


NLM Citation: National Center for Biotechnology Information (US). Genes and Disease [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 1998-. Prader-Willi syndrome. **Bookshelf URL:** https://www.ncbi.nlm.nih.gov/books/

Prader-Willi syndrome

In the Prader-Willi syndrome (PWS) cell above, the maternally derived chromosome 15 (red arrow) shows two signals: one from a control area (which is also seen in the paternally derived chromosome [yellow arrow]) and another, which is from the PWS region. This signal is missing from the paternal chromosome because the region is deleted in this PWS patient. [Reproduced with permission from Martin et al. (1998) Am J Psychiatry Sep;155(9):1265-73.]

Prader-Willi syndrome (PWS) is an uncommon genetic disorder characterized by mental retardation, decreased muscle tone, short stature, emotional lability and an insatiable appetite which can lead to life-threatening obesity. The syndrome was first described in 1956 by Drs. Prader, Labhart, and Willi.

PWS is caused by the absence of segment 11-13 on the long arm of the paternally derived chromosome 15. In 70-80% of PWS cases, the region is missing due to a deletion. Certain genes in this region are normally suppressed on the maternal chromosome, so, for normal development to occur, they must be expressed on the paternal chromosome. When these paternally derived genes are absent or disrupted, the PWS phenotype results. When this same segment is missing from the maternally derived chromosome 15, a completely different disease, Angelman syndrome, arises. This pattern of inheritance — when expression of a gene depends on whether it is inherited from the mother or the father — is called genomic imprinting. The mechanism of imprinting is uncertain, but, it may involve DNA methylation.

Genes found in the PWS chromosomal region code for the small ribonucleoprotein N (SNRPN). SNRPN is involved in mRNA processing, an intermediate step between DNA transcripton and protein formation. A mouse model of PWS has been developed with a large deletion which includes the SNRPN region and the PWS 'imprinting centre' (IC) and shows a phenotype similar to infants with PWS. These and other molecular biology techniques may lead to a better understanding of PWS and the mechanisms of genomic imprinting.

2 Genes and Disease

Related diseases

See other Neonatal Diseases

See other Diseases of the Nervous System

See other Nutritional and Metabolic Diseases