
NLM Citation: National Center for Biotechnology Information (US). Genes and Disease [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 1998-. Phenylketonuria. **Bookshelf URL:** https://www.ncbi.nlm.nih.gov/books/

Phenylketonuria

The enzyme phenylalanine hydroxylase converts the amino acid phenylalanine to tyrosine.

Phenylketonuria (PKU) is an inherited error of metabolism caused by a deficiency in the enzyme phenylalanine hydroxylase. Loss of this enzyme results in mental retardation, organ damage, unusual posture and can, in cases of maternal PKU, severely compromise pregnancy.

Classical PKU is an autosomal recessive disorder, caused by mutations in both alleles of the gene for phenylalanine hydroxylase (PAH), found on chromosome 12. In the body, phenylalanine hydroxylase converts the amino acid phenylalanine to tyrosine, another amino acid. Mutations in both copies of the gene for PAH means that the enzyme is inactive or is less efficient, and the concentration of phenylalanine in the body can build up to toxic levels. In some cases, mutations in PAH will result in a phenotypically mild form of PKU called hyperphenylalanemia. Both diseases are the result of a variety of mutations in the PAH locus; in those cases where a patient is heterozygous for two mutations of PAH (ie each copy of the gene has a different mutation), the milder mutation will predominate.

A form of PKU has been discovered in mice, and these model organisms are helping us to better understand the disease, and find treatments against it. With careful dietary supervision, children born with PKU can lead normal lives, and mothers who have the disease can produce healthy children.

Related diseases

See other Diseases of the Nervous System

See other Nutritional and Metabolic Diseases