Resources for Genetics Professionals — Genetic Disorders Caused by Nucleotide Repeat Expansions and Contractions

Wallace SE, Bean LJH.

Publication Details

Estimated reading time: 6 minutes

Nucleotide Repeat Expansions and Contractions

A nucleotide repeat is a sequence of nucleotides repeated a number of times in tandem; nucleotide repeats can occur within or near a gene. The size of nucleotide repeats varies: smaller numbers of repeats are common and not associated with phenotypic abnormalities; abnormally large numbers of repeats may be associated with phenotypic abnormalities and are classified as (in increasing order of size): mutable normal alleles, premutations, reduced-penetrance alleles, and full-penetrance alleles.

Molecular genetic testing used to sequence nucleotide repeats is more difficult than sequencing nonrepetitive regions of the exome because:

  • Many of the known nucleotide repeats contain a higher GC content, which is difficult to amplify by PCR; and
  • Repetitive regions do not align uniquely; thus, the length of the repeated sequence cannot be determined.

Specific assays are required to analyze each nucleotide repeat of interest:

  • DNA containing smaller nucleotide repeats can be amplified by PCR. The amplified segments of DNA are then separated by gel or capillary electrophoresis to determine repeat length.
  • Highly expanded nucleotide repeats may not be detected by PCR-based assays due to difficulty in aligning the sequence to a unique genomic position. Additional testing (e.g., Southern blot analysis or triplet repeat primed PCR) may be required to determine the length of highly expanded nucleotide repeats.
Table Icon

Table.

Genetic Disorders Caused by Nucleotide Repeat Expansions and Contractions

References

  • Délot E, King LM, Briggs MD, Wilcox WR, Cohn DH. Trinucleotide expansion mutations in the cartilage oligomeric matrix protein (COMP) gene. Hum Mol Genet. 1999;8:123–8. [PubMed: 9887340]

  • Favaro FP, Alvizi L, Zechi-Ceide RM, Bertola D, Felix TM, de Souza J, Raskin S, Twigg SR, Weiner AM, Armas P, Margarit E, Calcaterra NB, Andersen GR, McGowan SJ, Wilkie AO, Richieri-Costa A, de Almeida ML, Passos-Bueno MR. Am J Hum Genet. A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects. 2014;94:120-8. [PMC free article: PMC3882729] [PubMed: 24360810]

  • Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, Almansour MA, Kikuchi JK, Taira M, Mitsui J, Takahashi Y, Ichikawa Y, Mano T, Iwata A, Harigaya Y, Matsukawa MK, Matsukawa T, Tanaka M, Shirota Y, Ohtomo R, Kowa H, Date H, Mitsue A, Hatsuta H, Morimoto S, Murayama S, Shiio Y, Saito Y, Mitsutake A, Kawai M, Sasaki T, Sugiyama Y, Hamada M, Ohtomo G, Terao Y, Nakazato Y, Takeda A, Sakiyama Y, Umeda-Kameyama Y, Shinmi J, Ogata K, Kohno Y, Lim SY, Tan AH, Shimizu J, Goto J, Nishino I, Toda T, Morishita S, Tsuji S. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet. 2019;51:1222–32. [PubMed: 31332380]

  • Kekou K, Sofocleous C, Papadimas G, Petichakis D, Svingou M, Pons RM, Vorgia P, Gika A, Kitsiou-Tzeli S, Kanavakis E. A dynamic trinucleotide repeat (TNR) expansion in the DMD gene. Mol Cell Probes. 2016;30:254–60. [PubMed: 27417533]

  • Kozlowski P, de Mezer M, Krzyzosiak WJ. Trinucleotide repeats in human genome and exome. Nucleic Acids Res. 2010;38:4027–39. [PMC free article: PMC2896521] [PubMed: 20215431]

  • Ranum LPW, Moseley ML, Leppet MF, et al. Massive CTG expansions and deletions may reduce penetrance of spinocerebellar ataxia type 8. Am J Hum Genet. 1999;65:466.

  • Scriba CK, Beecroft SJ, Clayton JS, Cortese A, Sullivan R, Yau WY, Dominik N, Rodrigues M, Walker E, Dyer Z, Wu TY, Davis MR, Chandler DC, Weisburd B, Houlden H, Reilly MM, Laing NG, Lamont PJ, Roxburgh RH, Ravenscroft G. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain. 2020;143:2904–10. [PMC free article: PMC7780484] [PubMed: 33103729]

  • Shibata A, Machida J, Yamaguchi S, Kimura M, Tatematsu T, Miyachi H, Matsushita M, Kitoh H, Ishiguro N, Nakayama A, Higashi Y, Shimozato K, Tokita Y. Characterisation of novel RUNX2 mutation with alanine tract expansion from Japanese cleidocranial dysplasia patient. Mutagenesis. 2016;31:61–7. [PubMed: 26220009]

  • Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, Koike H, Hashiguchi A, Takashima H, Sugiyama H, Kohno Y, Takiyama Y, Maeda K, Doi H, Koyano S, Takeuchi H, Kawamoto M, Kohara N, Ando T, Ieda T, Kita Y, Kokubun N, Tsuboi Y, Katoh K, Kino Y, Katsuno M, Iwasaki Y, Yoshida M, Tanaka F, Suzuki IK, Frith MC, Matsumoto N, Sobue G. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet. 2019;51:1215–21. [PubMed: 31332381]

  • Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, Hayden M, Heywood S, Millar DS, Phillips AD, Cooper DN. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum Genet. 2020;139:1197–207. [PMC free article: PMC7497289] [PubMed: 32596782]

  • Takagi M, Ishii T, Torii C, Kosaki K, Hasegawa T. A novel mutation in SOX3 polyalanine tract: a case of Kabuki syndrome with combined pituitary hormone deficiency harboring double mutations in MLL2 and SOX3. Pituitary. 2014;17:569–74. [PubMed: 24346842]

  • Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z, Chen Z, Li Y, Wang Y, Min HX, Wang XJ, You Y, Zhang RX, Chen XY, Yi F, Zhou YF, Long HY, Zhou CJ, Hou X, Wang JP, Xie B, Liang F, Yang ZY, Sun QY, Allen EG, Shafik AM, Kong HE, Guo JF, Yan XX, Hu ZM, Xia K, Jiang H, Xu HW, Duan RH, Jin P, Tang BS, Shen L. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet. 2019;105:166–76. [PMC free article: PMC6612530] [PubMed: 31178126]

  • Tsuchiya M, Nan H, Koh K, Ichinose Y, Gao L, Shimozono K, Hata T, Kim YJ, Ohtsuka T, Cortese A, Takiyama Y. RFC1 repeat expansion in Japanese patients with late-onset cerebellar ataxia. J Hum Genet. 2020;65:1143–7. [PubMed: 32694621]

  • Wieben ED, Aleff RA, Eckloff BW, Atkinson EJ, Baheti S, Middha S, Brown WL, Patel SV, Kocher JP, Baratz KH. Comprehensive assessment of genetic variants within TCF4 in Fuchs' endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2014;55:6101–7. [PMC free article: PMC4179444] [PubMed: 25168903]