Clinical Description
Holt-Oram syndrome is characterized by upper-limb defects, congenital heart malformation, and cardiac conduction disease [Holt & Oram 1960].
Upper-limb malformations may be unilateral, bilateral/symmetric, or bilateral/asymmetric and can range from triphalangeal or absent thumb(s) to phocomelia, a malformation in which the hands are attached close to the body; intermediate presentations resulting from abnormal development of the bones involved may also be observed. Other upper-limb malformations can include unequal arm length caused by aplasia or hypoplasia of the radius, fusion or anomalous development of the carpal and thenar bones, abnormal forearm pronation and supination, abnormal opposition of the thumb, and sloping shoulders and restriction of shoulder joint movement.
While all individuals have an upper-limb defect, the broad range of severity of these findings is such that some individuals with the mildest upper-limb malformations and mild or no congenital heart malformation may escape diagnosis. These individuals may only be diagnosed when a more severely affected relative is born or when symptoms develop in middle age as a result of cardiac abnormalities such as pulmonary hypertension, high-grade atrioventricular block, and/or atrial fibrillation. Cardiac conduction disease can be progressive.
A congenital heart malformation is present in 75% of individuals with HOS and most commonly involves the septum. Atrial septal defect (ASD) and ventricular septal defect (VSD) can vary in number, size, and location. ASDs can present as a common atrium and are often associated with cardiac chamber isomerism; that is, the defining features of the cardiac chambers, based on their anatomic location, are altered (e.g., what may be considered right atrium based on its anatomic location may not have the atrial appendage morphology typical of the right atrium).
Some individuals with severe congenital heart malformation may require surgery early in life to repair significant septal defects [Sletten & Pierpont 1996].
Other individuals may have complex congenital heart malformations [Faria et al 2008, Baban et al 2014, Barisic et al 2014]; conotruncal malformations, though observed in HOS, are not common and may be caused by other genetic defects.
Cardiac conduction disease. Individuals with HOS with or without a congenital heart malformation are at risk for cardiac conduction disease. While individuals may present at birth with sinus bradycardia and first-degree atrioventricular (AV) block, AV block can progress unpredictably to a higher grade including complete heart block with and without atrial fibrillation.
The natural history of HOS varies by individual and largely depends on the severity of the congenital heart malformation. Potential complications (which can be life threatening if not recognized and appropriately managed) include congestive heart failure, pulmonary hypertension, arrhythmias, heart block, atrial fibrillation, and infective endocarditis.
Genotype-Phenotype Correlations
It has been reported that pathogenic missense variants at the 5' end of the T-box (which binds the major groove of the target DNA sequence) are associated with more serious cardiac defects.
Pathogenic missense variants at the 3' end of the T-box (which binds the minor groove of the target DNA) result in more pronounced limb defects. Caution is warranted, however, in applying these population-based associations to individuals in whom pathogenic variants may not predict specific phenotypes [Basson et al 1999, Brassington et al 2003].
In addition, genotypes do not appear to predict the progressive hemodynamic course associated with any particular cardiac septal defect.