CPSF1 family protein similar to Arabidopsis thaliana cleavage and polyadenylation specificity factor subunit 1 (CPSF1), the RNA recognition subunit of CPSF that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A)polymerase and other factors to bring about cleavage and poly(A) addition
CPSF A subunit region; This family includes a region that lies towards the C-terminus of the ...
737-1072
7.65e-97
CPSF A subunit region; This family includes a region that lies towards the C-terminus of the cleavage and polyadenylation specificity factor (CPSF) A (160 kDa) subunit. CPSF is involved in mRNA polyadenylation and binds the AAUAAA conserved sequence in pre-mRNA. CPSF has also been found to be necessary for splicing of single-intron pre-mRNAs. The function of the aligned region is unknown but may be involved in RNA/DNA binding.
:
Pssm-ID: 427182 Cd Length: 319 Bit Score: 310.29 E-value: 7.65e-97
CPSF A subunit region; This family includes a region that lies towards the C-terminus of the ...
737-1072
7.65e-97
CPSF A subunit region; This family includes a region that lies towards the C-terminus of the cleavage and polyadenylation specificity factor (CPSF) A (160 kDa) subunit. CPSF is involved in mRNA polyadenylation and binds the AAUAAA conserved sequence in pre-mRNA. CPSF has also been found to be necessary for splicing of single-intron pre-mRNAs. The function of the aligned region is unknown but may be involved in RNA/DNA binding.
Pssm-ID: 427182 Cd Length: 319 Bit Score: 310.29 E-value: 7.65e-97
Mono-functional DNA-alkylating methyl methanesulfonate N-term; MMS1 is a protein that protects ...
8-336
6.32e-15
Mono-functional DNA-alkylating methyl methanesulfonate N-term; MMS1 is a protein that protects against replication-dependent DNA damage in Saccharomyces cerevisiae. MMS1 belongs to the DDB1 family of cullin 4 adaptors and the two proteins are homologous. MMS1 bridges the interaction of MMS22 and Crt10 with Cul8/Rtt101. Cul8/Rtt101 is a cullin protein involved in the regulation of DNA replication subsequent to DNA damage. The N-terminal region of MMS1 and the C-terminal of MMS22 are required for the the MMS1-MMS22 interaction. The human HIV-1 virion-associated protein Vpr assembles with DDB1 through interaction with DCAF1 (chromatin assembly factor) to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and subsequent G2 arrest.
Pssm-ID: 463091 Cd Length: 486 Bit Score: 78.85 E-value: 6.32e-15
CPSF A subunit region; This family includes a region that lies towards the C-terminus of the ...
737-1072
7.65e-97
CPSF A subunit region; This family includes a region that lies towards the C-terminus of the cleavage and polyadenylation specificity factor (CPSF) A (160 kDa) subunit. CPSF is involved in mRNA polyadenylation and binds the AAUAAA conserved sequence in pre-mRNA. CPSF has also been found to be necessary for splicing of single-intron pre-mRNAs. The function of the aligned region is unknown but may be involved in RNA/DNA binding.
Pssm-ID: 427182 Cd Length: 319 Bit Score: 310.29 E-value: 7.65e-97
Mono-functional DNA-alkylating methyl methanesulfonate N-term; MMS1 is a protein that protects ...
8-336
6.32e-15
Mono-functional DNA-alkylating methyl methanesulfonate N-term; MMS1 is a protein that protects against replication-dependent DNA damage in Saccharomyces cerevisiae. MMS1 belongs to the DDB1 family of cullin 4 adaptors and the two proteins are homologous. MMS1 bridges the interaction of MMS22 and Crt10 with Cul8/Rtt101. Cul8/Rtt101 is a cullin protein involved in the regulation of DNA replication subsequent to DNA damage. The N-terminal region of MMS1 and the C-terminal of MMS22 are required for the the MMS1-MMS22 interaction. The human HIV-1 virion-associated protein Vpr assembles with DDB1 through interaction with DCAF1 (chromatin assembly factor) to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and subsequent G2 arrest.
Pssm-ID: 463091 Cd Length: 486 Bit Score: 78.85 E-value: 6.32e-15
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options