Superfamily of metallo-dependent hydrolases (also called amidohydrolase superfamily) is a ...
3-201
6.94e-63
Superfamily of metallo-dependent hydrolases (also called amidohydrolase superfamily) is a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The family includes urease alpha, adenosine deaminase, phosphotriesterase dihydroorotases, allantoinases, hydantoinases, AMP-, adenine and cytosine deaminases, imidazolonepropionase, aryldialkylphosphatase, chlorohydrolases, formylmethanofuran dehydrogenases and others.
The actual alignment was detected with superfamily member cd00443:
Pssm-ID: 469705 Cd Length: 305 Bit Score: 197.57 E-value: 6.94e-63
Adenosine/AMP deaminase. Adenosine deaminases (ADAs) are present in pro- and eukaryotic ...
3-201
6.94e-63
Adenosine/AMP deaminase. Adenosine deaminases (ADAs) are present in pro- and eukaryotic organisms and catalyze the zinc dependent irreversible deamination of adenosine nucleosides to inosine nucleosides and ammonia. The eukaryotic AMP deaminase catalyzes a similar reaction leading to the hydrolytic removal of an amino group at the 6 position of the adenine nucleotide ring, a branch point in the adenylate catabolic pathway.
Pssm-ID: 238250 Cd Length: 305 Bit Score: 197.57 E-value: 6.94e-63
Adenosine/AMP deaminase. Adenosine deaminases (ADAs) are present in pro- and eukaryotic ...
3-201
6.94e-63
Adenosine/AMP deaminase. Adenosine deaminases (ADAs) are present in pro- and eukaryotic organisms and catalyze the zinc dependent irreversible deamination of adenosine nucleosides to inosine nucleosides and ammonia. The eukaryotic AMP deaminase catalyzes a similar reaction leading to the hydrolytic removal of an amino group at the 6 position of the adenine nucleotide ring, a branch point in the adenylate catabolic pathway.
Pssm-ID: 238250 Cd Length: 305 Bit Score: 197.57 E-value: 6.94e-63
Adenosine deaminase (ADA) is a monomeric zinc dependent enzyme which catalyzes the ...
1-200
2.19e-33
Adenosine deaminase (ADA) is a monomeric zinc dependent enzyme which catalyzes the irreversible hydrolytic deamination of both adenosine, as well as desoxyadenosine, to ammonia and inosine or desoxyinosine, respectively. ADA plays an important role in the purine pathway. Low, as well as high levels of ADA activity have been linked to several diseases.
Pssm-ID: 238645 Cd Length: 325 Bit Score: 121.93 E-value: 2.19e-33
Superfamily of metallo-dependent hydrolases (also called amidohydrolase superfamily) is a ...
12-167
2.34e-04
Superfamily of metallo-dependent hydrolases (also called amidohydrolase superfamily) is a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The family includes urease alpha, adenosine deaminase, phosphotriesterase dihydroorotases, allantoinases, hydantoinases, AMP-, adenine and cytosine deaminases, imidazolonepropionase, aryldialkylphosphatase, chlorohydrolases, formylmethanofuran dehydrogenases and others.
Pssm-ID: 238617 [Multi-domain] Cd Length: 275 Bit Score: 41.16 E-value: 2.34e-04
Amidohydrolase family; This family of enzymes are a a large metal dependent hydrolase ...
20-114
3.68e-04
Amidohydrolase family; This family of enzymes are a a large metal dependent hydrolase superfamily. The family includes Adenine deaminase EC:3.5.4.2 that hydrolyses adenine to form hypoxanthine and ammonia. Adenine deaminases reaction is important for adenine utilization as a purine and also as a nitrogen source. This family also includes dihydroorotase and N-acetylglucosamine-6-phosphate deacetylases, EC:3.5.1.25 These enzymes catalyze the reaction N-acetyl-D-glucosamine 6-phosphate + H2O <=> D-glucosamine 6-phosphate + acetate. This family includes the catalytic domain of urease alpha subunit. Dihydroorotases (EC:3.5.2.3) are also included.
Pssm-ID: 460401 [Multi-domain] Cd Length: 334 Bit Score: 40.56 E-value: 3.68e-04
Predicted chlorohydrolases. These metallo-dependent hydrolases from archea are part of the ...
32-121
6.03e-03
Predicted chlorohydrolases. These metallo-dependent hydrolases from archea are part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. They have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. Some members of this subgroup are predicted to be chlorohyrolases.
Pssm-ID: 238630 [Multi-domain] Cd Length: 263 Bit Score: 36.61 E-value: 6.03e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options