domain of SMARCA1 and SMARCA5; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 and 5 (SMARCA1 and SMARCA5) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350755 [Multi-domain] Cd Length: 222 Bit Score: 222.97 E-value: 5.26e-66
|
||||||||||||||
DEXHc_CHD8 | cd18060 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 8; ... |
736-967 | 1.49e-65 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 8; Chromodomain-helicase-DNA-binding protein 8 (CHD8) is a DNA helicase that acts as a chromatin remodeling factor and regulates transcription. It also acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. It suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity and of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. It also acts as a negative regulator of Wnt signaling pathway and CTNNB1-targeted gene expression. CHD8 is also involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. It also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. CHD8 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350818 [Multi-domain] Cd Length: 222 Bit Score: 221.85 E-value: 1.49e-65
|
||||||||||||||
DEXHc_CHD9 | cd18061 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 9; ... |
736-967 | 2.04e-65 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 9; Chromodomain-helicase-DNA-binding protein 9 (CHD9) acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. It is proposed to be a ATP-dependent chromatin remodeling protein. CHD9 has DNA-dependent ATPase activity and binds to A/T-rich DNA. It also associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis. CHD9 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350819 [Multi-domain] Cd Length: 222 Bit Score: 221.42 E-value: 2.04e-65
|
||||||||||||||
DEXHc_CHD1L | cd18006 | DEAH/Q-box helicase domain of CHD1L; Chromodomain helicase DNA binding protein 1 like (CHD1L, ... |
736-967 | 3.51e-65 | ||||||||||
DEAH/Q-box helicase domain of CHD1L; Chromodomain helicase DNA binding protein 1 like (CHD1L, also known as ALC1) is involved in DNA repair by regulating chromatin relaxation following DNA damage. CHD1L is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350764 [Multi-domain] Cd Length: 216 Bit Score: 220.39 E-value: 3.51e-65
|
||||||||||||||
DEXHc_CHD1 | cd18053 | DEAH-box helicase domain of the chromodomain helicase DNA binding protein 1; ... |
720-967 | 7.19e-63 | ||||||||||
DEAH-box helicase domain of the chromodomain helicase DNA binding protein 1; Chromodomain-helicase-DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. It regulates polymerase II transcription and is also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. It is not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. CHD1 is also associated with histone deacetylase (HDAC) activity. It is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350811 [Multi-domain] Cd Length: 237 Bit Score: 214.91 E-value: 7.19e-63
|
||||||||||||||
DEXQc_SRCAP | cd18003 | DEXH/Q-box helicase domain of SRCAP; Snf2-related CBP activator (SRCAP, also known as SWR1 or ... |
736-967 | 2.10e-56 | ||||||||||
DEXH/Q-box helicase domain of SRCAP; Snf2-related CBP activator (SRCAP, also known as SWR1 or DOMO1) is the core catalytic component of the multiprotein chromatin-remodeling SRCAP complex, that is necessary for the incorporation of the histone variant H2A.Z into nucleosomes. SRCAP is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350761 [Multi-domain] Cd Length: 223 Bit Score: 195.65 E-value: 2.10e-56
|
||||||||||||||
SF2_C_SNF | cd18793 | C-terminal helicase domain of the SNF family helicases; The Sucrose Non-Fermenting (SNF) ... |
1074-1185 | 1.97e-55 | ||||||||||
C-terminal helicase domain of the SNF family helicases; The Sucrose Non-Fermenting (SNF) family includes chromatin-remodeling factors, such as CHD proteins and SMARCA proteins, recombination proteins Rad54, and many others. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350180 [Multi-domain] Cd Length: 135 Bit Score: 189.22 E-value: 1.97e-55
|
||||||||||||||
DEXQc_arch_SWI2_SNF2 | cd18012 | DEAQ-box helicase domain of archaeal and bacterial SNF2-related proteins; Proteins belonging ... |
734-969 | 2.15e-55 | ||||||||||
DEAQ-box helicase domain of archaeal and bacterial SNF2-related proteins; Proteins belonging to SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. The Snf2 family comprises a large group of ATP-hydrolyzing proteins that are ubiquitous in eukaryotes, but also present in eubacteria and archaea. Archaeal SWI2 and SNF2 are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350770 [Multi-domain] Cd Length: 218 Bit Score: 192.40 E-value: 2.15e-55
|
||||||||||||||
DEXQc_INO80 | cd18002 | DEAQ-box helicase domain of INO80; INO80 is the catalytic ATPase subunit of the INO80 ... |
736-967 | 6.42e-54 | ||||||||||
DEAQ-box helicase domain of INO80; INO80 is the catalytic ATPase subunit of the INO80 chromatin remodeling complex. INO80 removes histone H3-containing nucleosomes from associated chromatin, promotes CENP-ACnp1 chromatin assembly at the centromere in a redundant manner with another chromatin-remodeling factor Chd1Hrp1. INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. INO80 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350760 [Multi-domain] Cd Length: 229 Bit Score: 188.87 E-value: 6.42e-54
|
||||||||||||||
DEXHc_SMARCAD1 | cd17998 | DEXH-box helicase domain of SMARCAD1; SWI/SNF-related matrix-associated actin-dependent ... |
736-934 | 8.16e-53 | ||||||||||
DEXH-box helicase domain of SMARCAD1; SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1, also known as ATP-dependent helicase 1 or Hel1) possesses intrinsic ATP-dependent nucleosome-remodeling activity and is required for both DNA repair and heterochromatin organization. SMARCAD1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350756 [Multi-domain] Cd Length: 187 Bit Score: 183.74 E-value: 8.16e-53
|
||||||||||||||
DEXHc_SMARCA1 | cd18065 | DEAH-box helicase domain of SMARCA1; SWI/SNF related, matrix associated, actin dependent ... |
720-969 | 1.84e-51 | ||||||||||
DEAH-box helicase domain of SMARCA1; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 (SMARCA1, also called SNF2L) is a component of NURF (nucleosome-remodeling factor) and CERF (CECR2-containing-remodeling factor) complexes which promote the perturbation of chromatin structure in an ATP-dependent manner. SMARCA1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350823 [Multi-domain] Cd Length: 233 Bit Score: 181.75 E-value: 1.84e-51
|
||||||||||||||
DEXHc_SMARCA5 | cd18064 | DEAH-box helicase domain of SMARCA5; SWI/SNF related, matrix associated, actin dependent ... |
721-979 | 9.54e-51 | ||||||||||
DEAH-box helicase domain of SMARCA5; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 (SMARCA5, also called SNF2H) is the catalytic subunit of the four known chromatin-remodeling complexes: CHRAC, RSF, ACF/WCRF, and WICH. SMARCA5 plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding SMARCA5 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350822 [Multi-domain] Cd Length: 244 Bit Score: 180.25 E-value: 9.54e-51
|
||||||||||||||
DEXHc_SMARCA2 | cd18063 | DEXH-box helicase domain of SMARCA2; SWI/SNF related, matrix associated, actin dependent ... |
734-969 | 1.56e-48 | ||||||||||
DEXH-box helicase domain of SMARCA2; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2 (SMARCA2, also known as brahma homolog) is a component of the BAF complex. SMARCA2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350821 [Multi-domain] Cd Length: 251 Bit Score: 174.10 E-value: 1.56e-48
|
||||||||||||||
DEXHc_SMARCA4 | cd18062 | DEXH-box helicase domain of SMARCA4; SWI/SNF related, matrix associated, actin dependent ... |
719-969 | 3.23e-48 | ||||||||||
DEXH-box helicase domain of SMARCA4; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4, also known as transcription activator BRG1) is a component of the CREST-BRG1 complex that regulates promoter activation by orchestrating a calcium-dependent release of a repressor complex and a recruitment of an activator complex. Mutation of SMARCA4 (BRG1), the ATPase of BAF (mSWI/SNF) and PBAF complexes, contributes to a range of malignancies and neurologic disorders. SMARCA4 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350820 [Multi-domain] Cd Length: 251 Bit Score: 173.31 E-value: 3.23e-48
|
||||||||||||||
DEXHc_ERCC6 | cd18000 | DEXH-box helicase domain of ERCC6; ERCC excision repair 6, chromatin remodeling factor (ERCC6, ... |
736-931 | 4.79e-41 | ||||||||||
DEXH-box helicase domain of ERCC6; ERCC excision repair 6, chromatin remodeling factor (ERCC6, also known Cockayne syndrome group B (CSB), Rad26 in Saccharomyces cerevisiae, and Rhp26 in Schizosaccharomyces pombe) is a DNA-binding protein that is important in transcription-coupled excision repair. ERCC6 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350758 [Multi-domain] Cd Length: 193 Bit Score: 150.17 E-value: 4.79e-41
|
||||||||||||||
DEXHc_ERCC6L2 | cd18005 | DEXH-box helicase domain of ERCC6L2; ERCC excision repair 6 like 2 (ERCC6L2, also known as ... |
736-967 | 9.80e-41 | ||||||||||
DEXH-box helicase domain of ERCC6L2; ERCC excision repair 6 like 2 (ERCC6L2, also known as RAD26L) may play a role in DNA repair and mitochondrial function. In humans, mutations in the ERCC6L2 gene are associated with bone marrow failure syndrome 2. ERCC6L2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350763 [Multi-domain] Cd Length: 245 Bit Score: 151.38 E-value: 9.80e-41
|
||||||||||||||
DEXHc_RAD54 | cd18004 | DEXH-box helicase domain of RAD54; RAD54 proteins play a role in recombination. They are ... |
736-967 | 1.64e-38 | ||||||||||
DEXH-box helicase domain of RAD54; RAD54 proteins play a role in recombination. They are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350762 [Multi-domain] Cd Length: 240 Bit Score: 144.74 E-value: 1.64e-38
|
||||||||||||||
DEXHc_ERCC6L | cd18001 | DEXH-box helicase domain of ERCC6L; ERCC excision repair 6 like, spindle assembly checkpoint ... |
736-967 | 2.14e-38 | ||||||||||
DEXH-box helicase domain of ERCC6L; ERCC excision repair 6 like, spindle assembly checkpoint helicase (ERCC6L, also known as RAD26L) is an essential component of the mitotic spindle assembly checkpoint, by acting as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase. ERCC6L is proposed to stimulate cancer cell proliferation by promoting cell cycle through a way of RAB31-MAPK-CDK2. ERCC6L is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350759 [Multi-domain] Cd Length: 232 Bit Score: 144.05 E-value: 2.14e-38
|
||||||||||||||
DEXHc_ATRX-like | cd18007 | DEXH-box helicase domain of ATRX-like proteins; This family includes ATRX-like members such as ... |
736-944 | 6.37e-37 | ||||||||||
DEXH-box helicase domain of ATRX-like proteins; This family includes ATRX-like members such as transcriptional regulator ATRX (also called alpha thalassemia/mental retardation syndrome X-linked and X-linked nuclear protein or XNP) which is involved in transcriptional regulation and chromatin remodeling, and ARIP4 (also called androgen receptor-interacting protein 4, RAD54 like 2 or RAD54L2) which modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. They are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350765 [Multi-domain] Cd Length: 239 Bit Score: 140.12 E-value: 6.37e-37
|
||||||||||||||
DEXHc_Mot1 | cd17999 | DEXH-box helicase domain of Mot1; Modifier of transcription 1 (Mot1, also known as TAF172 in ... |
736-967 | 2.49e-35 | ||||||||||
DEXH-box helicase domain of Mot1; Modifier of transcription 1 (Mot1, also known as TAF172 in eukaryotes) regulates transcription in association with TATA binding protein (TBP). Mot1, Ino80C, and NC2 function coordinately to regulate pervasive transcription in yeast and mammals. Mot1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350757 [Multi-domain] Cd Length: 232 Bit Score: 135.17 E-value: 2.49e-35
|
||||||||||||||
DEXDc_SHPRH-like | cd18008 | DEXH-box helicase domain of SHPRH-like proteins; The SHPRH-like subgroup belongs to the ... |
736-967 | 5.90e-35 | ||||||||||
DEXH-box helicase domain of SHPRH-like proteins; The SHPRH-like subgroup belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350766 [Multi-domain] Cd Length: 241 Bit Score: 134.72 E-value: 5.90e-35
|
||||||||||||||
CD1_tandem_CHD3-4_like | cd18667 | repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and ... |
506-584 | 5.33e-33 | ||||||||||
repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins; Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349314 [Multi-domain] Cd Length: 79 Bit Score: 122.83 E-value: 5.33e-33
|
||||||||||||||
CD2_tandem_CHD3-4_like | cd18662 | repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and ... |
629-683 | 1.69e-30 | ||||||||||
repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins; Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349309 [Multi-domain] Cd Length: 55 Bit Score: 115.05 E-value: 1.69e-30
|
||||||||||||||
PHD1_CHD_II | cd15531 | PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
377-419 | 1.61e-29 | ||||||||||
PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the first PHD finger. Pssm-ID: 277006 [Multi-domain] Cd Length: 43 Bit Score: 111.93 E-value: 1.61e-29
|
||||||||||||||
Helicase_C | pfam00271 | Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, ... |
1076-1174 | 3.00e-29 | ||||||||||
Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. Pssm-ID: 459740 [Multi-domain] Cd Length: 109 Bit Score: 113.46 E-value: 3.00e-29
|
||||||||||||||
PHD2_CHD_II | cd15532 | PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
459-501 | 4.74e-29 | ||||||||||
PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. Pssm-ID: 277007 [Multi-domain] Cd Length: 43 Bit Score: 110.45 E-value: 4.74e-29
|
||||||||||||||
DEXHc_RAD54B | cd18066 | DEXH-box helicase domain of RAD54B; DNA repair and recombination protein RAD54B, also known as ... |
736-931 | 2.50e-26 | ||||||||||
DEXH-box helicase domain of RAD54B; DNA repair and recombination protein RAD54B, also known as RDH54, binds to double-stranded DNA, displays ATPase activity in the presence of DNA, and may have a role in meiotic and mitotic recombination. RAD54B is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350824 [Multi-domain] Cd Length: 235 Bit Score: 109.55 E-value: 2.50e-26
|
||||||||||||||
DEXHc_HARP_SMARCAL1 | cd18010 | DEXH-box helicase domain of SMARCAL1; SMARCAL1 (SWI/SNF related, matrix associated, actin ... |
736-940 | 8.38e-26 | ||||||||||
DEXH-box helicase domain of SMARCAL1; SMARCAL1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a like 1, also known as HARP) is recruited to stalled replication forks to promote repair and helps restart replication. It plays a role in DNA repair, telomere maintenance and replication fork stability in response to DNA replication stress. Mutations cause Schimke Immunoosseous Dysplasia. SMARCAL1 is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350768 [Multi-domain] Cd Length: 213 Bit Score: 107.29 E-value: 8.38e-26
|
||||||||||||||
DEXDc | smart00487 | DEAD-like helicases superfamily; |
730-938 | 1.14e-25 | ||||||||||
DEAD-like helicases superfamily; Pssm-ID: 214692 [Multi-domain] Cd Length: 201 Bit Score: 106.42 E-value: 1.14e-25
|
||||||||||||||
DEXHc_RAD54A | cd18067 | DEXH-box helicase domain of RAD54A; DNA repair and recombination protein RAD54A, also known as ... |
736-932 | 4.42e-25 | ||||||||||
DEXH-box helicase domain of RAD54A; DNA repair and recombination protein RAD54A, also known as RAD54L or RAD54, plays a role in homologous recombination related repair of DNA double-strand breaks. RAD54A is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350825 [Multi-domain] Cd Length: 243 Bit Score: 106.01 E-value: 4.42e-25
|
||||||||||||||
HELICc | smart00490 | helicase superfamily c-terminal domain; |
1090-1174 | 1.98e-24 | ||||||||||
helicase superfamily c-terminal domain; Pssm-ID: 197757 [Multi-domain] Cd Length: 82 Bit Score: 98.44 E-value: 1.98e-24
|
||||||||||||||
DEXDc_RapA | cd18011 | DEXH-box helicase domain of RapA; In bacteria, RapA is an RNA polymerase (RNAP)-associated ... |
736-967 | 2.61e-23 | ||||||||||
DEXH-box helicase domain of RapA; In bacteria, RapA is an RNA polymerase (RNAP)-associated SWI2/SNF2 (switch/sucrose non-fermentable) protein that mediates RNAP recycling during transcription. The ATPase activity of RapA is stimulated by its interaction with RNAP and inhibited by its N-terminal domain. The conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. RapA is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350769 [Multi-domain] Cd Length: 207 Bit Score: 99.67 E-value: 2.61e-23
|
||||||||||||||
CHDNT | pfam08073 | CHDNT (NUC034) domain; The CHDNT domain is found in PHD/RING finger and chromo ... |
155-210 | 1.88e-22 | ||||||||||
CHDNT (NUC034) domain; The CHDNT domain is found in PHD/RING finger and chromo domain-associated helicases. Pssm-ID: 462357 Cd Length: 54 Bit Score: 92.01 E-value: 1.88e-22
|
||||||||||||||
PHD1_PHF12 | cd15533 | PHD finger 1 found in PHD finger protein 12 (PHF12); PHF12, also termed PHD factor 1 (Pf1), is ... |
460-501 | 4.92e-21 | ||||||||||
PHD finger 1 found in PHD finger protein 12 (PHF12); PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant-homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This model corresponds to the first PHD finger. Pssm-ID: 277008 [Multi-domain] Cd Length: 45 Bit Score: 87.80 E-value: 4.92e-21
|
||||||||||||||
DEXHc_ARIP4 | cd18069 | DEXH-box helicase domain of ARIP4; Androgen receptor-interacting protein 4 (ARIP4, also called ... |
736-944 | 1.03e-20 | ||||||||||
DEXH-box helicase domain of ARIP4; Androgen receptor-interacting protein 4 (ARIP4, also called RAD54 like 2 or RAD54L2 ) modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. ARIP4 is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350827 [Multi-domain] Cd Length: 227 Bit Score: 92.96 E-value: 1.03e-20
|
||||||||||||||
PHD_PHF21A | cd15523 | PHD finger found in PHD finger protein 21A (PHF21A); PHF21A (also termed BHC80a or BRAF35-HDAC ... |
459-501 | 3.34e-20 | ||||||||||
PHD finger found in PHD finger protein 21A (PHF21A); PHF21A (also termed BHC80a or BRAF35-HDAC complex protein BHC80) along with HDAC1/2, CtBP1, CoREST, and BRAF35, is associated with LSD1, a lysine (K)-specific histone demethylase. It inhibits LSD1-mediated histone demethylation in vitro. PHF21A is predominantly present in the central nervous system and spermatogenic cells and is one of the six components of BRAF-HDAC complex (BHC) involved in REST-dependent transcriptional repression of neuron-specific genes in non-neuronal cells. It acts as a scaffold protein in BHC in neuronal as well as non-neuronal cells and also plays a role in spermatogenesis. PHF21A contains a C-terminal plant homeodomain (PHD) finger that is responsible for the binding directly to each of five other components of BHC, and of organizing BHC mediating transcriptional repression. Pssm-ID: 276998 [Multi-domain] Cd Length: 43 Bit Score: 85.14 E-value: 3.34e-20
|
||||||||||||||
DEXHc_ATRX | cd18068 | DEXH-box helicase domain of ATRX; Transcriptional regulator ATRX (also called alpha ... |
736-946 | 2.20e-19 | ||||||||||
DEXH-box helicase domain of ATRX; Transcriptional regulator ATRX (also called alpha thalassemia/mental retardation syndrome X-linked and X-linked nuclear protein or XNP) is involved in transcriptional regulation and chromatin remodeling. Mutations in humans cause mental retardation, X-linked, syndromic, with hypotonic facies 1 (MRXSHF1) and alpha-thalassemia myelodysplasia syndrome (ATMDS). ATRX is part of the a DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350826 [Multi-domain] Cd Length: 246 Bit Score: 89.56 E-value: 2.20e-19
|
||||||||||||||
DEXHc_HLTF1_SMARC3 | cd18071 | DEXH-box helicase domain of HLTF1; Helicase like transcription factor (HLTF1, also known as ... |
758-941 | 5.35e-19 | ||||||||||
DEXH-box helicase domain of HLTF1; Helicase like transcription factor (HLTF1, also known as HIP116 or SMARCA3) has both helicase and E3 ubiquitin ligase activities and ATP-dependent nucleosome-remodeling activity. HLTF1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350829 [Multi-domain] Cd Length: 239 Bit Score: 88.29 E-value: 5.35e-19
|
||||||||||||||
PHD_TIF1_like | cd15541 | PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar ... |
459-501 | 6.12e-19 | ||||||||||
PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar proteins; The TIF1 family of transcriptional cofactors includes TIF1alpha (TRIM24), TIF1beta (TRIM28), TIF1gamma (TRIM33), and TIF1delta (TRIM66), which are characterized by an N-terminal RING-finger B-box coiled-coil (RBCC/TRIM) motif and plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region. TIF1 proteins couple chromatin modifications to transcriptional regulation, signaling, and tumor suppression. They exert a deacetylase-dependent silencing effect when tethered to a promoter region. TIF1alpha, TIF1beta, and TIF1delta can homodimerize and contain a PXVXL motif necessary and sufficient for heterochromatin protein 1(HP1) binding. TIF1alpha and TIF1beta bind nuclear receptors and Kruppel-associated boxes (KRAB) specifically and respectively. In contrast, TIF1delta appears to lack nuclear receptor- and KRAB-binding activity. Moreover, TIF1delta is specifically involved in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. TIF1gamma is structurally closely related to TIF1alpha and TIF1beta, but has very little functional features in common with them. It does not interact with the KRAB silencing domain of KOX1 or the heterochromatinic proteins HP1alpha, beta, and gamma. It cannot bind to nuclear receptors (NRs). This family also includes Sp100/Sp140 family proteins, the nuclear body SP100 and SP140. Sp110 is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. SP140 is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus viral infectivity factor (Vif) protein. Both Sp110 and Sp140 contain a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). Pssm-ID: 277016 [Multi-domain] Cd Length: 43 Bit Score: 81.62 E-value: 6.12e-19
|
||||||||||||||
PHD2_CHD_II | cd15532 | PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
377-419 | 2.87e-18 | ||||||||||
PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. Pssm-ID: 277007 [Multi-domain] Cd Length: 43 Bit Score: 79.63 E-value: 2.87e-18
|
||||||||||||||
PHD1_BPTF | cd15559 | PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, ... |
460-501 | 1.67e-17 | ||||||||||
PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, also termed nucleosome-remodeling factor subunit BPTF, or fetal Alz-50 clone 1 protein (FAC1), or fetal Alzheimer antigen, functions as a transcriptional regulator that exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. It interacts with the human orthologue of the Kelch-like Ech-associated protein (Keap1). Its function and subcellular localization can be regulated by Keap1. Moreover, BPTF is a novel DNA-binding protein that recognizes the DNA sequence CACAACAC and represses transcription through this site in a phosphorylation-dependent manner. Furthermore, BPTF interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity, which has been implicated in gene regulation in neurodegeneration. Some family members contain two or three plant homeodomain (PHD) fingers, which may be involved in complex formation with histone H3 trimethylated at K4 (H3K4me3). This family corresponds to the first PHD finger. Pssm-ID: 277034 [Multi-domain] Cd Length: 43 Bit Score: 77.46 E-value: 1.67e-17
|
||||||||||||||
PHD1_AIRE | cd15539 | PHD finger 1 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune ... |
460-501 | 1.83e-17 | ||||||||||
PHD finger 1 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) protein, functions as a regulator of gene transcription in the thymus. It is essential for prevention of autoimmunity. AIRE plays a critical role in the induction of central tolerance. It promotes self-tolerance through tissue-specific antigen (TSA) expression. It also acts as an active regulator of chondrocyte differentiation. AIRE contains a homogeneously-staining region (HSR) or caspase-recruitment domain (CARD), a nuclear localization signal (NLS), a SAND (for Sp100, AIRE, nuclear phosphoprotein 41/75 or NucP41/75, and deformed epidermal auto regulatory factor 1 or Deaf1) domain, two plant homeodomain (PHD) fingers, and four LXXLL (where L stands for leucine) motifs. This model corresponds to the first PHD finger that recognizes the unmethylated tail of histone H3 and targets AIRE-dependent genes. Pssm-ID: 277014 [Multi-domain] Cd Length: 43 Bit Score: 77.49 E-value: 1.83e-17
|
||||||||||||||
PHD1_AIRE | cd15539 | PHD finger 1 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune ... |
377-419 | 4.35e-17 | ||||||||||
PHD finger 1 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) protein, functions as a regulator of gene transcription in the thymus. It is essential for prevention of autoimmunity. AIRE plays a critical role in the induction of central tolerance. It promotes self-tolerance through tissue-specific antigen (TSA) expression. It also acts as an active regulator of chondrocyte differentiation. AIRE contains a homogeneously-staining region (HSR) or caspase-recruitment domain (CARD), a nuclear localization signal (NLS), a SAND (for Sp100, AIRE, nuclear phosphoprotein 41/75 or NucP41/75, and deformed epidermal auto regulatory factor 1 or Deaf1) domain, two plant homeodomain (PHD) fingers, and four LXXLL (where L stands for leucine) motifs. This model corresponds to the first PHD finger that recognizes the unmethylated tail of histone H3 and targets AIRE-dependent genes. Pssm-ID: 277014 [Multi-domain] Cd Length: 43 Bit Score: 76.34 E-value: 4.35e-17
|
||||||||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
459-503 | 7.56e-17 | ||||||||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 75.99 E-value: 7.56e-17
|
||||||||||||||
PHD_PHF21A | cd15523 | PHD finger found in PHD finger protein 21A (PHF21A); PHF21A (also termed BHC80a or BRAF35-HDAC ... |
377-419 | 8.18e-16 | ||||||||||
PHD finger found in PHD finger protein 21A (PHF21A); PHF21A (also termed BHC80a or BRAF35-HDAC complex protein BHC80) along with HDAC1/2, CtBP1, CoREST, and BRAF35, is associated with LSD1, a lysine (K)-specific histone demethylase. It inhibits LSD1-mediated histone demethylation in vitro. PHF21A is predominantly present in the central nervous system and spermatogenic cells and is one of the six components of BRAF-HDAC complex (BHC) involved in REST-dependent transcriptional repression of neuron-specific genes in non-neuronal cells. It acts as a scaffold protein in BHC in neuronal as well as non-neuronal cells and also plays a role in spermatogenesis. PHF21A contains a C-terminal plant homeodomain (PHD) finger that is responsible for the binding directly to each of five other components of BHC, and of organizing BHC mediating transcriptional repression. Pssm-ID: 276998 [Multi-domain] Cd Length: 43 Bit Score: 72.81 E-value: 8.18e-16
|
||||||||||||||
PHD4_NSD | cd15567 | PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
459-501 | 8.51e-16 | ||||||||||
PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fourth PHD finger. Pssm-ID: 277042 [Multi-domain] Cd Length: 41 Bit Score: 72.66 E-value: 8.51e-16
|
||||||||||||||
PHD1_CHD_II | cd15531 | PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
459-501 | 1.01e-15 | ||||||||||
PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the first PHD finger. Pssm-ID: 277006 [Multi-domain] Cd Length: 43 Bit Score: 72.63 E-value: 1.01e-15
|
||||||||||||||
PHD1_Lid2p_like | cd15519 | PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar ... |
460-501 | 1.28e-15 | ||||||||||
PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar proteins; Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1 and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. This model corresponds to the first PHD finger. Pssm-ID: 276994 [Multi-domain] Cd Length: 46 Bit Score: 72.50 E-value: 1.28e-15
|
||||||||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
459-501 | 2.47e-15 | ||||||||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 71.47 E-value: 2.47e-15
|
||||||||||||||
PHD_PHF21B | cd15524 | PHD finger found in PHD finger protein 21B (PHF21B); PHF21B is a plant homeodomain (PHD) ... |
459-501 | 2.48e-15 | ||||||||||
PHD finger found in PHD finger protein 21B (PHF21B); PHF21B is a plant homeodomain (PHD) finger-containing protein whose biological function remains unclear. It shows high sequence similarity with PHF21A, which is associated with LSD1, a lysine (K)-specific histone demethylase and inhibits LSD1-mediated histone demethylation in vitro. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. Pssm-ID: 276999 [Multi-domain] Cd Length: 43 Bit Score: 71.46 E-value: 2.48e-15
|
||||||||||||||
SSL2 | COG1061 | Superfamily II DNA or RNA helicase [Transcription, Replication, recombination, and repair]; |
708-1337 | 3.12e-15 | ||||||||||
Superfamily II DNA or RNA helicase [Transcription, Replication, recombination, and repair]; Pssm-ID: 440681 [Multi-domain] Cd Length: 566 Bit Score: 81.22 E-value: 3.12e-15
|
||||||||||||||
PHD1_KDM5A_like | cd15515 | PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar ... |
460-501 | 4.40e-15 | ||||||||||
PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar proteins; The JARID subfamily within the JmjC proteins includes Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog, protein little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me2 and H3K4me3), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. This family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent H3K4me3 demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 276990 Cd Length: 46 Bit Score: 70.88 E-value: 4.40e-15
|
||||||||||||||
PHD1_Rco1 | cd15535 | PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and ... |
459-501 | 5.17e-15 | ||||||||||
PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and similar proteins; Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two plant homeodomain (PHD) fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the first PHD finger. Pssm-ID: 277010 [Multi-domain] Cd Length: 45 Bit Score: 70.53 E-value: 5.17e-15
|
||||||||||||||
PHD_PHF21B | cd15524 | PHD finger found in PHD finger protein 21B (PHF21B); PHF21B is a plant homeodomain (PHD) ... |
377-419 | 7.31e-15 | ||||||||||
PHD finger found in PHD finger protein 21B (PHF21B); PHF21B is a plant homeodomain (PHD) finger-containing protein whose biological function remains unclear. It shows high sequence similarity with PHF21A, which is associated with LSD1, a lysine (K)-specific histone demethylase and inhibits LSD1-mediated histone demethylation in vitro. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. Pssm-ID: 276999 [Multi-domain] Cd Length: 43 Bit Score: 70.31 E-value: 7.31e-15
|
||||||||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
377-419 | 1.06e-14 | ||||||||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 69.83 E-value: 1.06e-14
|
||||||||||||||
CD1_tandem | cd18660 | repeat 1 of paired tandem chromodomains; Repeat 1 of tandem CHRomatin Organization Modifier ... |
507-584 | 1.29e-14 | ||||||||||
repeat 1 of paired tandem chromodomains; Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD1 to CHD9, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349307 [Multi-domain] Cd Length: 70 Bit Score: 70.08 E-value: 1.29e-14
|
||||||||||||||
PHD1_Lid2p_like | cd15519 | PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar ... |
378-419 | 1.39e-14 | ||||||||||
PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar proteins; Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1 and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. This model corresponds to the first PHD finger. Pssm-ID: 276994 [Multi-domain] Cd Length: 46 Bit Score: 69.42 E-value: 1.39e-14
|
||||||||||||||
DUF1087 | pfam06465 | CHD subfamily II, DUF1087; This domain is found in chromatin remodelling factors (CHDs) from ... |
1308-1351 | 1.99e-14 | ||||||||||
CHD subfamily II, DUF1087; This domain is found in chromatin remodelling factors (CHDs) from subfamily II including CHD3/4/5 from animals and PICKLE. from Arabidopsis. The exact function is, as yet, unknown. Pssm-ID: 461922 Cd Length: 60 Bit Score: 69.37 E-value: 1.99e-14
|
||||||||||||||
CD2_tandem | cd18659 | repeat 2 of paired tandem chromodomains; Repeat 2 of tandem CHRomatin Organization Modifier ... |
630-683 | 6.17e-14 | ||||||||||
repeat 2 of paired tandem chromodomains; Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD1 to CHD9, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349306 [Multi-domain] Cd Length: 54 Bit Score: 67.60 E-value: 6.17e-14
|
||||||||||||||
PHD1_Rco1 | cd15535 | PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and ... |
377-419 | 1.35e-13 | ||||||||||
PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and similar proteins; Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two plant homeodomain (PHD) fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the first PHD finger. Pssm-ID: 277010 [Multi-domain] Cd Length: 45 Bit Score: 66.67 E-value: 1.35e-13
|
||||||||||||||
PHD1_KDM5C_5D | cd15604 | PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D); The family ... |
460-501 | 1.64e-13 | ||||||||||
PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D); The family includes KDM5C and KDM5D, both of which belong to the JARID subfamily within the JmjC proteins. KDM5C (also termed Histone demethylase JARID1C, Jumonji/ARID domain-containing protein 1C, SmcX, or Xe169) is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D (also termed Histocompatibility Y antigen (H-Y), Histone demethylase JARID1D, Jumonji/ARID domain-containing protein 1D, or SmcY) is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 andH3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. Both KDM5C and KDM5D contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277077 Cd Length: 46 Bit Score: 66.40 E-value: 1.64e-13
|
||||||||||||||
PHD_TIF1delta | cd15625 | PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta); TIF1delta, also ... |
458-501 | 1.73e-13 | ||||||||||
PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta); TIF1delta, also termed tripartite motif-containing protein 66 (TRIM66), is a novel heterochromatin protein 1 (HP1)-interacting member of the transcriptional intermediary factor1 (TIF1) family expressed by elongating spermatids. Like other TIF1 proteins, TIF1delta displays a potent trichostatin A (TSA)-sensitive repression function; TSA is a specific inhibitor of histone deacetylases. Moreover, TIF1delta plays an important role in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. It functions as a negative regulator of postmeiotic genes acting through HP1 isotype gamma (HP1gamma) complex formation and centromere association. TIF1delta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277095 [Multi-domain] Cd Length: 49 Bit Score: 66.52 E-value: 1.73e-13
|
||||||||||||||
PHD_TIF1alpha | cd15622 | PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha); TIF1-alpha, also ... |
459-501 | 1.83e-13 | ||||||||||
PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha); TIF1-alpha, also termed tripartite motif-containing protein 24 (TRIM24), or E3 ubiquitin-protein ligase TRIM24, or RING finger protein 82, belongs to the TRIM/RBCC protein family. It interacts specifically and in a ligand-dependent manner with the ligand binding domain (LBD) of several nuclear receptors (NRs), including retinoid X (RXR), retinoic acid (RAR), vitamin D3 (VDR), estrogen (ER), and progesterone (PR) receptors. It also associates with heterochromatin-associated factors HP1alpha, MOD1 (HP1beta) and MOD2 (HP1gamma), as well as vertebrate Kruppel-type (C2H2) zinc finger proteins that contain transcriptional silencing domain KRAB. TIF1-alpha is a ligand-dependent co-repressor of retinoic acid receptor (RAR) that interacts with multiple nuclear receptors in vitro via an LXXLL motif, and further acts as a gatekeeper of liver carcinogenesis. It also functions as an E3-ubiquitin ligase targeting p53 and is broadly associated with chromatin silencing. Moreover, it is a chromatin regulator that recognizes specific, combinatorial histone modifications through its C-terminal plant homeodomain (PHD)-Bromodomain (Bromo) region. In addition, it interacts with chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. TIF1-alpha contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277092 Cd Length: 43 Bit Score: 66.24 E-value: 1.83e-13
|
||||||||||||||
PHD1_Lid_like | cd15605 | PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar ... |
460-501 | 3.10e-13 | ||||||||||
PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar proteins; Drosophila melanogaster Lid, also termed Retinoblastoma-binding protein 2 homolog, is identified genetically as a trithorax group (trxG) protein that is a Drosophila homolog of the human protein JARID1A/kdm5A, a member of the JARID subfamily within the JmjC proteins. Lid functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Lid contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger of Lid. Pssm-ID: 277078 Cd Length: 46 Bit Score: 65.55 E-value: 3.10e-13
|
||||||||||||||
PHD_RSF1 | cd15543 | PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV ... |
460-501 | 6.82e-13 | ||||||||||
PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV pX-associated protein 8, or Hepatitis B virus X-associated protein alpha (HBxAPalpha), or p325 subunit of RSF chromatin-remodeling complex, is a novel nuclear protein with histone chaperon function. It is a subunit of an ISWI chromatin remodeling complex, remodeling and spacing factor (RSF), and plays a role in mediating ATPase-dependent chromatin remodeling and conferring tumor aggressiveness in common carcinomas. As an ataxia-telangiectasia mutated (ATM)-dependent chromatin remodeler, Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. It regulates the mitotic spindle checkpoint and chromosome instability through the association with serine/threonine kinase BubR1 (BubR1) and Hepatitis B virus (HBV) X protein (HBx) in the chromatin fraction during mitosis. It also interacts with cyclin E1 and promotes tumor development. Rsf-1 contains a plant homeodomain (PHD) finger. Pssm-ID: 277018 [Multi-domain] Cd Length: 46 Bit Score: 64.60 E-value: 6.82e-13
|
||||||||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
377-419 | 7.60e-13 | ||||||||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 64.54 E-value: 7.60e-13
|
||||||||||||||
PHD_BAZ1A | cd15627 | PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A); BAZ1A, also ... |
460-501 | 8.64e-13 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A); BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1A contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277097 [Multi-domain] Cd Length: 46 Bit Score: 64.34 E-value: 8.64e-13
|
||||||||||||||
PHD_SF | cd15489 | PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) ... |
459-501 | 1.49e-12 | ||||||||||
PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) finger typically characterized as Cys4HisCys3, and a non-canonical extended PHD finger, characterized as Cys2HisCys5HisCys2His. Variations include the RAG2 PHD finger characterized by Cys3His2Cys2His and the PHD finger 5 found in nuclear receptor-binding SET domain-containing proteins characterized by Cys4HisCys2His. The PHD finger is also termed LAP (leukemia-associated protein) motif or TTC (trithorax consensus) domain. Single or multiple copies of PHD fingers have been found in a variety of eukaryotic proteins involved in the control of gene transcription and chromatin dynamics. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. They also function as epigenome readers controlling gene expression through molecular recruitment of multi-protein complexes of chromatin regulators and transcription factors. The PHD finger domain SF is structurally similar to the RING and FYVE_like superfamilies. Pssm-ID: 276966 [Multi-domain] Cd Length: 48 Bit Score: 63.88 E-value: 1.49e-12
|
||||||||||||||
PHD5_NSD | cd15568 | PHD finger 5 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
459-500 | 1.67e-12 | ||||||||||
PHD finger 5 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fifth PHD finger. Pssm-ID: 277043 [Multi-domain] Cd Length: 43 Bit Score: 63.50 E-value: 1.67e-12
|
||||||||||||||
PHD_TIF1gamma | cd15624 | PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma); TIF1gamma, also ... |
459-501 | 3.47e-12 | ||||||||||
PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma); TIF1gamma, also termed tripartite motif-containing 33 (trim33), or ectodermin, or RFG7, or PTC7, is an E3-ubiquitin ligase that functions as a regulator of transforming growth factor beta (TGFbeta) signaling; it inhibits the Smad4-mediated TGFbeta response by interaction with Smad2/3 or ubiquitylation of Smad4. Moreover, TIF1gamma is an important regulator of transcription during hematopoiesis, as well as a key factor of tumorigenesis. Like other TIF1 family members, TIF1gamma also contains an intrinsic transcriptional silencing function. It can control erythroid cell fate by regulating transcription elongation. It can bind to the anaphase-promoting complex/cyclosome (APC/C) and promotes mitosis. TIF1gamma contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277094 Cd Length: 46 Bit Score: 62.76 E-value: 3.47e-12
|
||||||||||||||
PHD1_PHF12 | cd15533 | PHD finger 1 found in PHD finger protein 12 (PHF12); PHF12, also termed PHD factor 1 (Pf1), is ... |
377-419 | 4.55e-12 | ||||||||||
PHD finger 1 found in PHD finger protein 12 (PHF12); PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant-homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This model corresponds to the first PHD finger. Pssm-ID: 277008 [Multi-domain] Cd Length: 45 Bit Score: 62.37 E-value: 4.55e-12
|
||||||||||||||
PHD_BAZ1B | cd15628 | PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B); BAZ1B, also ... |
460-501 | 4.72e-12 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B); BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. BAZ1B contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277098 Cd Length: 46 Bit Score: 62.07 E-value: 4.72e-12
|
||||||||||||||
PHD1_KDM5A | cd15602 | PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone ... |
460-503 | 6.08e-12 | ||||||||||
PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2)) was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277075 Cd Length: 49 Bit Score: 61.89 E-value: 6.08e-12
|
||||||||||||||
PHD_BAZ2A_like | cd15545 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B ... |
377-419 | 7.11e-12 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B (BAZ2B); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A. Both BAZ2A and BAZ2B contain a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. BAZ2B also harbors an extra Apolipophorin-III like domain in its N-terminal region. Pssm-ID: 277020 [Multi-domain] Cd Length: 46 Bit Score: 61.56 E-value: 7.11e-12
|
||||||||||||||
PHD4_NSD | cd15567 | PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
377-419 | 7.45e-12 | ||||||||||
PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fourth PHD finger. Pssm-ID: 277042 [Multi-domain] Cd Length: 41 Bit Score: 61.49 E-value: 7.45e-12
|
||||||||||||||
DEXQc_SHPRH | cd18070 | DEXQ-box helicase domain of SHPRH; E3 ubiquitin-protein ligase SHPRH is a ubiquitously ... |
736-934 | 7.98e-12 | ||||||||||
DEXQ-box helicase domain of SHPRH; E3 ubiquitin-protein ligase SHPRH is a ubiquitously expressed protein that contains motifs characteristic of several DNA repair proteins, transcription factors, and helicases. SHPRH is a functional homolog of S. cerevisiae RAD5 and is involved in DNA repair. SHPRH is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350828 [Multi-domain] Cd Length: 257 Bit Score: 67.75 E-value: 7.98e-12
|
||||||||||||||
PHD_BS69 | cd15537 | PHD finger found in protein BS69; Protein BS69, also termed zinc finger MYND domain-containing ... |
377-419 | 9.95e-12 | ||||||||||
PHD finger found in protein BS69; Protein BS69, also termed zinc finger MYND domain-containing protein 11 (ZMYND11 or ZMY11), is a ubiquitously expressed nuclear protein acting as a transcriptional co-repressor in association with various transcription factors. It was originally identified as an adenovirus 5 E1A-binding protein that inhibits E1A transactivation, as well as c-Myb transcription. It also mediates repression, at least in part, through interaction with the co-repressor N-CoR. Moreover, it interacts with Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule-1 (TICAM-1, also named TRIF) to facilitate NF-kappaB activation and type I IFN induction. It associates with PIAS1, a SUMO E3 enzyme, and Ubc9, a SUMO E2 enzyme, and plays an inhibitory role in muscle and neuronal differentiation. Moreover, BS69 regulates Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)/C-terminal activation region 2 (CTAR2)-mediated NF-kappaB activation by interfering with the complex formation between TNFR-associated death domain protein (TRADD) and LMP1/CTAR2. It also cooperates with tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) in the regulation of EBV-derived LMP1/CTAR1-induced NF-kappaB activation. Furthermore, BS69 is involved in the p53-p21Cip1-mediated senescence pathway. BS69 contains a plant homeodomain (PHD) finger, a bromodomain, a proline-tryptophan-tryptophan-proline (PWWP) domain, and a Myeloid translocation protein 8, Nervy and DEAF-1 (MYND) domain. Pssm-ID: 277012 Cd Length: 43 Bit Score: 61.21 E-value: 9.95e-12
|
||||||||||||||
PHD1_KDM5B | cd15603 | PHD finger 1 found in lysine-specific demethylase 5B (KDM5B); KDM5B (also termed Cancer/testis ... |
460-501 | 1.25e-11 | ||||||||||
PHD finger 1 found in lysine-specific demethylase 5B (KDM5B); KDM5B (also termed Cancer/testis antigen 31 (CT31), Histone demethylase JARID1B, Jumonji/ARID domain-containing protein 1B (JARID1B), PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A)) is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of pregnant females and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277076 Cd Length: 46 Bit Score: 61.12 E-value: 1.25e-11
|
||||||||||||||
PHD_TIF1_like | cd15541 | PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar ... |
377-419 | 1.30e-11 | ||||||||||
PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar proteins; The TIF1 family of transcriptional cofactors includes TIF1alpha (TRIM24), TIF1beta (TRIM28), TIF1gamma (TRIM33), and TIF1delta (TRIM66), which are characterized by an N-terminal RING-finger B-box coiled-coil (RBCC/TRIM) motif and plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region. TIF1 proteins couple chromatin modifications to transcriptional regulation, signaling, and tumor suppression. They exert a deacetylase-dependent silencing effect when tethered to a promoter region. TIF1alpha, TIF1beta, and TIF1delta can homodimerize and contain a PXVXL motif necessary and sufficient for heterochromatin protein 1(HP1) binding. TIF1alpha and TIF1beta bind nuclear receptors and Kruppel-associated boxes (KRAB) specifically and respectively. In contrast, TIF1delta appears to lack nuclear receptor- and KRAB-binding activity. Moreover, TIF1delta is specifically involved in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. TIF1gamma is structurally closely related to TIF1alpha and TIF1beta, but has very little functional features in common with them. It does not interact with the KRAB silencing domain of KOX1 or the heterochromatinic proteins HP1alpha, beta, and gamma. It cannot bind to nuclear receptors (NRs). This family also includes Sp100/Sp140 family proteins, the nuclear body SP100 and SP140. Sp110 is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. SP140 is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus viral infectivity factor (Vif) protein. Both Sp110 and Sp140 contain a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). Pssm-ID: 277016 [Multi-domain] Cd Length: 43 Bit Score: 60.82 E-value: 1.30e-11
|
||||||||||||||
PHD_SF | cd15489 | PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) ... |
377-419 | 1.51e-11 | ||||||||||
PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) finger typically characterized as Cys4HisCys3, and a non-canonical extended PHD finger, characterized as Cys2HisCys5HisCys2His. Variations include the RAG2 PHD finger characterized by Cys3His2Cys2His and the PHD finger 5 found in nuclear receptor-binding SET domain-containing proteins characterized by Cys4HisCys2His. The PHD finger is also termed LAP (leukemia-associated protein) motif or TTC (trithorax consensus) domain. Single or multiple copies of PHD fingers have been found in a variety of eukaryotic proteins involved in the control of gene transcription and chromatin dynamics. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. They also function as epigenome readers controlling gene expression through molecular recruitment of multi-protein complexes of chromatin regulators and transcription factors. The PHD finger domain SF is structurally similar to the RING and FYVE_like superfamilies. Pssm-ID: 276966 [Multi-domain] Cd Length: 48 Bit Score: 60.79 E-value: 1.51e-11
|
||||||||||||||
PHD1_BPTF | cd15559 | PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, ... |
377-419 | 1.72e-11 | ||||||||||
PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, also termed nucleosome-remodeling factor subunit BPTF, or fetal Alz-50 clone 1 protein (FAC1), or fetal Alzheimer antigen, functions as a transcriptional regulator that exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. It interacts with the human orthologue of the Kelch-like Ech-associated protein (Keap1). Its function and subcellular localization can be regulated by Keap1. Moreover, BPTF is a novel DNA-binding protein that recognizes the DNA sequence CACAACAC and represses transcription through this site in a phosphorylation-dependent manner. Furthermore, BPTF interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity, which has been implicated in gene regulation in neurodegeneration. Some family members contain two or three plant homeodomain (PHD) fingers, which may be involved in complex formation with histone H3 trimethylated at K4 (H3K4me3). This family corresponds to the first PHD finger. Pssm-ID: 277034 [Multi-domain] Cd Length: 43 Bit Score: 60.51 E-value: 1.72e-11
|
||||||||||||||
Chromo | pfam00385 | Chromo (CHRromatin organization MOdifier) domain; |
634-684 | 1.98e-11 | ||||||||||
Chromo (CHRromatin organization MOdifier) domain; Pssm-ID: 459793 [Multi-domain] Cd Length: 52 Bit Score: 60.67 E-value: 1.98e-11
|
||||||||||||||
PHD_BAZ1A_like | cd15544 | PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B; BAZ1A, ... |
460-501 | 2.19e-11 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B; BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. Both BAZ1A and BAZ1B contain a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277019 Cd Length: 46 Bit Score: 60.50 E-value: 2.19e-11
|
||||||||||||||
PHD2_KAT6A_6B | cd15527 | PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF); MOZ, ... |
378-419 | 3.51e-11 | ||||||||||
PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF); MOZ, also termed histone acetyltransferase KAT6A, YBF2/SAS3, SAS2 and TIP60 protein 3 (MYST-3), or runt-related transcription factor-binding protein 2, or zinc finger protein 220, is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ-related factor (MORF), also termed MOZ2, or histone acetyltransferase KAT6B, or MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4 (MYST4), is a ubiquitously expressed transcriptional regulator with intrinsic HAT activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. Both MOZ and MORF are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are also implicated in human leukemias. MOZ is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphomagenesis and bone development, and its homologs. MOZ contains a linker histone 1 and histone 5 domains and two plant homeodomain (PHD) fingers. In contrast, MORF contains an N-terminal region containing two PHD fingers, a putative HAT domain, an acidic region, and a C-terminal Ser/Met-rich domain. The family corresponds to the first PHD finger. Pssm-ID: 277002 Cd Length: 46 Bit Score: 59.70 E-value: 3.51e-11
|
||||||||||||||
DEXHc_TTF2 | cd18072 | DEAH-box helicase domain of TTF2; Transcription termination factor 2 (TTF2 also called ... |
736-967 | 3.68e-11 | ||||||||||
DEAH-box helicase domain of TTF2; Transcription termination factor 2 (TTF2 also called Forkhead-box E1/FOXE1 ) is a transcription termination factor that couples ATP hydrolysis with the removal of RNA polymerase II from the DNA template. Single nucleotide polymorphism (SNP) within the 5'-UTR of TTF2 is associated with thyroid cancer risk.TTF2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350830 [Multi-domain] Cd Length: 241 Bit Score: 65.19 E-value: 3.68e-11
|
||||||||||||||
PHD2_KAT6A_6B | cd15527 | PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF); MOZ, ... |
460-501 | 3.68e-11 | ||||||||||
PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF); MOZ, also termed histone acetyltransferase KAT6A, YBF2/SAS3, SAS2 and TIP60 protein 3 (MYST-3), or runt-related transcription factor-binding protein 2, or zinc finger protein 220, is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ-related factor (MORF), also termed MOZ2, or histone acetyltransferase KAT6B, or MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4 (MYST4), is a ubiquitously expressed transcriptional regulator with intrinsic HAT activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. Both MOZ and MORF are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are also implicated in human leukemias. MOZ is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphomagenesis and bone development, and its homologs. MOZ contains a linker histone 1 and histone 5 domains and two plant homeodomain (PHD) fingers. In contrast, MORF contains an N-terminal region containing two PHD fingers, a putative HAT domain, an acidic region, and a C-terminal Ser/Met-rich domain. The family corresponds to the first PHD finger. Pssm-ID: 277002 Cd Length: 46 Bit Score: 59.70 E-value: 3.68e-11
|
||||||||||||||
PHD_BAZ2A_like | cd15545 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B ... |
459-501 | 4.34e-11 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B (BAZ2B); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A. Both BAZ2A and BAZ2B contain a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. BAZ2B also harbors an extra Apolipophorin-III like domain in its N-terminal region. Pssm-ID: 277020 [Multi-domain] Cd Length: 46 Bit Score: 59.63 E-value: 4.34e-11
|
||||||||||||||
PHD_BAZ1A | cd15627 | PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A); BAZ1A, also ... |
378-419 | 5.08e-11 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A); BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1A contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277097 [Multi-domain] Cd Length: 46 Bit Score: 59.33 E-value: 5.08e-11
|
||||||||||||||
PHD_UHRF1_2 | cd15525 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and ... |
460-501 | 6.56e-11 | ||||||||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and UHRF2; UHRF1 is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF2 was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. Both UHRF1 and UHRF2 contain an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. Pssm-ID: 277000 Cd Length: 47 Bit Score: 58.92 E-value: 6.56e-11
|
||||||||||||||
PHD4_NSD3 | cd15658 | PHD finger 4 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed ... |
459-501 | 6.59e-11 | ||||||||||
PHD finger 4 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fourth PHD finger. Pssm-ID: 277128 Cd Length: 40 Bit Score: 58.77 E-value: 6.59e-11
|
||||||||||||||
PHD4_NSD1 | cd15656 | PHD finger 4 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, ... |
459-501 | 6.92e-11 | ||||||||||
PHD finger 4 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fourth PHD finger. Pssm-ID: 277126 Cd Length: 40 Bit Score: 58.87 E-value: 6.92e-11
|
||||||||||||||
PHD_UHRF2 | cd15617 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2); ... |
460-501 | 1.57e-10 | ||||||||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2); UHRF2 (also termed Np95/ICBP90-like RING finger protein (NIRF), Np95-like RING finger protein, nuclear protein 97, nuclear zinc finger protein Np97, RING finger protein 107, or E3 ubiquitin-protein ligase UHRF2) was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs,p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. UHRF2 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. Pssm-ID: 277089 Cd Length: 47 Bit Score: 58.04 E-value: 1.57e-10
|
||||||||||||||
PHD_PRKCBP1 | cd15538 | PHD finger found in protein kinase C-binding protein 1 (PRKCBP1); PRKCBP1, also termed ... |
459-501 | 2.75e-10 | ||||||||||
PHD finger found in protein kinase C-binding protein 1 (PRKCBP1); PRKCBP1, also termed cutaneous T-cell lymphoma-associated antigen se14-3 (CTCL-associated antigen se14-3), or Rack7, or zinc finger MYND domain-containing protein 8 (ZMYND8), is a novel receptor for activated C-kinase (RACK)-like protein that may play an important role in the activation and regulation of PKC-beta I, and the PKC signaling cascade. It also has been identified as a formin homology-2-domain containing protein 1 (FHOD1)-binding protein that may be involved in FHOD1-regulated actin polymerization and transcription. Moreover, PRKCBP1 may function as a REST co-repressor 2 (RCOR2) interacting factor; the RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. PRKCBP1 contains a plant homeodomain (PHD) finger, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. Pssm-ID: 277013 Cd Length: 41 Bit Score: 56.95 E-value: 2.75e-10
|
||||||||||||||
PHD_BAZ2A | cd15629 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also ... |
378-419 | 3.55e-10 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277099 Cd Length: 47 Bit Score: 56.78 E-value: 3.55e-10
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1738 | 4.01e-10 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 65.55 E-value: 4.01e-10
|
||||||||||||||
PHD5_NSD | cd15568 | PHD finger 5 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
377-418 | 4.60e-10 | ||||||||||
PHD finger 5 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fifth PHD finger. Pssm-ID: 277043 [Multi-domain] Cd Length: 43 Bit Score: 56.57 E-value: 4.60e-10
|
||||||||||||||
DEXQc_bact_SNF2 | cd18013 | DEXQ-box helicase domain of bacterial SNF2 family proteins; Proteins belonging to the SNF2 ... |
736-923 | 4.90e-10 | ||||||||||
DEXQ-box helicase domain of bacterial SNF2 family proteins; Proteins belonging to the SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. The Snf2 family comprise a large group of ATP-hydrolyzing proteins that are ubiquitous in eukaryotes, but also present in eubacteria and archaea. The bacterial SNF2 present in this family are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350771 [Multi-domain] Cd Length: 218 Bit Score: 61.60 E-value: 4.90e-10
|
||||||||||||||
PHD_BAZ1A_like | cd15544 | PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B; BAZ1A, ... |
378-419 | 4.99e-10 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B; BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. Both BAZ1A and BAZ1B contain a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277019 Cd Length: 46 Bit Score: 56.65 E-value: 4.99e-10
|
||||||||||||||
PHD_BAZ1B | cd15628 | PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B); BAZ1B, also ... |
378-419 | 5.05e-10 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B); BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. BAZ1B contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277098 Cd Length: 46 Bit Score: 56.29 E-value: 5.05e-10
|
||||||||||||||
PHD_RSF1 | cd15543 | PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV ... |
377-419 | 5.14e-10 | ||||||||||
PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV pX-associated protein 8, or Hepatitis B virus X-associated protein alpha (HBxAPalpha), or p325 subunit of RSF chromatin-remodeling complex, is a novel nuclear protein with histone chaperon function. It is a subunit of an ISWI chromatin remodeling complex, remodeling and spacing factor (RSF), and plays a role in mediating ATPase-dependent chromatin remodeling and conferring tumor aggressiveness in common carcinomas. As an ataxia-telangiectasia mutated (ATM)-dependent chromatin remodeler, Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. It regulates the mitotic spindle checkpoint and chromosome instability through the association with serine/threonine kinase BubR1 (BubR1) and Hepatitis B virus (HBV) X protein (HBx) in the chromatin fraction during mitosis. It also interacts with cyclin E1 and promotes tumor development. Rsf-1 contains a plant homeodomain (PHD) finger. Pssm-ID: 277018 [Multi-domain] Cd Length: 46 Bit Score: 56.51 E-value: 5.14e-10
|
||||||||||||||
PHD_PHRF1 | cd15536 | PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1); PHRF1, also ... |
459-501 | 5.33e-10 | ||||||||||
PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1); PHRF1, also termed KIAA1542, or CTD-binding SR-like protein rA9, is a ubiquitin ligase that induces the ubiquitination of TGIF (TG-interacting factor) at lysine 130. It acts as a tumor suppressor that promotes the transforming growth factor (TGF)-beta cytostatic program through selective release of TGIF-driven promyelocytic leukemia protein (PML) inactivation. PHRF1 contains a plant homeodomain (PHD) finger and a RING finger. Pssm-ID: 277011 Cd Length: 46 Bit Score: 56.27 E-value: 5.33e-10
|
||||||||||||||
PHD4_NSD2 | cd15657 | PHD finger 4 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed ... |
459-501 | 5.89e-10 | ||||||||||
PHD finger 4 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant-homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the fourth PHD finger. Pssm-ID: 277127 Cd Length: 41 Bit Score: 56.17 E-value: 5.89e-10
|
||||||||||||||
PHD_PRKCBP1 | cd15538 | PHD finger found in protein kinase C-binding protein 1 (PRKCBP1); PRKCBP1, also termed ... |
377-419 | 6.57e-10 | ||||||||||
PHD finger found in protein kinase C-binding protein 1 (PRKCBP1); PRKCBP1, also termed cutaneous T-cell lymphoma-associated antigen se14-3 (CTCL-associated antigen se14-3), or Rack7, or zinc finger MYND domain-containing protein 8 (ZMYND8), is a novel receptor for activated C-kinase (RACK)-like protein that may play an important role in the activation and regulation of PKC-beta I, and the PKC signaling cascade. It also has been identified as a formin homology-2-domain containing protein 1 (FHOD1)-binding protein that may be involved in FHOD1-regulated actin polymerization and transcription. Moreover, PRKCBP1 may function as a REST co-repressor 2 (RCOR2) interacting factor; the RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. PRKCBP1 contains a plant homeodomain (PHD) finger, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. Pssm-ID: 277013 Cd Length: 41 Bit Score: 55.80 E-value: 6.57e-10
|
||||||||||||||
PHD5_NSD3 | cd15661 | PHD finger 5 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed ... |
377-417 | 6.91e-10 | ||||||||||
PHD finger 5 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fifth PHD finger. Pssm-ID: 277131 Cd Length: 43 Bit Score: 56.13 E-value: 6.91e-10
|
||||||||||||||
PHD_TIF1alpha | cd15622 | PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha); TIF1-alpha, also ... |
377-419 | 9.44e-10 | ||||||||||
PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha); TIF1-alpha, also termed tripartite motif-containing protein 24 (TRIM24), or E3 ubiquitin-protein ligase TRIM24, or RING finger protein 82, belongs to the TRIM/RBCC protein family. It interacts specifically and in a ligand-dependent manner with the ligand binding domain (LBD) of several nuclear receptors (NRs), including retinoid X (RXR), retinoic acid (RAR), vitamin D3 (VDR), estrogen (ER), and progesterone (PR) receptors. It also associates with heterochromatin-associated factors HP1alpha, MOD1 (HP1beta) and MOD2 (HP1gamma), as well as vertebrate Kruppel-type (C2H2) zinc finger proteins that contain transcriptional silencing domain KRAB. TIF1-alpha is a ligand-dependent co-repressor of retinoic acid receptor (RAR) that interacts with multiple nuclear receptors in vitro via an LXXLL motif, and further acts as a gatekeeper of liver carcinogenesis. It also functions as an E3-ubiquitin ligase targeting p53 and is broadly associated with chromatin silencing. Moreover, it is a chromatin regulator that recognizes specific, combinatorial histone modifications through its C-terminal plant homeodomain (PHD)-Bromodomain (Bromo) region. In addition, it interacts with chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. TIF1-alpha contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277092 Cd Length: 43 Bit Score: 55.84 E-value: 9.44e-10
|
||||||||||||||
CHROMO | smart00298 | Chromatin organization modifier domain; |
634-686 | 1.00e-09 | ||||||||||
Chromatin organization modifier domain; Pssm-ID: 214605 [Multi-domain] Cd Length: 55 Bit Score: 55.68 E-value: 1.00e-09
|
||||||||||||||
PHD5_KMT2C_like | cd15513 | PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in ... |
460-501 | 1.04e-09 | ||||||||||
PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in KMT2D; KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the fifth PHD finger of KMT2C and the fourth PHD finger of KMT2D. Pssm-ID: 276988 Cd Length: 47 Bit Score: 55.56 E-value: 1.04e-09
|
||||||||||||||
PHD5_KMT2C_like | cd15513 | PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in ... |
378-419 | 1.07e-09 | ||||||||||
PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in KMT2D; KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the fifth PHD finger of KMT2C and the fourth PHD finger of KMT2D. Pssm-ID: 276988 Cd Length: 47 Bit Score: 55.56 E-value: 1.07e-09
|
||||||||||||||
PHD2_d4 | cd15530 | PHD finger 2 found in d4 gene family proteins; The family includes proteins coded by three ... |
377-419 | 1.15e-09 | ||||||||||
PHD finger 2 found in d4 gene family proteins; The family includes proteins coded by three members of the d4 gene family, DPF1 (neuro-d4), DPF2 (ubi-d4/Requiem), and DPF3 (cer-d4), which function as transcription factors and are involved in transcriptional regulation of genes by changing the condensed/decondensed state of chromatin in the nucleus. DPF2 is ubiquitously expressed and it acts as a transcription factor that may participate in developmentally programmed cell death. DPF1 and DPF3 are expressed predominantly in neural tissues, and they may be involved in the transcription regulation of neuro-specific gene clusters. The d4 family proteins show distinct domain organization with domain 2/3 in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc finger in the central part and two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This model corresponds to the second PHD finger. Pssm-ID: 277005 Cd Length: 46 Bit Score: 55.47 E-value: 1.15e-09
|
||||||||||||||
PHD_PHRF1 | cd15536 | PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1); PHRF1, also ... |
377-419 | 1.73e-09 | ||||||||||
PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1); PHRF1, also termed KIAA1542, or CTD-binding SR-like protein rA9, is a ubiquitin ligase that induces the ubiquitination of TGIF (TG-interacting factor) at lysine 130. It acts as a tumor suppressor that promotes the transforming growth factor (TGF)-beta cytostatic program through selective release of TGIF-driven promyelocytic leukemia protein (PML) inactivation. PHRF1 contains a plant homeodomain (PHD) finger and a RING finger. Pssm-ID: 277011 Cd Length: 46 Bit Score: 55.11 E-value: 1.73e-09
|
||||||||||||||
PHD_TIF1delta | cd15625 | PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta); TIF1delta, also ... |
374-419 | 2.18e-09 | ||||||||||
PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta); TIF1delta, also termed tripartite motif-containing protein 66 (TRIM66), is a novel heterochromatin protein 1 (HP1)-interacting member of the transcriptional intermediary factor1 (TIF1) family expressed by elongating spermatids. Like other TIF1 proteins, TIF1delta displays a potent trichostatin A (TSA)-sensitive repression function; TSA is a specific inhibitor of histone deacetylases. Moreover, TIF1delta plays an important role in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. It functions as a negative regulator of postmeiotic genes acting through HP1 isotype gamma (HP1gamma) complex formation and centromere association. TIF1delta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277095 [Multi-domain] Cd Length: 49 Bit Score: 54.97 E-value: 2.18e-09
|
||||||||||||||
PHD2_KMT2C | cd15594 | PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed ... |
378-419 | 3.31e-09 | ||||||||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the second PHD finger. Pssm-ID: 277069 Cd Length: 46 Bit Score: 54.17 E-value: 3.31e-09
|
||||||||||||||
PHD_UHRF1 | cd15616 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1); ... |
460-501 | 3.67e-09 | ||||||||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1); UHRF1 (also termed inverted CCAAT box-binding protein of 90 kDa, nuclear protein 95, nuclear zinc finger protein Np95 (Np95), RING finger protein 106, transcription factor ICBP90, or E3 ubiquitin-protein ligase UHRF1) is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF1 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET and RING finger associated (SRA) domain, and a C-terminal RING-finger domain. It specifically binds to hemimethylated DNA, double-stranded CpG dinucleotides, and recruits the maintenance methyltransferase DNMT1 to its hemimethylated DNA substrate through its SRA domain. UHRF1-dependent H3K23 ubiquitylation has an essential role in maintaining DNA methylation and replication. The tandem Tudor domain directs UHRF1 binding to the heterochromatin mark histone H3K9me3 and the PHD finger targets UHRF1 to unmodified histone H3 in euchromatic regions. The RING-finger domain exhibit both autocatalytic E3 ubiquitin (Ub) ligase activity and activity against histone H3 and DNMT1. Pssm-ID: 277088 Cd Length: 47 Bit Score: 54.20 E-value: 3.67e-09
|
||||||||||||||
PHD2_KMT2D | cd15595 | PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed ... |
378-419 | 4.07e-09 | ||||||||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such asHOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. Pssm-ID: 277070 Cd Length: 46 Bit Score: 53.85 E-value: 4.07e-09
|
||||||||||||||
PHD4_NSD1 | cd15656 | PHD finger 4 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, ... |
377-419 | 4.29e-09 | ||||||||||
PHD finger 4 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fourth PHD finger. Pssm-ID: 277126 Cd Length: 40 Bit Score: 53.87 E-value: 4.29e-09
|
||||||||||||||
PHD_TIF1beta | cd15623 | PHD finger found in transcription intermediary factor 1-beta (TIF1-beta); TIF1-beta, also ... |
460-501 | 4.68e-09 | ||||||||||
PHD finger found in transcription intermediary factor 1-beta (TIF1-beta); TIF1-beta, also termed Kruppel-associated Box (KRAB)-associated protein 1 (KAP-1), or KRAB-interacting protein 1 (KRIP-1), or nuclear co-repressor KAP-1, or RING finger protein 96, or tripartite motif-containing protein 28 (TRIM28), or E3 SUMO-protein ligase TRIM28, acts as a nuclear co-repressor that plays a role in transcription and in DNA damage response. Upon DNA damage, the phosphorylation of KAP-1 on serine 824 by the ataxia telangiectasia-mutated (ATM) kinase enhances cell survival and facilitates chromatin relaxation and heterochromatic DNA repair. It also regulates CHD3 nucleosome remodeling during DNA double-strand break (DSB) response. Meanwhile, KAP-1 can be dephosphorylated by protein phosphatase PP4C in the DNA damage response. In addition, KAP-1 is a co-activator of the orphan nuclear receptor NGFI-B (or Nur77) and is involved in NGFI-B-dependent transcription. It is also a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. TIF1-beta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), which can interact with KRAB zinc finger proteins (KRAB-ZFPs), MDM2, MM1, C/EBPbeta, and mediates homo- and heterodimerization, a plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region, which interact with SETDB1, Mi-2alpha and other proteins to form complexes with histone deacetylase or methyltransferase activity. Pssm-ID: 277093 Cd Length: 43 Bit Score: 53.66 E-value: 4.68e-09
|
||||||||||||||
PHD_TIF1gamma | cd15624 | PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma); TIF1gamma, also ... |
377-419 | 5.64e-09 | ||||||||||
PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma); TIF1gamma, also termed tripartite motif-containing 33 (trim33), or ectodermin, or RFG7, or PTC7, is an E3-ubiquitin ligase that functions as a regulator of transforming growth factor beta (TGFbeta) signaling; it inhibits the Smad4-mediated TGFbeta response by interaction with Smad2/3 or ubiquitylation of Smad4. Moreover, TIF1gamma is an important regulator of transcription during hematopoiesis, as well as a key factor of tumorigenesis. Like other TIF1 family members, TIF1gamma also contains an intrinsic transcriptional silencing function. It can control erythroid cell fate by regulating transcription elongation. It can bind to the anaphase-promoting complex/cyclosome (APC/C) and promotes mitosis. TIF1gamma contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277094 Cd Length: 46 Bit Score: 53.51 E-value: 5.64e-09
|
||||||||||||||
PHD5_NSD3 | cd15661 | PHD finger 5 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed ... |
459-499 | 6.00e-09 | ||||||||||
PHD finger 5 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fifth PHD finger. Pssm-ID: 277131 Cd Length: 43 Bit Score: 53.43 E-value: 6.00e-09
|
||||||||||||||
PHD4_NSD3 | cd15658 | PHD finger 4 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed ... |
377-419 | 6.41e-09 | ||||||||||
PHD finger 4 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fourth PHD finger. Pssm-ID: 277128 Cd Length: 40 Bit Score: 53.38 E-value: 6.41e-09
|
||||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1540-1738 | 6.58e-09 | ||||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 60.37 E-value: 6.58e-09
|
||||||||||||||
PHD_SP110_140 | cd15626 | PHD finger found in the Sp100/Sp140 family of nuclear body components; The Sp100/Sp140 family ... |
460-501 | 7.83e-09 | ||||||||||
PHD finger found in the Sp100/Sp140 family of nuclear body components; The Sp100/Sp140 family includes nuclear body proteins SP100, SP140, and similar proteins. Sp110, also termed interferon-induced protein 41/75, or speckled 110 kDa, or transcriptional coactivator Sp110, is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. Sp110 gene polymorphisms may be associated with susceptibility to tuberculosis in Chinese population. Sp110 contains a Sp100-like domain, a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). SP140, also termed lymphoid-restricted homolog of Sp100 (LYSp100), or nuclear autoantigen Sp-140, or speckled 140 kDa, is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus's viral infectivity factor (Vif) protein. Sp140 contains a nuclear localization signal, a dimerization domain (HSR or CARD domain), a SAND domain, a PHD finger, and a BRD. Pssm-ID: 277096 Cd Length: 42 Bit Score: 52.81 E-value: 7.83e-09
|
||||||||||||||
PHD2_KMT2C_like | cd15510 | PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, ... |
460-501 | 8.99e-09 | ||||||||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobilitygroup)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. Pssm-ID: 276985 Cd Length: 46 Bit Score: 52.82 E-value: 8.99e-09
|
||||||||||||||
ADDz_Dnmt3 | cd11725 | ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 (Dnmt3); Dnmt3 is a de ... |
366-425 | 9.03e-09 | ||||||||||
ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 (Dnmt3); Dnmt3 is a de novo DNA methyltransferase family that includes two active enzymes Dnmt3a and -3b and one regulatory factor Dnmt3l. The ADDz domain of Dnmt3 is located in the C-terminal region of Dnmt3, which is an active catalytic domain in Dnmt3a and -b, but lacks some residues for enzymatic activity in Dnmt3l. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277251 [Multi-domain] Cd Length: 108 Bit Score: 55.09 E-value: 9.03e-09
|
||||||||||||||
PHD1_KDM5C_5D | cd15604 | PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D); The family ... |
378-419 | 1.03e-08 | ||||||||||
PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D); The family includes KDM5C and KDM5D, both of which belong to the JARID subfamily within the JmjC proteins. KDM5C (also termed Histone demethylase JARID1C, Jumonji/ARID domain-containing protein 1C, SmcX, or Xe169) is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D (also termed Histocompatibility Y antigen (H-Y), Histone demethylase JARID1D, Jumonji/ARID domain-containing protein 1D, or SmcY) is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 andH3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. Both KDM5C and KDM5D contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277077 Cd Length: 46 Bit Score: 52.92 E-value: 1.03e-08
|
||||||||||||||
PHD_BAZ2A | cd15629 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also ... |
460-502 | 1.42e-08 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277099 Cd Length: 47 Bit Score: 52.55 E-value: 1.42e-08
|
||||||||||||||
PHD1_Lid_like | cd15605 | PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar ... |
378-419 | 1.44e-08 | ||||||||||
PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar proteins; Drosophila melanogaster Lid, also termed Retinoblastoma-binding protein 2 homolog, is identified genetically as a trithorax group (trxG) protein that is a Drosophila homolog of the human protein JARID1A/kdm5A, a member of the JARID subfamily within the JmjC proteins. Lid functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Lid contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger of Lid. Pssm-ID: 277078 Cd Length: 46 Bit Score: 52.45 E-value: 1.44e-08
|
||||||||||||||
PHD1_Snt2p_like | cd15497 | PHD finger 1 found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and ... |
377-419 | 1.51e-08 | ||||||||||
PHD finger 1 found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and similar proteins; Snt2p is a yeast protein that may function in multiple stress pathways. It coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress through interaction with Ecm5 and the Rpd3 deacetylase. Snt2p contains a bromo adjacent homology (BAH) domain, two canonical Cys4HisCys3 plant homeodomain (PHD) fingers, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domain; this model corresponds to the first canonical Cys4HisCys3 PHD finger. Pssm-ID: 276972 Cd Length: 48 Bit Score: 52.31 E-value: 1.51e-08
|
||||||||||||||
PHD1_Snt2p_like | cd15497 | PHD finger 1 found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and ... |
460-501 | 1.65e-08 | ||||||||||
PHD finger 1 found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and similar proteins; Snt2p is a yeast protein that may function in multiple stress pathways. It coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress through interaction with Ecm5 and the Rpd3 deacetylase. Snt2p contains a bromo adjacent homology (BAH) domain, two canonical Cys4HisCys3 plant homeodomain (PHD) fingers, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domain; this model corresponds to the first canonical Cys4HisCys3 PHD finger. Pssm-ID: 276972 Cd Length: 48 Bit Score: 52.31 E-value: 1.65e-08
|
||||||||||||||
PHD_PRHA_like | cd15504 | PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and ... |
377-419 | 2.32e-08 | ||||||||||
PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and similar proteins; PRHA is a homeodomain protein encoded by a single-copy Arabidopsis thaliana homeobox gene, prha. It shows the capacity to bind to TAATTG core sequence elements but requires additional adjacent bases for high-affinity binding. PRHA contains a plant homeodomain (PHD) finger, a homeodomain, peptide repeats and a putative leucine zipper dimerization domain. Pssm-ID: 276979 Cd Length: 53 Bit Score: 52.05 E-value: 2.32e-08
|
||||||||||||||
ResIII | pfam04851 | Type III restriction enzyme, res subunit; |
735-914 | 2.51e-08 | ||||||||||
Type III restriction enzyme, res subunit; Pssm-ID: 398492 [Multi-domain] Cd Length: 162 Bit Score: 55.37 E-value: 2.51e-08
|
||||||||||||||
PHD2_KMT2D | cd15595 | PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed ... |
460-501 | 2.54e-08 | ||||||||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such asHOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. Pssm-ID: 277070 Cd Length: 46 Bit Score: 51.53 E-value: 2.54e-08
|
||||||||||||||
PHD_SP110_140 | cd15626 | PHD finger found in the Sp100/Sp140 family of nuclear body components; The Sp100/Sp140 family ... |
378-419 | 2.80e-08 | ||||||||||
PHD finger found in the Sp100/Sp140 family of nuclear body components; The Sp100/Sp140 family includes nuclear body proteins SP100, SP140, and similar proteins. Sp110, also termed interferon-induced protein 41/75, or speckled 110 kDa, or transcriptional coactivator Sp110, is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. Sp110 gene polymorphisms may be associated with susceptibility to tuberculosis in Chinese population. Sp110 contains a Sp100-like domain, a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). SP140, also termed lymphoid-restricted homolog of Sp100 (LYSp100), or nuclear autoantigen Sp-140, or speckled 140 kDa, is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus's viral infectivity factor (Vif) protein. Sp140 contains a nuclear localization signal, a dimerization domain (HSR or CARD domain), a SAND domain, a PHD finger, and a BRD. Pssm-ID: 277096 Cd Length: 42 Bit Score: 51.27 E-value: 2.80e-08
|
||||||||||||||
PHD1_KDM5A_like | cd15515 | PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar ... |
378-419 | 4.94e-08 | ||||||||||
PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar proteins; The JARID subfamily within the JmjC proteins includes Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog, protein little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me2 and H3K4me3), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. This family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent H3K4me3 demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 276990 Cd Length: 46 Bit Score: 50.85 E-value: 4.94e-08
|
||||||||||||||
PHD1_KDM5B | cd15603 | PHD finger 1 found in lysine-specific demethylase 5B (KDM5B); KDM5B (also termed Cancer/testis ... |
378-419 | 5.79e-08 | ||||||||||
PHD finger 1 found in lysine-specific demethylase 5B (KDM5B); KDM5B (also termed Cancer/testis antigen 31 (CT31), Histone demethylase JARID1B, Jumonji/ARID domain-containing protein 1B (JARID1B), PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A)) is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of pregnant females and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277076 Cd Length: 46 Bit Score: 50.72 E-value: 5.79e-08
|
||||||||||||||
CD2_tandem_CHD5-9_like | cd18663 | repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 5-9, ... |
634-670 | 6.02e-08 | ||||||||||
repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 5-9, and similar proteins; Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD5, CHD6, CHD7, CHD8, and CHD9. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. CHD6, CHD7, and CHD8 enzymes have been demonstrated to have different substrate specificities and remodeling activities. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349310 [Multi-domain] Cd Length: 59 Bit Score: 51.14 E-value: 6.02e-08
|
||||||||||||||
PHD3_NSD | cd15566 | PHD finger 3 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
459-500 | 6.09e-08 | ||||||||||
PHD finger 3 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the third PHD finger. Pssm-ID: 277041 Cd Length: 48 Bit Score: 50.51 E-value: 6.09e-08
|
||||||||||||||
PHD2_PHF12_Rco1 | cd15534 | PHD finger 2 found in PHD finger protein 12 (PHF12), yeast Rco1, and similar proteins; PHF12, ... |
459-500 | 7.51e-08 | ||||||||||
PHD finger 2 found in PHD finger protein 12 (PHF12), yeast Rco1, and similar proteins; PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This subfamily also includes yeast transcriptional regulatory protein Rco1 and similar proteins. Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two PHD fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the second PHD finger. Pssm-ID: 277009 Cd Length: 47 Bit Score: 50.42 E-value: 7.51e-08
|
||||||||||||||
PHD2_PHF14 | cd15562 | PHD finger 2 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel ... |
378-419 | 7.61e-08 | ||||||||||
PHD finger 2 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the second PHD finger. Pssm-ID: 277037 Cd Length: 50 Bit Score: 50.48 E-value: 7.61e-08
|
||||||||||||||
PHD2_KMT2C | cd15594 | PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed ... |
460-501 | 8.23e-08 | ||||||||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the second PHD finger. Pssm-ID: 277069 Cd Length: 46 Bit Score: 50.32 E-value: 8.23e-08
|
||||||||||||||
PHD2_d4 | cd15530 | PHD finger 2 found in d4 gene family proteins; The family includes proteins coded by three ... |
460-501 | 9.12e-08 | ||||||||||
PHD finger 2 found in d4 gene family proteins; The family includes proteins coded by three members of the d4 gene family, DPF1 (neuro-d4), DPF2 (ubi-d4/Requiem), and DPF3 (cer-d4), which function as transcription factors and are involved in transcriptional regulation of genes by changing the condensed/decondensed state of chromatin in the nucleus. DPF2 is ubiquitously expressed and it acts as a transcription factor that may participate in developmentally programmed cell death. DPF1 and DPF3 are expressed predominantly in neural tissues, and they may be involved in the transcription regulation of neuro-specific gene clusters. The d4 family proteins show distinct domain organization with domain 2/3 in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc finger in the central part and two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This model corresponds to the second PHD finger. Pssm-ID: 277005 Cd Length: 46 Bit Score: 50.07 E-value: 9.12e-08
|
||||||||||||||
PHD2_KMT2C_like | cd15510 | PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, ... |
378-419 | 1.01e-07 | ||||||||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobilitygroup)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. Pssm-ID: 276985 Cd Length: 46 Bit Score: 50.12 E-value: 1.01e-07
|
||||||||||||||
PHD_UHRF1_2 | cd15525 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and ... |
378-419 | 1.10e-07 | ||||||||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and UHRF2; UHRF1 is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF2 was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. Both UHRF1 and UHRF2 contain an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. Pssm-ID: 277000 Cd Length: 47 Bit Score: 49.68 E-value: 1.10e-07
|
||||||||||||||
PHD1_KDM5A | cd15602 | PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone ... |
378-422 | 1.25e-07 | ||||||||||
PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2)) was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277075 Cd Length: 49 Bit Score: 49.95 E-value: 1.25e-07
|
||||||||||||||
PHD_BAZ2B | cd15630 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B); BAZ2B, also ... |
459-503 | 1.38e-07 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B); BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A, which is the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP-and histone H4 tail-dependent fashion. BAZ2B contains a TAM (TIP5/ARBP/MBD) domain, an Apolipophorin-III like domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277100 Cd Length: 49 Bit Score: 49.59 E-value: 1.38e-07
|
||||||||||||||
PHD_PRHA_like | cd15504 | PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and ... |
459-501 | 1.46e-07 | ||||||||||
PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and similar proteins; PRHA is a homeodomain protein encoded by a single-copy Arabidopsis thaliana homeobox gene, prha. It shows the capacity to bind to TAATTG core sequence elements but requires additional adjacent bases for high-affinity binding. PRHA contains a plant homeodomain (PHD) finger, a homeodomain, peptide repeats and a putative leucine zipper dimerization domain. Pssm-ID: 276979 Cd Length: 53 Bit Score: 49.74 E-value: 1.46e-07
|
||||||||||||||
PHD5_NSD2 | cd15660 | PHD finger 5 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed ... |
377-417 | 1.54e-07 | ||||||||||
PHD finger 5 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant-homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the fifth PHD finger. Pssm-ID: 277130 Cd Length: 43 Bit Score: 49.55 E-value: 1.54e-07
|
||||||||||||||
PHD_TIF1beta | cd15623 | PHD finger found in transcription intermediary factor 1-beta (TIF1-beta); TIF1-beta, also ... |
378-419 | 1.81e-07 | ||||||||||
PHD finger found in transcription intermediary factor 1-beta (TIF1-beta); TIF1-beta, also termed Kruppel-associated Box (KRAB)-associated protein 1 (KAP-1), or KRAB-interacting protein 1 (KRIP-1), or nuclear co-repressor KAP-1, or RING finger protein 96, or tripartite motif-containing protein 28 (TRIM28), or E3 SUMO-protein ligase TRIM28, acts as a nuclear co-repressor that plays a role in transcription and in DNA damage response. Upon DNA damage, the phosphorylation of KAP-1 on serine 824 by the ataxia telangiectasia-mutated (ATM) kinase enhances cell survival and facilitates chromatin relaxation and heterochromatic DNA repair. It also regulates CHD3 nucleosome remodeling during DNA double-strand break (DSB) response. Meanwhile, KAP-1 can be dephosphorylated by protein phosphatase PP4C in the DNA damage response. In addition, KAP-1 is a co-activator of the orphan nuclear receptor NGFI-B (or Nur77) and is involved in NGFI-B-dependent transcription. It is also a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. TIF1-beta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), which can interact with KRAB zinc finger proteins (KRAB-ZFPs), MDM2, MM1, C/EBPbeta, and mediates homo- and heterodimerization, a plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region, which interact with SETDB1, Mi-2alpha and other proteins to form complexes with histone deacetylase or methyltransferase activity. Pssm-ID: 277093 Cd Length: 43 Bit Score: 49.03 E-value: 1.81e-07
|
||||||||||||||
PHD2_PHF10 | cd15529 | PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed ... |
460-501 | 1.91e-07 | ||||||||||
PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed BRG1-associated factor 45a (BAF45a), or XAP135, is a ubiquitously expressed transcriptional regulator that is required for maintaining the undifferentiated status of neuroblasts. It contains a SAY (supporter of activation of yellow) domain and two adjacent plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. Pssm-ID: 277004 Cd Length: 44 Bit Score: 49.23 E-value: 1.91e-07
|
||||||||||||||
PHD1_MTF2_PHF19_like | cd15499 | PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) ... |
378-421 | 2.24e-07 | ||||||||||
PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) family proteins MTF2, PHF19, and similar proteins; The family includes two PCL family proteins, metal-response element-binding transcription factor 2 (MTF2/PCL2) and PHF19/PCL3, which are homologs of PHD finger protein1 (PHF1). PCL family proteins are accessory components of the polycomb repressive complex 2 (PRC2) core complex and all contain an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. They specifically recognize tri-methylated H3K36 (H3K36me3) through their N-terminal Tudor domains. The interaction between their Tudor domains and H3K36me3 is critical for both the targeting and spreading of PRC2 into active chromatin regions and for the maintenance of optimal repression of poised developmental genes where PCL proteins, H3K36me3, and H3K27me3 coexist. Moreover, unlike other PHD finger-containing proteins, the first PHD fingers of PCL proteins do not display histone H3K4 binding affinity and they do not affect the Tudor domain binding to histones. This model corresponds to the first PHD finger. Pssm-ID: 276974 Cd Length: 53 Bit Score: 49.04 E-value: 2.24e-07
|
||||||||||||||
PHD_UHRF2 | cd15617 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2); ... |
378-419 | 2.55e-07 | ||||||||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2); UHRF2 (also termed Np95/ICBP90-like RING finger protein (NIRF), Np95-like RING finger protein, nuclear protein 97, nuclear zinc finger protein Np97, RING finger protein 107, or E3 ubiquitin-protein ligase UHRF2) was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs,p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. UHRF2 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. Pssm-ID: 277089 Cd Length: 47 Bit Score: 48.80 E-value: 2.55e-07
|
||||||||||||||
PHD3_PHF14 | cd15563 | PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel ... |
378-419 | 2.60e-07 | ||||||||||
PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the third PHD finger. Pssm-ID: 277038 Cd Length: 49 Bit Score: 48.93 E-value: 2.60e-07
|
||||||||||||||
PHD_Phf1p_Phf2p_like | cd15502 | PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 ... |
378-419 | 2.89e-07 | ||||||||||
PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 (Phf1p) and Phf2 (Phf2p); Phf1p and Phf2p are components of the SWM histone demethylase complex that specifically demethylates histone H3 at lysine 9 (H3K9me2), a specific tag for epigenetic transcriptional activation. They function as corepressors and play roles in regulating heterochromatin propagation and euchromatic transcription. Both Phf1p and Phf2p contain a plant homeodomain (PHD) finger. Pssm-ID: 276977 Cd Length: 52 Bit Score: 48.97 E-value: 2.89e-07
|
||||||||||||||
PHD4_NSD2 | cd15657 | PHD finger 4 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed ... |
377-419 | 3.13e-07 | ||||||||||
PHD finger 4 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant-homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the fourth PHD finger. Pssm-ID: 277127 Cd Length: 41 Bit Score: 48.46 E-value: 3.13e-07
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1516-1738 | 4.32e-07 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 55.53 E-value: 4.32e-07
|
||||||||||||||
PHD2_PHF14 | cd15562 | PHD finger 2 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel ... |
459-501 | 4.66e-07 | ||||||||||
PHD finger 2 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the second PHD finger. Pssm-ID: 277037 Cd Length: 50 Bit Score: 48.17 E-value: 4.66e-07
|
||||||||||||||
PHD_BAZ2B | cd15630 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B); BAZ2B, also ... |
377-419 | 7.05e-07 | ||||||||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B); BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A, which is the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP-and histone H4 tail-dependent fashion. BAZ2B contains a TAM (TIP5/ARBP/MBD) domain, an Apolipophorin-III like domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277100 Cd Length: 49 Bit Score: 47.66 E-value: 7.05e-07
|
||||||||||||||
PHD_BS69 | cd15537 | PHD finger found in protein BS69; Protein BS69, also termed zinc finger MYND domain-containing ... |
459-501 | 7.25e-07 | ||||||||||
PHD finger found in protein BS69; Protein BS69, also termed zinc finger MYND domain-containing protein 11 (ZMYND11 or ZMY11), is a ubiquitously expressed nuclear protein acting as a transcriptional co-repressor in association with various transcription factors. It was originally identified as an adenovirus 5 E1A-binding protein that inhibits E1A transactivation, as well as c-Myb transcription. It also mediates repression, at least in part, through interaction with the co-repressor N-CoR. Moreover, it interacts with Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule-1 (TICAM-1, also named TRIF) to facilitate NF-kappaB activation and type I IFN induction. It associates with PIAS1, a SUMO E3 enzyme, and Ubc9, a SUMO E2 enzyme, and plays an inhibitory role in muscle and neuronal differentiation. Moreover, BS69 regulates Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)/C-terminal activation region 2 (CTAR2)-mediated NF-kappaB activation by interfering with the complex formation between TNFR-associated death domain protein (TRADD) and LMP1/CTAR2. It also cooperates with tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) in the regulation of EBV-derived LMP1/CTAR1-induced NF-kappaB activation. Furthermore, BS69 is involved in the p53-p21Cip1-mediated senescence pathway. BS69 contains a plant homeodomain (PHD) finger, a bromodomain, a proline-tryptophan-tryptophan-proline (PWWP) domain, and a Myeloid translocation protein 8, Nervy and DEAF-1 (MYND) domain. Pssm-ID: 277012 Cd Length: 43 Bit Score: 47.34 E-value: 7.25e-07
|
||||||||||||||
PHD_Phf1p_Phf2p_like | cd15502 | PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 ... |
459-501 | 7.92e-07 | ||||||||||
PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 (Phf1p) and Phf2 (Phf2p); Phf1p and Phf2p are components of the SWM histone demethylase complex that specifically demethylates histone H3 at lysine 9 (H3K9me2), a specific tag for epigenetic transcriptional activation. They function as corepressors and play roles in regulating heterochromatin propagation and euchromatic transcription. Both Phf1p and Phf2p contain a plant homeodomain (PHD) finger. Pssm-ID: 276977 Cd Length: 52 Bit Score: 47.43 E-value: 7.92e-07
|
||||||||||||||
PRK04914 | PRK04914 | RNA polymerase-associated protein RapA; |
876-961 | 1.37e-06 | ||||||||||
RNA polymerase-associated protein RapA; Pssm-ID: 235319 [Multi-domain] Cd Length: 956 Bit Score: 53.69 E-value: 1.37e-06
|
||||||||||||||
PHD_BRPF | cd15572 | PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins; The family of BRPF ... |
459-507 | 1.54e-06 | ||||||||||
PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins; The family of BRPF proteins includes BRPF1, BRD1/BRPF2, and BRPF3. They are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277047 [Multi-domain] Cd Length: 54 Bit Score: 46.84 E-value: 1.54e-06
|
||||||||||||||
PHD_UHRF1 | cd15616 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1); ... |
378-419 | 2.04e-06 | ||||||||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1); UHRF1 (also termed inverted CCAAT box-binding protein of 90 kDa, nuclear protein 95, nuclear zinc finger protein Np95 (Np95), RING finger protein 106, transcription factor ICBP90, or E3 ubiquitin-protein ligase UHRF1) is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF1 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET and RING finger associated (SRA) domain, and a C-terminal RING-finger domain. It specifically binds to hemimethylated DNA, double-stranded CpG dinucleotides, and recruits the maintenance methyltransferase DNMT1 to its hemimethylated DNA substrate through its SRA domain. UHRF1-dependent H3K23 ubiquitylation has an essential role in maintaining DNA methylation and replication. The tandem Tudor domain directs UHRF1 binding to the heterochromatin mark histone H3K9me3 and the PHD finger targets UHRF1 to unmodified histone H3 in euchromatic regions. The RING-finger domain exhibit both autocatalytic E3 ubiquitin (Ub) ligase activity and activity against histone H3 and DNMT1. Pssm-ID: 277088 Cd Length: 47 Bit Score: 46.50 E-value: 2.04e-06
|
||||||||||||||
PHD2_KMT2A_like | cd15507 | PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This ... |
459-501 | 3.72e-06 | ||||||||||
PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. Pssm-ID: 276982 Cd Length: 50 Bit Score: 45.54 E-value: 3.72e-06
|
||||||||||||||
PHD2_KMT2A | cd15590 | PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A); KMT2A (also termed ALL-1, ... |
459-501 | 3.80e-06 | ||||||||||
PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A); KMT2A (also termed ALL-1, CXXC-type zinc finger protein 7, myeloid/lymphoid or mixed-lineage leukemia protein 1 (MLL1), trithorax-like protein (Htrx), or zinc finger protein HRX) is a histone methyltransferase that belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2). It regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex, which also contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL1 complex is highly active and specific for H3K4 methylation. KMT2A contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, a Bromodomain domain, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. Pssm-ID: 277065 Cd Length: 50 Bit Score: 45.79 E-value: 3.80e-06
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1738 | 3.94e-06 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 52.45 E-value: 3.94e-06
|
||||||||||||||
PHD5_NSD2 | cd15660 | PHD finger 5 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed ... |
460-499 | 4.63e-06 | ||||||||||
PHD finger 5 found in nuclear SET domain-containing protein 2 (NSD2); NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant-homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the fifth PHD finger. Pssm-ID: 277130 Cd Length: 43 Bit Score: 45.31 E-value: 4.63e-06
|
||||||||||||||
PHD1_KMT2C_like | cd15509 | PHD finger 1 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, ... |
378-419 | 6.02e-06 | ||||||||||
PHD finger 1 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the first PHD finger. Pssm-ID: 276984 Cd Length: 48 Bit Score: 44.99 E-value: 6.02e-06
|
||||||||||||||
PHD5_NSD1 | cd15659 | PHD finger 5 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, ... |
460-499 | 6.75e-06 | ||||||||||
PHD finger 5 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fifth PHD finger. Pssm-ID: 277129 Cd Length: 43 Bit Score: 44.55 E-value: 6.75e-06
|
||||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
1587-1729 | 7.56e-06 | ||||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 51.06 E-value: 7.56e-06
|
||||||||||||||
PHD2_KMT2B | cd15591 | PHD domain 2 found in Histone-lysine N-methyltransferase 2B (KMT2B); KMT2B, also termed ... |
459-501 | 8.12e-06 | ||||||||||
PHD domain 2 found in Histone-lysine N-methyltransferase 2B (KMT2B); KMT2B, also termed trithorax homolog 2 or WW domain-binding protein 7 (WBP-7), is encoded by the gene that was first named myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), a second human homolog of Drosophila trithorax, located on chromosome 19. It belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal mammalian embryonic development. KMT2B functions as the catalytic subunit in the MLL2 complex, which contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL2 complex is highly active and specific for histone 3lysine 4 (H3K4) methylation, which stimulates chromatin transcription in a SAM- and H3K4-dependent manner. Moreover, KMT2B plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. KMT2B contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD), an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. Pssm-ID: 277066 Cd Length: 50 Bit Score: 44.54 E-value: 8.12e-06
|
||||||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
1586-1733 | 8.39e-06 | ||||||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 51.15 E-value: 8.39e-06
|
||||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1537-1734 | 9.29e-06 | ||||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 50.78 E-value: 9.29e-06
|
||||||||||||||
PHD3_NSD | cd15566 | PHD finger 3 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
377-418 | 9.89e-06 | ||||||||||
PHD finger 3 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the third PHD finger. Pssm-ID: 277041 Cd Length: 48 Bit Score: 44.34 E-value: 9.89e-06
|
||||||||||||||
TNG2 | COG5034 | Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; |
366-422 | 1.38e-05 | ||||||||||
Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; Pssm-ID: 227367 [Multi-domain] Cd Length: 271 Bit Score: 48.78 E-value: 1.38e-05
|
||||||||||||||
ADDz_ATRX | cd11726 | ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked); ADDz_ATRX is a ... |
364-421 | 1.46e-05 | ||||||||||
ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked); ADDz_ATRX is a PHD-like zinc finger domain of ATRX, which belongs to the SNF2 family of chromatin remodeling proteins. ATRX is a large chromatin-associated nuclear protein with two domains, ADDz_ATRX at the N-terminus, followed by a C-terminal ATPase/helicase domain. The ADDz_ATRX domain recognizes a specific methylated histone, and this interaction is required for heterochromatin localization of the ATRX protein. Missense mutations in either of the two ATRX domains lead to the X-linked alpha-thalassemia and mental retardation syndrome; however the mutations in the ADDz_ATRX domain produce a more severe disease phenotype that may also relate to disturbing unknown functions or interaction sites of this domain. The ADDz domain is also present in chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3); it is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277252 [Multi-domain] Cd Length: 102 Bit Score: 45.76 E-value: 1.46e-05
|
||||||||||||||
PHD5_NSD1 | cd15659 | PHD finger 5 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, ... |
378-417 | 1.59e-05 | ||||||||||
PHD finger 5 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1); NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fifth PHD finger. Pssm-ID: 277129 Cd Length: 43 Bit Score: 43.78 E-value: 1.59e-05
|
||||||||||||||
PHD2_PHF10 | cd15529 | PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed ... |
378-419 | 1.64e-05 | ||||||||||
PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed BRG1-associated factor 45a (BAF45a), or XAP135, is a ubiquitously expressed transcriptional regulator that is required for maintaining the undifferentiated status of neuroblasts. It contains a SAY (supporter of activation of yellow) domain and two adjacent plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. Pssm-ID: 277004 Cd Length: 44 Bit Score: 43.45 E-value: 1.64e-05
|
||||||||||||||
PHD_BRPF1 | cd15676 | PHD finger found in bromodomain and PHD finger-containing protein 1 (BRPF1) and similar ... |
460-505 | 1.79e-05 | ||||||||||
PHD finger found in bromodomain and PHD finger-containing protein 1 (BRPF1) and similar proteins; BRPF1, also termed peregrin or protein Br140, is a multi-domain protein that binds histones, mediates monocytic leukemic zinc-finger protein (MOZ)-dependent histone acetylation, and is required for Hox gene expression and segmental identity. It is a close partner of the MOZ histone acetyltransferase (HAT) complex and a novel Trithorax group (TrxG) member with a central role during development. BRPF1 is primarily a nuclear protein that has a broad tissue distribution and is abundant in testes and spermatogonia. It contains a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. BRPF1 may be involved in chromatin remodeling. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277146 [Multi-domain] Cd Length: 62 Bit Score: 44.28 E-value: 1.79e-05
|
||||||||||||||
DMP1 | pfam07263 | Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix ... |
1582-1730 | 2.18e-05 | ||||||||||
Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralized dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralized matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown. Pssm-ID: 462128 [Multi-domain] Cd Length: 519 Bit Score: 49.15 E-value: 2.18e-05
|
||||||||||||||
PHD1_MTF2_PHF19_like | cd15499 | PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) ... |
460-502 | 2.44e-05 | ||||||||||
PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) family proteins MTF2, PHF19, and similar proteins; The family includes two PCL family proteins, metal-response element-binding transcription factor 2 (MTF2/PCL2) and PHF19/PCL3, which are homologs of PHD finger protein1 (PHF1). PCL family proteins are accessory components of the polycomb repressive complex 2 (PRC2) core complex and all contain an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. They specifically recognize tri-methylated H3K36 (H3K36me3) through their N-terminal Tudor domains. The interaction between their Tudor domains and H3K36me3 is critical for both the targeting and spreading of PRC2 into active chromatin regions and for the maintenance of optimal repression of poised developmental genes where PCL proteins, H3K36me3, and H3K27me3 coexist. Moreover, unlike other PHD finger-containing proteins, the first PHD fingers of PCL proteins do not display histone H3K4 binding affinity and they do not affect the Tudor domain binding to histones. This model corresponds to the first PHD finger. Pssm-ID: 276974 Cd Length: 53 Bit Score: 43.26 E-value: 2.44e-05
|
||||||||||||||
PHD3_PHF14 | cd15563 | PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel ... |
460-501 | 2.52e-05 | ||||||||||
PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the third PHD finger. Pssm-ID: 277038 Cd Length: 49 Bit Score: 43.15 E-value: 2.52e-05
|
||||||||||||||
PHD1_MTF2 | cd15578 | PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2); MTF2, also ... |
378-420 | 2.62e-05 | ||||||||||
PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2); MTF2, also termed metal regulatory transcription factor 2, or metal-response element DNA-binding protein M96, or polycomb-like protein 2 (PCL2), complexes with the polycomb repressive complex-2 (PRC2) in embryonic stem cells and regulates the transcriptional networks during embryonic stem cell self-renewal and differentiation. It recruits the PRC2 complex to the inactive X chromosome and target loci in embryonic stem cells. Moreover, MTF2 is required for PRC2-mediated Hox cluster repression. It activates the Cdkn2a gene and promotes cellular senescence, thus suppressing the catalytic activity of PRC2 locally. MTF2 consists of an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. This model corresponds to the first PHD finger. Pssm-ID: 277053 Cd Length: 53 Bit Score: 43.15 E-value: 2.62e-05
|
||||||||||||||
PHD1_NSD1_2 | cd15648 | PHD finger 1 found in nuclear receptor-binding SET domain-containing protein NSD1 and NSD2; ... |
378-419 | 2.68e-05 | ||||||||||
PHD finger 1 found in nuclear receptor-binding SET domain-containing protein NSD1 and NSD2; NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). Both NSD1 and NSD2 contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). In addition, NSD2 harbors a high mobility group (HMG) box. The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the first PHD finger. Pssm-ID: 277118 Cd Length: 43 Bit Score: 42.84 E-value: 2.68e-05
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1734 | 2.73e-05 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 49.37 E-value: 2.73e-05
|
||||||||||||||
PHD_Int12 | cd15501 | PHD finger found in integrator complex subunit 12 (Int12) and similar proteins; Int12, also ... |
460-501 | 2.81e-05 | ||||||||||
PHD finger found in integrator complex subunit 12 (Int12) and similar proteins; Int12, also termed IntS12, or PHD finger protein 22, is a component of integrator, a multi-protein mediator of small nuclear RNA processing. The integrator complex directly interacts with the C-terminal domain of RNA polymerase II (RNAPII) largest subunit and mediates the 3' end processing of small nuclear RNAs (snRNAs) U1 and U2. Different from other components of integrator, Int12 contains a PHD finger, which is not required for snRNA 3' end cleavage. Instead, Int12 harbors a small microdomain at its N-terminus which is necessary and sufficient for Int12 function; this microdomain facilitates Int12 binding to Int1 and promotes snRNA 3' end formation. Pssm-ID: 276976 Cd Length: 52 Bit Score: 43.10 E-value: 2.81e-05
|
||||||||||||||
CHROMO | smart00298 | Chromatin organization modifier domain; |
543-585 | 3.22e-05 | ||||||||||
Chromatin organization modifier domain; Pssm-ID: 214605 [Multi-domain] Cd Length: 55 Bit Score: 42.97 E-value: 3.22e-05
|
||||||||||||||
ADDz_ATRX | cd11726 | ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked); ADDz_ATRX is a ... |
458-479 | 3.31e-05 | ||||||||||
ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked); ADDz_ATRX is a PHD-like zinc finger domain of ATRX, which belongs to the SNF2 family of chromatin remodeling proteins. ATRX is a large chromatin-associated nuclear protein with two domains, ADDz_ATRX at the N-terminus, followed by a C-terminal ATPase/helicase domain. The ADDz_ATRX domain recognizes a specific methylated histone, and this interaction is required for heterochromatin localization of the ATRX protein. Missense mutations in either of the two ATRX domains lead to the X-linked alpha-thalassemia and mental retardation syndrome; however the mutations in the ADDz_ATRX domain produce a more severe disease phenotype that may also relate to disturbing unknown functions or interaction sites of this domain. The ADDz domain is also present in chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3); it is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277252 [Multi-domain] Cd Length: 102 Bit Score: 44.60 E-value: 3.31e-05
|
||||||||||||||
DEXHc_RE | cd17926 | DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins; This family ... |
736-914 | 3.42e-05 | ||||||||||
DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins; This family is composed of helicase restriction enzymes and similar proteins such as TFIIH basal transcription factor complex helicase XPB subunit. These proteins are part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350684 [Multi-domain] Cd Length: 146 Bit Score: 45.76 E-value: 3.42e-05
|
||||||||||||||
PRK08581 | PRK08581 | amidase domain-containing protein; |
1534-1722 | 3.43e-05 | ||||||||||
amidase domain-containing protein; Pssm-ID: 236304 [Multi-domain] Cd Length: 619 Bit Score: 49.02 E-value: 3.43e-05
|
||||||||||||||
PHD1_KMT2C_like | cd15509 | PHD finger 1 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, ... |
459-501 | 3.56e-05 | ||||||||||
PHD finger 1 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the first PHD finger. Pssm-ID: 276984 Cd Length: 48 Bit Score: 42.68 E-value: 3.56e-05
|
||||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1535-1721 | 3.81e-05 | ||||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 48.86 E-value: 3.81e-05
|
||||||||||||||
PHD1_MTF2 | cd15578 | PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2); MTF2, also ... |
460-503 | 4.00e-05 | ||||||||||
PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2); MTF2, also termed metal regulatory transcription factor 2, or metal-response element DNA-binding protein M96, or polycomb-like protein 2 (PCL2), complexes with the polycomb repressive complex-2 (PRC2) in embryonic stem cells and regulates the transcriptional networks during embryonic stem cell self-renewal and differentiation. It recruits the PRC2 complex to the inactive X chromosome and target loci in embryonic stem cells. Moreover, MTF2 is required for PRC2-mediated Hox cluster repression. It activates the Cdkn2a gene and promotes cellular senescence, thus suppressing the catalytic activity of PRC2 locally. MTF2 consists of an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. This model corresponds to the first PHD finger. Pssm-ID: 277053 Cd Length: 53 Bit Score: 42.77 E-value: 4.00e-05
|
||||||||||||||
PHD2_PHF12_Rco1 | cd15534 | PHD finger 2 found in PHD finger protein 12 (PHF12), yeast Rco1, and similar proteins; PHF12, ... |
378-417 | 4.87e-05 | ||||||||||
PHD finger 2 found in PHD finger protein 12 (PHF12), yeast Rco1, and similar proteins; PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This subfamily also includes yeast transcriptional regulatory protein Rco1 and similar proteins. Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two PHD fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the second PHD finger. Pssm-ID: 277009 Cd Length: 47 Bit Score: 42.33 E-value: 4.87e-05
|
||||||||||||||
PHD_BRPF2 | cd15677 | PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar ... |
460-505 | 5.10e-05 | ||||||||||
PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar proteins; BRPF2, also termed bromodomain-containing protein 1 (BRD1), or BR140-like protein, is encoded by BRL (BR140 Like gene). It is responsible for the bulk of the acetylation of H3K14 and forms a novel monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with HBO1 and ING4. The complex is required for full transcriptional activation of the erythroid-specific regulator genes essential for terminal differentiation and survival of erythroblasts in fetal liver. BRPF2 shows widespread expression and localizes to the nucleus within spermatocytes. It contains a cysteine rich region harboring a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277147 [Multi-domain] Cd Length: 54 Bit Score: 42.69 E-value: 5.10e-05
|
||||||||||||||
PHD_TAF3 | cd15522 | PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed ... |
377-419 | 5.91e-05 | ||||||||||
PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed 140 kDa TATA box-binding protein-associated factor, TBP-associated factor 3, transcription initiation factor TFIID 140 kDa subunit (TAF140), or TAFII-140, is an integral component of TFIID) is a general initiation factor (GTF) that plays a key role in preinitiation complex (PIC) assembly through core promoter recognition. The interaction of H3K4me3 with TAF3 directs global TFIID recruitment to active genes, which regulates gene-selective functions of p53 in response to genotoxic stress. TAF3 is highly enriched in embryonic stem cells and is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. Moreover, TAF3, along with TRF3, forms a complex that is essential for myogenic differentiation. TAF3 contains a plant homeodomain (PHD) finger. This family also includes Drosophila melanogaster BIP2 (Bric-a-brac interacting protein 2) protein, which functions as an interacting partner of D. melanogaster p53 (Dmp53). Pssm-ID: 276997 [Multi-domain] Cd Length: 46 Bit Score: 42.27 E-value: 5.91e-05
|
||||||||||||||
SF2_C | cd18785 | C-terminal helicase domain of superfamily 2 DEAD/H-box helicases; Superfamily (SF)2 helicases ... |
1129-1182 | 5.94e-05 | ||||||||||
C-terminal helicase domain of superfamily 2 DEAD/H-box helicases; Superfamily (SF)2 helicases include DEAD-box helicases, UvrB, RecG, Ski2, Sucrose Non-Fermenting (SNF) family helicases, and dicer proteins, among others. Similar to SF1 helicases, they do not form toroidal structures like SF3-6 helicases. SF2 helicases are a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Their helicase core is surrounded by C- and N-terminal domains with specific functions such as nucleases, RNA or DNA binding domains, or domains engaged in protein-protein interactions. The core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350172 [Multi-domain] Cd Length: 77 Bit Score: 43.08 E-value: 5.94e-05
|
||||||||||||||
PHD_ING | cd15505 | PHD finger found in the inhibitor of growth (ING) protein family; The ING family includes a ... |
377-419 | 6.57e-05 | ||||||||||
PHD finger found in the inhibitor of growth (ING) protein family; The ING family includes a group of tumor suppressors, ING1-5, which act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 276980 [Multi-domain] Cd Length: 45 Bit Score: 41.90 E-value: 6.57e-05
|
||||||||||||||
PHD_BRPF3 | cd15678 | PHD finger found in bromodomain and PHD finger-containing protein 3 (BRPF3) and similar ... |
459-507 | 7.21e-05 | ||||||||||
PHD finger found in bromodomain and PHD finger-containing protein 3 (BRPF3) and similar proteins; BRPF3 is a homolog of BRPF1 and BRPF2. It is a scaffold protein that forms a novel monocytic leukemic zinc finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with other regulatory subunits. BRPF3 contains a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277148 [Multi-domain] Cd Length: 55 Bit Score: 42.31 E-value: 7.21e-05
|
||||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1537-1734 | 7.74e-05 | ||||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 48.09 E-value: 7.74e-05
|
||||||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
1568-1726 | 8.27e-05 | ||||||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 47.68 E-value: 8.27e-05
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1738 | 8.41e-05 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 47.83 E-value: 8.41e-05
|
||||||||||||||
PHD_TAF3 | cd15522 | PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed ... |
459-501 | 1.11e-04 | ||||||||||
PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed 140 kDa TATA box-binding protein-associated factor, TBP-associated factor 3, transcription initiation factor TFIID 140 kDa subunit (TAF140), or TAFII-140, is an integral component of TFIID) is a general initiation factor (GTF) that plays a key role in preinitiation complex (PIC) assembly through core promoter recognition. The interaction of H3K4me3 with TAF3 directs global TFIID recruitment to active genes, which regulates gene-selective functions of p53 in response to genotoxic stress. TAF3 is highly enriched in embryonic stem cells and is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. Moreover, TAF3, along with TRF3, forms a complex that is essential for myogenic differentiation. TAF3 contains a plant homeodomain (PHD) finger. This family also includes Drosophila melanogaster BIP2 (Bric-a-brac interacting protein 2) protein, which functions as an interacting partner of D. melanogaster p53 (Dmp53). Pssm-ID: 276997 [Multi-domain] Cd Length: 46 Bit Score: 41.50 E-value: 1.11e-04
|
||||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1535-1690 | 1.24e-04 | ||||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 46.50 E-value: 1.24e-04
|
||||||||||||||
PHD1_KMT2A_like | cd15506 | PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This ... |
460-501 | 1.25e-04 | ||||||||||
PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the first PHD finger. Pssm-ID: 276981 Cd Length: 47 Bit Score: 41.19 E-value: 1.25e-04
|
||||||||||||||
PHD1_NSD1_2 | cd15648 | PHD finger 1 found in nuclear receptor-binding SET domain-containing protein NSD1 and NSD2; ... |
460-501 | 1.28e-04 | ||||||||||
PHD finger 1 found in nuclear receptor-binding SET domain-containing protein NSD1 and NSD2; NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). Both NSD1 and NSD2 contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). In addition, NSD2 harbors a high mobility group (HMG) box. The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the first PHD finger. Pssm-ID: 277118 Cd Length: 43 Bit Score: 40.92 E-value: 1.28e-04
|
||||||||||||||
CD_CSD | cd00024 | CHROMO (CHRromatin Organization Modifier) domains and chromo shadow domains; Members of this ... |
636-668 | 2.23e-04 | ||||||||||
CHROMO (CHRromatin Organization Modifier) domains and chromo shadow domains; Members of this group are chromodomains or chromo shadow domains; these are SH3-fold-beta-barrel domains of the chromo-like superfamily. Chromodomains lack the first strand of the SH3-fold-beta-barrel, this first strand is altered by insertion in the chromo shadow domains. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. Chromodomain-containing proteins include: i) those having an N-terminal chromodomain followed by a related chromo shadow domain, such as Drosophila and human heterochromatin protein Su(var)205 (HP1), and mammalian modifier 1 and 2; ii) those having a single chromodomain, such as Drosophila protein Polycomb (Pc), mammalian modifier 3, human Mi-2 autoantigen, and several yeast and Caenorhabditis elegans proteins of unknown function; iii) those having paired tandem chromodomains, such as mammalian DNA-binding/helicase proteins CHD-1 to CHD-4 and yeast protein CHD1; (iv) and elongation factor eEF3, a member of the ATP-binding cassette (ABC) family of proteins, that serves an essential function in the translation cycle of fungi. eEF3 is a soluble factor lacking a transmembrane domain and having two ABC domains arranged in tandem, with a unique chromodomain inserted within the ABC2 domain. Pssm-ID: 349274 [Multi-domain] Cd Length: 50 Bit Score: 40.54 E-value: 2.23e-04
|
||||||||||||||
PRK13108 | PRK13108 | prolipoprotein diacylglyceryl transferase; Reviewed |
1534-1734 | 2.41e-04 | ||||||||||
prolipoprotein diacylglyceryl transferase; Reviewed Pssm-ID: 237284 [Multi-domain] Cd Length: 460 Bit Score: 45.74 E-value: 2.41e-04
|
||||||||||||||
ADDz | cd11672 | ATRX, Dnmt3 and Dnmt3l PHD-like zinc finger domain (ADDz); The ADDz zinc finger domain is ... |
366-419 | 3.09e-04 | ||||||||||
ATRX, Dnmt3 and Dnmt3l PHD-like zinc finger domain (ADDz); The ADDz zinc finger domain is present in the chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3) and ATRX, a SNF2 type transcription factor protein. The Dnmt3 family includes two active DNA methyltransferases, Dnmt3a and -3b, and one regulatory factor Dnmt3l. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The ADDz domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. Pssm-ID: 277250 [Multi-domain] Cd Length: 99 Bit Score: 41.78 E-value: 3.09e-04
|
||||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1537-1737 | 4.26e-04 | ||||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 45.39 E-value: 4.26e-04
|
||||||||||||||
PHD_ING3 | cd15585 | PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins; ING3, also ... |
467-501 | 4.26e-04 | ||||||||||
PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins; ING3, also termed p47ING3, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It is ubiquitously expressed and has been implicated in transcription modulation, cell cycle control, and the induction of apoptosis. It is an important subunit of human NuA4 histone acetyltransferase complex, which regulates the acetylation of histones H2A and H4. Moreover, ING3 promotes ultraviolet (UV)-induced apoptosis through the Fas/caspase-8-dependent pathway in melanoma cells. It physically interacts with subunits of E3 ligase Skp1-Cullin-F-boxprotein complex (SCF complex) and is degraded by the SCF (F-box protein S-phase kinase-associated protein 2, Skp2)-mediated ubiquitin-proteasome system. It also acts as a suppression factor during tumorigenesis and progression of hepatocellular carcinoma (HCC). ING3 contains an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 277060 [Multi-domain] Cd Length: 45 Bit Score: 39.74 E-value: 4.26e-04
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1515-1737 | 4.56e-04 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 45.52 E-value: 4.56e-04
|
||||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1537-1717 | 4.60e-04 | ||||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 44.96 E-value: 4.60e-04
|
||||||||||||||
BAH_plant_2 | cd04718 | BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH ... |
397-422 | 4.77e-04 | ||||||||||
BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. Pssm-ID: 240069 Cd Length: 148 Bit Score: 42.57 E-value: 4.77e-04
|
||||||||||||||
BAH_plant_2 | cd04718 | BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH ... |
479-514 | 4.82e-04 | ||||||||||
BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. Pssm-ID: 240069 Cd Length: 148 Bit Score: 42.57 E-value: 4.82e-04
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1515-1738 | 5.44e-04 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 45.13 E-value: 5.44e-04
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1533-1734 | 7.06e-04 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 44.75 E-value: 7.06e-04
|
||||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1588-1726 | 7.39e-04 | ||||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 44.19 E-value: 7.39e-04
|
||||||||||||||
PTZ00108 | PTZ00108 | DNA topoisomerase 2-like protein; Provisional |
1569-1738 | 8.15e-04 | ||||||||||
DNA topoisomerase 2-like protein; Provisional Pssm-ID: 240271 [Multi-domain] Cd Length: 1388 Bit Score: 44.65 E-value: 8.15e-04
|
||||||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
1537-1701 | 9.64e-04 | ||||||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 44.22 E-value: 9.64e-04
|
||||||||||||||
PHD_BRPF_JADE_like | cd15492 | PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins; ... |
459-501 | 1.00e-03 | ||||||||||
PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins; The family includes BRPF proteins, Jade proteins, protein AF-10 and AF-17. BRPF proteins are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. Jade proteins are required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6, to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. AF-10, also termed ALL1 (acute lymphoblastic leukemia)-fused gene from chromosome 10 protein, is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is a putative transcription factor that may play a role in multiple signaling pathways. All Jade proteins, AF-10, and AF-17 contain a canonical PHD finger followed by a non-canonical ePHD finger. This model corresponds to the canonical PHD finger. Pssm-ID: 276967 [Multi-domain] Cd Length: 46 Bit Score: 38.76 E-value: 1.00e-03
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1771 | 1.05e-03 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 44.36 E-value: 1.05e-03
|
||||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1534-1730 | 1.09e-03 | ||||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 44.24 E-value: 1.09e-03
|
||||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1534-1650 | 1.10e-03 | ||||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 43.81 E-value: 1.10e-03
|
||||||||||||||
PHD_BRPF2 | cd15677 | PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar ... |
381-419 | 1.14e-03 | ||||||||||
PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar proteins; BRPF2, also termed bromodomain-containing protein 1 (BRD1), or BR140-like protein, is encoded by BRL (BR140 Like gene). It is responsible for the bulk of the acetylation of H3K14 and forms a novel monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with HBO1 and ING4. The complex is required for full transcriptional activation of the erythroid-specific regulator genes essential for terminal differentiation and survival of erythroblasts in fetal liver. BRPF2 shows widespread expression and localizes to the nucleus within spermatocytes. It contains a cysteine rich region harboring a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277147 [Multi-domain] Cd Length: 54 Bit Score: 38.84 E-value: 1.14e-03
|
||||||||||||||
PHD_JADE1 | cd15679 | PHD finger found in protein Jade-1 and similar proteins; Jade-1, also termed PHD finger ... |
378-419 | 1.17e-03 | ||||||||||
PHD finger found in protein Jade-1 and similar proteins; Jade-1, also termed PHD finger protein 17 (PHF17), is a novel binding partner of von Hippel-Lindau (VHL) tumor suppressor Pvhl, a key regulator of the cellular oxygen sensing pathway. It is highly expressed in renal proximal tubules. Jade-1 functions as an essential regulator of multiple cell signaling pathways. It may be involved in the serine/threonine kinase AKT/AKT1 pathway during renal cancer pathogenesis and normally prevents renal epithelial cell proliferation and transformation. It also acts as a pro-apoptotic and growth suppressive ubiquitin ligase to inhibit canonical Wnt downstream effector beta-catenin for proteasomal degradation, and as a transcription factor associated with histone acetyltransferase activity and with increased abundance of cyclin-dependent kinase inhibitor p21. Moreover, Jade-1 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex, and plays a role in epithelial cell regeneration. It has also been identified as a novel component of the nephrocystin protein (NPHP) complex and interacts with the ciliary protein nephrocystin-4 (NPHP4). Jade-1 contains a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277149 [Multi-domain] Cd Length: 46 Bit Score: 38.52 E-value: 1.17e-03
|
||||||||||||||
PHD_JADE | cd15573 | PHD finger found in proteins Jade-1, Jade-2, Jade-3, and similar proteins; This family ... |
378-419 | 1.20e-03 | ||||||||||
PHD finger found in proteins Jade-1, Jade-2, Jade-3, and similar proteins; This family includes proteins Jade-1 (PHF17), Jade-2 (PHF15), and Jade-3 (PHF16), each of which is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. This family also contains Drosophila melanogaster PHD finger protein rhinoceros (RNO). It is a novel plant homeodomain (PHD)-containing nuclear protein that may function as a transcription factor that antagonizes Ras signaling by regulating transcription of key EGFR/Ras pathway regulators in the Drosophila eye. All Jade proteins contain a canonical Cys4HisCys3 PHD finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277048 [Multi-domain] Cd Length: 46 Bit Score: 38.54 E-value: 1.20e-03
|
||||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1615-1698 | 1.26e-03 | ||||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 40.30 E-value: 1.26e-03
|
||||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
1534-1716 | 1.34e-03 | ||||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 43.85 E-value: 1.34e-03
|
||||||||||||||
PHD_ING3 | cd15585 | PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins; ING3, also ... |
377-419 | 1.49e-03 | ||||||||||
PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins; ING3, also termed p47ING3, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It is ubiquitously expressed and has been implicated in transcription modulation, cell cycle control, and the induction of apoptosis. It is an important subunit of human NuA4 histone acetyltransferase complex, which regulates the acetylation of histones H2A and H4. Moreover, ING3 promotes ultraviolet (UV)-induced apoptosis through the Fas/caspase-8-dependent pathway in melanoma cells. It physically interacts with subunits of E3 ligase Skp1-Cullin-F-boxprotein complex (SCF complex) and is degraded by the SCF (F-box protein S-phase kinase-associated protein 2, Skp2)-mediated ubiquitin-proteasome system. It also acts as a suppression factor during tumorigenesis and progression of hepatocellular carcinoma (HCC). ING3 contains an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 277060 [Multi-domain] Cd Length: 45 Bit Score: 38.20 E-value: 1.49e-03
|
||||||||||||||
CD1_tandem_CHD5-9_like | cd18668 | repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 5-9, ... |
550-572 | 1.62e-03 | ||||||||||
repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 5-9, and similar proteins; Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD5, CHD6, CHD7, CHD8, and CHD9. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. CHD6, CHD7, and CHD8 enzymes have been demonstrated to have different substrate specificities and remodeling activities. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Pssm-ID: 349315 [Multi-domain] Cd Length: 68 Bit Score: 38.86 E-value: 1.62e-03
|
||||||||||||||
PHD2_KMT2A_like | cd15507 | PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This ... |
377-419 | 1.84e-03 | ||||||||||
PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. Pssm-ID: 276982 Cd Length: 50 Bit Score: 38.22 E-value: 1.84e-03
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1534-1738 | 1.97e-03 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 43.59 E-value: 1.97e-03
|
||||||||||||||
PHD_BRPF_JADE_like | cd15492 | PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins; ... |
378-419 | 2.90e-03 | ||||||||||
PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins; The family includes BRPF proteins, Jade proteins, protein AF-10 and AF-17. BRPF proteins are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. Jade proteins are required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6, to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. AF-10, also termed ALL1 (acute lymphoblastic leukemia)-fused gene from chromosome 10 protein, is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is a putative transcription factor that may play a role in multiple signaling pathways. All Jade proteins, AF-10, and AF-17 contain a canonical PHD finger followed by a non-canonical ePHD finger. This model corresponds to the canonical PHD finger. Pssm-ID: 276967 [Multi-domain] Cd Length: 46 Bit Score: 37.21 E-value: 2.90e-03
|
||||||||||||||
PHD2_AIRE | cd15540 | PHD finger 2 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune ... |
460-501 | 2.96e-03 | ||||||||||
PHD finger 2 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) protein, functions as a regulator of gene transcription in the thymus. It is essential for prevention of autoimmunity. AIRE plays a critical role in the induction of central tolerance. It promotes self-tolerance through tissue-specific antigen (TSA) expression. It also acts as an active regulator of chondrocyte differentiation. AIRE contains a homogeneously-staining region (HSR) or caspase-recruitment domain (CARD), a nuclear localization signal (NLS), a SAND (for Sp100, AIRE, nuclear phosphoprotein 41/75 or NucP41/75, and deformed epidermal auto regulatory factor 1 or Deaf1) domain, two plant homeodomain (PHD) fingers, and four LXXLL (where L stands for leucine) motifs. This model corresponds to the second PHD finger that may play a critical role in the activation of gene transcription. Pssm-ID: 277015 Cd Length: 42 Bit Score: 37.19 E-value: 2.96e-03
|
||||||||||||||
PHD_ING | cd15505 | PHD finger found in the inhibitor of growth (ING) protein family; The ING family includes a ... |
467-501 | 3.82e-03 | ||||||||||
PHD finger found in the inhibitor of growth (ING) protein family; The ING family includes a group of tumor suppressors, ING1-5, which act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 276980 [Multi-domain] Cd Length: 45 Bit Score: 36.89 E-value: 3.82e-03
|
||||||||||||||
CD_HP1beta_Cbx1 | cd18650 | chromodomain of heterochromatin protein 1 homolog beta; CHRomatin Organization Modifier ... |
634-674 | 3.93e-03 | ||||||||||
chromodomain of heterochromatin protein 1 homolog beta; CHRomatin Organization Modifier (chromo) domain of heterochromatin protein 1 homolog beta (also known as HP1beta, CBX1, and chromobox 1), and related proteins. HP1beta is a highly conserved non-histone protein, which is a member of the heterochromatin protein family, and is enriched in the heterochromatin and associated with centromeres. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta, and HP1gamma (also known as Cbx3). Pssm-ID: 349297 Cd Length: 50 Bit Score: 37.23 E-value: 3.93e-03
|
||||||||||||||
PHD_ING5 | cd15685 | PHD finger found in inhibitor of growth protein 5 (ING5); ING5, also termed p28ING5, is one ... |
377-422 | 3.97e-03 | ||||||||||
PHD finger found in inhibitor of growth protein 5 (ING5); ING5, also termed p28ING5, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It acts as a Tip60 cofactor that acetylates p53 at K120 and subsequently activates the expression of p53-dependent apoptotic genes in response to DNA damage. Aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and colorectal cancer. ING5 can physically interact with p300 and p53 in vivo, and its overexpression induces apoptosis in colorectal cancer cells. It also associates with cyclin A1 (INCA1) and functions as a growth suppressor with suppressed expression in Acute Myeloid Leukemia (AML). Moreover, ING5 translocation from the nucleus to the cytoplasm might be a critical event for carcinogenesis and tumor progression in human head and neck squamous cell carcinoma. In addition, ING5 associates with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further directs the MOZ/MORF and HBO1 complexes to chromatin. ING5 contains an N-terminal ING histone-binding domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 277155 [Multi-domain] Cd Length: 49 Bit Score: 36.95 E-value: 3.97e-03
|
||||||||||||||
PHD1_NSD | cd15564 | PHD finger 1 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
460-502 | 4.32e-03 | ||||||||||
PHD finger 1 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the first PHD finger. Pssm-ID: 277039 Cd Length: 43 Bit Score: 36.93 E-value: 4.32e-03
|
||||||||||||||
PHD_TCF19_like | cd15517 | PHD finger found in Transcription factor 19 (TCF-19), Lysine-specific demethylase KDM5A and ... |
460-501 | 4.63e-03 | ||||||||||
PHD finger found in Transcription factor 19 (TCF-19), Lysine-specific demethylase KDM5A and KDM5B, and other similar proteins; TCF-19 was identified as a putative trans-activating factor with expression beginning at the late G1-S boundary in dividing cells. It functions as a novel islet factor necessary for proliferation and survival in the INS-1 beta cell line. It plays an important role in susceptibility to both Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM); it has been suggested that it may positively impact beta cell mass under conditions of beta cell stress and increased insulin demand. KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interaction with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. This family also includes Caenorhabditis elegans Lysine-specific demethylase 7 homolog (ceKDM7A). ceKDM7A (also termed JmjC domain-containing protein 1.2, PHD finger protein 8 homolog, or PHF8 homolog) is a plant homeodomain (PHD)- and JmjC domain-containing protein that functions as a histone demethylase specific for H3K9me2 and H3K27me2. The binding of the PHD finger to H3K4me3 guides H3K9me2- and H3K27me2-specific demethylation by its catalytic JmjC domain in a trans-histone regulation mechanism. In addition, this family includes plant protein OBERON 1 and OBERON 2, Alfin1-like (AL) proteins, histone acetyltransferases (HATs) HAC, and AT-rich interactive domain-containing protein 4 (ARID4). Pssm-ID: 276992 [Multi-domain] Cd Length: 49 Bit Score: 36.76 E-value: 4.63e-03
|
||||||||||||||
PHD_JADE3 | cd15681 | PHD finger found in protein Jade-3 and similar proteins; Jade-3, also termed PHD finger ... |
378-419 | 4.99e-03 | ||||||||||
PHD finger found in protein Jade-3 and similar proteins; Jade-3, also termed PHD finger protein 16 (PHF16), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-3 is required for ING4 and ING5 to associate with histone acetyl transferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-3 contains a canonical Cys4HisCys3 PHD domain followed by a non-canonical extended PHD (ePHD) domain, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277151 [Multi-domain] Cd Length: 50 Bit Score: 36.87 E-value: 4.99e-03
|
||||||||||||||
PHD_JADE2 | cd15680 | PHD finger found in protein Jade-2 and similar proteins; Jade-2, also termed PHD finger ... |
460-501 | 6.09e-03 | ||||||||||
PHD finger found in protein Jade-2 and similar proteins; Jade-2, also termed PHD finger protein 15 (PHF15), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-2 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-2 contains a canonical Cys4HisCys3 PHD finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277150 [Multi-domain] Cd Length: 46 Bit Score: 36.52 E-value: 6.09e-03
|
||||||||||||||
PHD1_KMT2B | cd15589 | PHD finger 1 found in Histone-lysine N-methyltransferase 2B (KMT2B); KMT2B, also termed ... |
378-419 | 6.93e-03 | ||||||||||
PHD finger 1 found in Histone-lysine N-methyltransferase 2B (KMT2B); KMT2B, also termed trithorax homolog 2 or WW domain-binding protein 7 (WBP-7), is encoded by the gene that was first named myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), a second human homolog of Drosophila trithorax, located on chromosome 19. It belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal mammalian embryonic development. KMT2B functions as the catalytic subunit in the MLL2 complex, which contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL2 complex is highly active and specific for histone 3 lysine 4 (H3K4) methylation, which stimulates chromatin transcription in a SAM- and H3K4-dependent manner. Moreover, KMT2B plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. KMT2B contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the first PHD finger. Pssm-ID: 277064 Cd Length: 47 Bit Score: 36.37 E-value: 6.93e-03
|
||||||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
1535-1705 | 7.25e-03 | ||||||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 41.52 E-value: 7.25e-03
|
||||||||||||||
PHD1_NSD3 | cd15649 | PHD finger 1 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed ... |
460-501 | 8.02e-03 | ||||||||||
PHD finger 1 found in nuclear SET domain-containing protein 3 (NSD3); NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the first PHD finger. Pssm-ID: 277119 Cd Length: 44 Bit Score: 35.90 E-value: 8.02e-03
|
||||||||||||||
PHD_BRPF | cd15572 | PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins; The family of BRPF ... |
381-419 | 9.34e-03 | ||||||||||
PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins; The family of BRPF proteins includes BRPF1, BRD1/BRPF2, and BRPF3. They are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277047 [Multi-domain] Cd Length: 54 Bit Score: 36.05 E-value: 9.34e-03
|
||||||||||||||
Blast search parameters | ||||
|