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1. Introduction  
 

The PCATS online App is designed to offer an online graphic user interface (GUI) that 

implements Bayesian causal inference methods for various types of treatment encountered in 

comparative effectiveness research. Here, the term treatment is used in a broader sense, and 

refers to actions or exposures that are expected to generate different outcomes. Some examples 

of a treatment include medication therapy to treat an illness, a diet plan to manage weight gain, or 

an educational program to improve certain knowledge/skills. The simplest type of treatment is a 

binary dichotomous treatment, where only two choices of the treatment are considered, such as a 

new intervention vs. a conventional control. However, most of the time, the treatment cannot be 

characterized in this simple way, rather, treatment is much more intricate. A treatment could have 

more than one category. For example, a diet intervention could be a vegetarian, Paleo, low carb 

or Atkins diet.  It could be a combination of multiple treatments, such as a weight management 

program that includes both diet and exercise.  Additionally, treatment could be continuous, such 

as the number of fruit servings or count of steps taken each day. Furthermore, a treatment could 

change over time. For example, a cancer patient may undergo a surgery first before going 

through chemotherapy. The time varying treatment can be adaptive or non-adaptive. The 

adaptive treatment is not determined ahead of time, but rather adapts to what happens as 

treatment progresses, thus treatment is constantly changing over time. The non-adaptive 

treatment is determined ahead of time, and adjustments over time are pre-planned regardless of 

what happens after the treatment.  Most of the commonly used causal inference methods 

consider the simple non-adaptive binary type of treatment. The PCATS App implements 

Bayesian’s nonparametric causal inference approaches which consider both adaptive and non-

adaptive types of treatment.  This can be applied to both experimental and nonexperimental 

observational data.  

PCATS stands for patient centered adaptive treatment strategy. The PCATS project was 

motivated by comparative effectiveness researchers aiming to find better treatment strategies for 

patients with chronic illnesses. Routine clinical approaches seeking to treat patients with chronic 

or prolonged disease conditions are adaptive, where the patients often go through many courses 

or stages of treatment.  Often, it is unclear as to what treatment plan works the best and how the 

treatment should be adjusted over time, yet, such knowledge could make an enormous difference 

in helping patients. Motivated by the patient centered comparative effectiveness questions, 

specifically “What is the best 1st line treatment option for a patient like me?”, and  “What is a 

better next treatment option given my past treatment history and disease progression?”, the 

PCATS study is aimed to understand effectiveness of complex treatment types utilizing data 

collected from real clinical encounters by: 1) refining and improving Bayesian causal inference 

methods;  and 2) evaluating effectiveness of different time-varying adaptive treatment strategies 

for treating children with newly diagnosed juvenile idiopathic arthritis (JIA).   

Usually patient reported outcomes are obtained via questionnaires and are bound by the 

minimum and maximum possible values.  Many clinical outcomes measured are also subject to 

ceiling or floor constraints, such as laboratory measures being limited by the lower and/or upper 

detection limits. Physician global evaluation of the patient disease activity is bounded between 0 

and 1. The bounded feature of an outcome measure requires appropriate consideration in the 

CER. Failure to do so could bias the study results. Therefore, the PCATS App offers the option 

for users to specify outcome bounds and implement the methods properly in order to evaluate 

bounded outcomes.     



 

This online application implements two Bayesian’s nonparametric causal inference methods: 

GPMatch for continuous outcome, and BART for non-continuous outcomes, including binary and 

counting types of outcomes.   

The PCATS App offers many advanced features for implementing robust causal inference with:   

1) complex treatment, including binary, multilevel, continuous and composite, and time-
varying adaptive treatment, as well non-adaptive treatment strategies  

2) heterogeneous causal treatment effect  
3) outcome measure bounded by ceiling and/or floor values 
4) post-treatment confounding factors, such as adherence (under construction) 

 

2. Methods 

2.1. Overview  

Statistical causal inference is specifically designed to answer causal questions. Unlike the 

prediction model, its goal is to understand how outcomes may differ by different decision. For this 

reason, causal inference is the standard method used for comparative effectiveness research.  

To better understand the difference between the causal inference and the predictive analyses, 

let’s consider an example. If we know a patient’s past premature birth history, family history, 

weight, age, smoking behavior, drinking behavior, general health and laboratory tests of a 

pregnant mother, we can predict very well her risk of a premature birth outcome. However, the 

prediction model does not inform if a life style intervention program may help lower her risk.  To 

answer this causal question, we wish to know two potential outcomes, one is the birth outcome 

had the mother gone through the intervention (denoted as Y(1)), and the other is the birth 

outcome without intervention (denoted as Y(0)).  If we have the knowledge of both potential 

outcomes, then the causal effect is simply the contrast between the two potential outcomes, i.e. 

Y(1)-Y(0).  However, we could never observe both potential outcomes, as there can be only one 

birth outcome for a baby, i.e. we could only observe Y(1) if the mother took the intervention, 

observe Y(0) if she did not .  

A randomized controlled trial is one approach used to answer a causal question. With 

randomized and well controlled experiments, the results we observe in those randomized to the 

intervention group can be used to estimate the unobserved potential outcome for those 

randomized into the control group. In other words, when the two groups are exchangeable their 

potential outcomes can be considered exchangeable, and this is the fundamental idea behind the 

statistical causal inference. Therefor the key question, in causal inference, is to find the right 

exchangeable groups. 

There are many statistical causal inference methods available which can broadly be classified 

into three categories: the propensity score method, outcome modeling and the combination 

methods. The propensity score (PS) method assumes we have the accurate knowledge of the 

propensity of treatment assignment for each individual then consider the individuals with the 

similar propensity score being exchangeable (Rosenbaum and Rubin, 1983). The outcome 

modeling approach supposes we can correctly model the scientific mechanisms underlying the 

generation of the potential outcomes. Individuals with the same risk of developing certain 

outcomes, or prognostic scores (PgS), are exchanges. Given the same PgS, the difference in 



their outcomes between the treated and untreated groups are due to the treatment (Hansen, 

2007). The combination methods use both PS and outcome modeling when estimating the 

treatment effect in order to provide additional protection against model miss-specification. 

Propensity score regression adjustment and augmented inverse probability of treatment weight 

(AIPTW, Bang & Robins, 2005) are two most commonly used combination methods. More 

recently, it was suggested that the two-staged approach by matching individuals first, followed by 

fitting an outcome model on the matched sample, performs better than many other methods, 

particularly when the model may not be correctly specified (Kang & Schafer, 2007).   

Bayesian approach holds great promise in comparative effectiveness research, because  it offers 

a coherent framework that allows synthesizing of evidences from different sources, it is highly 

flexible, and it’s able to deal with many complex settings. Bayesian’s nonparametric additive 

regression tree (BART, Hillman 2011) has proven to outperform many existing methods, 

particularly if the true model is a nonlinear function. Other studies have used Bayesian’s 

nonparametric technique in order to ease the impact of potential model misspecification (Daniel et 

al, 2012; Roy et al 2017; Hanh & Murray, 2018). Up to date, the most of Bayesian’ approach to 

the casual inference fall within the outcome modeling category. Much efforts are ongoing to 

incorporate knowledge of the treatment selection into Bayesian’s causal inference. First, including 

PS as a covariate in outcome modeling may seem to be the most straightforward, but it does not 

address uncertainty in the estimates of PS. Joint modeling of treatment selection and outcome on 

the other hand introducing the model “feedback” issue (Zigler & Dominici, 2014). A proximate 

Bayesian approach was proposed as a Bayesian’s version of AIPTW (Saarela & Liu, 2016).  

However, it suffers from the same limitations of AIPTW. Namely, the estimate treatment effect 

can be unstable as it subjects to undue influences from a few data points with PS close to 0 or 1.  

In an effort of searching for better Bayesian’s causal inference methods, we proposed GPMatch, 

a full Bayesian’s approach that allows for outcome modeling with accounted for confounding in 

treatment selection. We also extended BART for time-varying treatment. Extensive simulation 

studies examine the performances of GPMatch against many existing methods. Under the most 

realistic setting, when both outcome and propensity score modeling are miss-specified, these 

simulation studies have shown that our methods clearly outperform many existing causal 

inference methods.  

At last, most of the patient and care provider reported outcomes are bounded measures where 

values are only between a minimum and a maximum possible value. In addition, many clinical 

outcome measures such as laboratory measures are also bounded.   When the bounded nature 

of such outcome measures is not properly considering, the effectiveness estimation is biased. 

Different methods have been proposed to address the bounded outcome measures (Arostegui, 

Núñez-Antón, & Quintana, 2012). In this App, we implemented Tobit regression (Chib, 1992) to 

address the issue.  

2.2. GPMatch 

Gaussian process (GP) prior has been widely used to describe biological, social financial, and 

physical phenomena, due to its ability to model highly complex dynamic systems and its many 

desirable mathematical properties.  The posterior consistency has been established in recent 

literatures for the Bayesian partially linear GP regression model (Choi & Woo, 2013).   

The GPMatch method was proposed to offer a full Bayesian’s approach, where matching is 

performed for each individual using the rest of data points in the study sample. Only those 



individuals who are deemed similar to the given individual will contribute to the estimate of the 

potential outcome for a given individual. The degree of matching ranges from 100% matching to 

0% matching and depends upon individual similarities or dissimilarities. The similarity is 

determined by the set of confounders expected to determine the treatment selection mechanism 

and the science mechanism underlying the outcome.  

GPMatch utilizes GP prior as a matching tool.  How the GP prior accomplishes the matching 

purpose can be understood from the weight-space point of view for the regression modeling.   All 

regression modeling can be viewed as a model expressing outcomes by a weighted sum of the 

observed data over the given covariate space. In the case of the simple linear regression model, 

the weight is determined by the sample correlations between the covariates (X variable) and the 

observed responses (Y variable) for all individual data points. Unlike the linear regression, the GP 

regression is a nonparametric regression model, where the weight is determined for each 

individual data point by its relationship with the rest of the data points in the sample. The 

relationship is used to describe the similarity or the distance between these and other data points. 

In GPMatch, the distance can be viewed as a general version of the Mahalanobis distance within 

the p-dimensional covariate spaces. When the two individuals are identical in all values of the 

covariates, then their distance is 0 and the weight is assigned a value of 1, indicating that the two 

are completely matched. The weight decreases exponentially as the distance increases, which 

quickly declines to 0. The rate of decline is governed by the length scale parameters of the GP 

prior which is part of the model parameters to be determined by fitting the data.  Therefore, the 

GPMatch imputes the unobserved outcome for any given individual, by a weighted sum of the 

observed outcomes from those matched (either completely or partially) individuals where the 

matching is determined by the observed covariates.   

Since the matching and the outcome is done in a single step, GPMatch is more efficient than the 

two-staged approach suggested by Gutman and Rubin, (2017).  With nonparametric flexible 

modeling, it mitigates the concerns over model miss-specification.  Extensive empirical studies 

have demonstrated that the method enjoys well calibrated frequentist properties.  That is, it offers 

an unbiased point estimate and a nominal interval estimate. Further, the method outperforms 

many widely used causal inference methods, including variations of propensity score methods 

and matching methods, in terms of accuracy and robustness to potential model misspecification.   

The GPMatch method requires a less stringent causal assumption than those widely adopted in 

many conventional causal inference methods. First, it assumes the observed outcome is a noisy 

version of the true potential outcome, i.e. stochastic consistency causal assumption 

(VanderWeele & Hernan, 2013). Second, it assumes that the true functional form of the scientific 

mechanisms that generate potential outcomes fall within the space of functions representable by 

a Gaussian process.  And lastly, it requires the expected conditional mean of the marginal 

distribution of potential outcomes to satisfy ignorable assumptions. In other words, conditional on 

the observed covariates, the expected marginal mean of the potential outcomes stays the same 

despite the treatment actually assigned.  Detailed discussions about how these assumptions 

compare with the widely adopted three causal inference assumptions: stable unit treatment value 

assumption (SUTVA), strong ignorable treatment assignment assumption and the positivity 

assumptions, are discussed in detail elsewhere (Huang et al, 2018).   



2.3. BART 

Bayesian’s adaptive regression tree (BART) is a Bayesian’s nonparametric modeling technique. It 

has been shown to offer more accurate estimates of averaged causal treatment effect when the 

true relationship between the outcome and the covariates are nonlinear, compared to many 

commonly used causal inference methods such as propensity score matching, propensity 

weighted estimates, and propensity regression adjustment  (Hills, 2011). In the PCATS App, we 

extend the BART for time-varying adaptive treatment assignment. BART requires assumptions of 

SUTVA, strong ignorable treatment assignment assumption and the positivity assumptions. 
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3. Before Running PCATS 
 

The PCATS app is an R Shinny application. It is hosted on the server at Cincinnati Children’s 

Hospital Medical Center. The only requirement for users to use the app is to have access to an 

internet connection and an online browser, such as Firefox and Chrome. Users may choose to 

either use the app as an anonymous user, or as a registered user. The registration is free, and it 



offers a way to directly communicate with the app developers as questions arise. If choosing to 

upload user specified data, please make sure the data is de-identified, does not contain patient or 

study subject identifiable information, such as social security number, names, phone number, 

address, zip code, etc., in order to protect your data and the personal information of your study 

participants. Users are encouraged to please go through some of the examples provided below 

as a tutorial before running your own data.  

4. User’s Guide  
 

The rest of this document provides a step-by-step tutorial on how to use the app with examples. 

New users are recommended to start with example 1.1 first to get a general idea of the function 

and interface of the app. After example 1.1, one could skip to the specific example that is most 

similar to the features of his or her own research. These examples are designed to address some 

specific issues frequently encountered in comparative effectiveness research. In particular, 

example 1.2, 1.3 and 2.2 present our comparative effectiveness study with data obtained from 

routine clinical encounters. These results are part of our second aim from the PCATS project.  

Each individual research project has its own unique features which require special attention to 

ensure unbiased conclusions. For example, in our JIA CER study, the outcome measure is a 

bounded summary score that requires special estimation methods for evaluating a treatment 

effect. This feature is offered in the app. However, there are many other special features one 

must carefully consider both in the design and analyses of the study. It is not possible for us to 

include all possible features in our app, and we strongly encourage users to consult with us while 

using the app. The PCATS project is funded by the Patient Centered Outcome Research Institute 

(PCORI ME-1408-19894). All publications, presentations, and any scholarship resulting from the 

use of the app must acknowledge and give appropriate credit to the funding support from PCORI 

and the scientific contributions made by authors.  

4.1. Getting Started  

Example 1.1: A Simple Binary Treatment Setting 

This example considers a relatively simple setting using simulated data with a sample size of 400. 
The data are simulated by considering a single covariate x ~ 𝑁(0,1). The potential outcome and 

the observed outcomes are generated by y(0) =  ex, y(a) = y(0) + a(1 +  𝑢) for binary treatment 

assignment, i.e.  a = 0, 1.  Thus, in this example, on the average, the treatment effect is 1, but the 

true treatment effect for each individual could be different, where yi
(0)

− yi
(1)

= 1 + 𝑢, with 𝑢 

standing for the unaccounted individual differences in their treatment effect. The treatment is 

assigned to a given unit following 𝐴 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝(𝑥)), where logit 𝑝(𝑥) = −0.2 + (1.8x)
1

3.  At last, 

the observed outcome is generated by  y|x, a ~ y(a) + ε, ε ~ N(0, 0.75). In other words, the 
observed outcome is a noisy version of the corresponding potential outcome.  The dataset used 
for generating the following output can be downloaded by clicking here. 
 

Step 0. Import the Data   
Once the data is downloaded, users should save the data in a CSV or Excel (both .xls and .xlsx) 
file and upload the data by clicking on the “Import File” button on the left panel. A “File Import” 
window pops up, and then users can choose a data file to be imported. After importing the data, a 
“Treatment select” window pops up (Figure 1.1.1). Users can choose the “Non-adaptive” option 
for this example (Figure 1.1.2), and proceed to the next page under the “Model” Tab. Once the 



data finishes uploading, users may review the data by clicking the “Data” tab. Figure 1.1.3 shows 
the list of variables in the data and the type of these variables which are categorical or numerical. 
Users can click on one of the variables here to show the statistical summary table in Figure 1.1.4, 
and change the type of the variable by clicking the “Switching to Numeric” or “Switching to 
Categorical” button. 
 

 

 

 
Figure 1.1.1 Import a data 

 

 
Figure 1.1.2 Treatment select 

 

 
Figure 1.1.3 Variable list 

 



 
Figure 1.1.4 Statistical summary table of variables in the data 

 

Step 1. Choose the outcome and treatment variables (Figure 1.1.5) 
After choosing the type of treatment users are brought to the “Model” page. On this page they are 
prompted to go through steps for model building. First, users are asked to choose the response 
and treatment variables. In this example, “Y” is the outcome variable and “C.A” is the binary 
treatment.  

 

Figure 1.1.5. Selected variables 

 
Step 2. Select covariates in the model (Figure 1.1.6) 
Two types of covariates are being specified. The first is the confounder variable. The confounders 
are those variables that relate to both treatment selection and the outcome model. Unless the 
data is obtained from a randomized experiment, treatment are often being selected for deliberate 
reasons, which are also related to the expected outcomes.  Therefore, it is important to control for 
the confounders.  Without adequately controlling for confounders, the difference between the 
treated and untreated groups on their outcomes is not an unbiased estimate of the treatment. In 
the clinical comparative study, one may wrongly conclude that there is no treatment effect when 
in fact there is, or wrongly conclude that is treatment effect that when the true effect is null. In 
GPMatch, the confounders are used for GP prior to determine the degree of match so that it can 
line up treated and un-treated individuals on their values of all confounders, subsequently 
removing the confounding effect.    
 
The second type of covariate is the prediction variable. The prediction variables are those 
underlying the scientific mechanisms that lead to the potential outcomes. These variables are 
used to model the mean function of the outcome, much like linear regression models do.  
 
In this simulated example, since “X” was the variable used for determining both potential outcome 
and treatment assignment “X” is selected for both types.  



 

Figure 1.1.6. Selected covariates in the model 

 
Step 3. Run and show results 
The Markov chain Monte Carlo (MCMC) is a computing engine behind Bayesian statistical 
computing. Users should input the number of MCMC ‘burn-in’ samples, i.e. number of MCMC to 
be discarded and the number of MCMC samples after ‘burn-in’ (Figure 1.1.7). The larger number 
the better MCMC convergence, but this comes with the cost of a longer running time. The default 
values are set at 1000, but users should choose the number carefully for their given data.  At last, 
users may hit the “Go” button to run the model. Once finished, the “Result” page will appear. The 
study results are shown on the page. 

 

Figure 1.1.7. Input the number of ‘burn-in’ and MCMC samples 

Users can click the “MCMC trace plot” button to show the MCMC trace plot of the potential 

outcomes (Figure 1.1.8). This can be used to check the convergence of the MCMC. The plot can 

be downloaded and saved as a PNG file.  

First, Table 1.1.1 shows the summary descriptive analysis by treatment groups and reports the 

number of observations per treatment group, count and percentage for categorical variables, and 

mean and standard deviation for continuous variables. Column “SMD” is the standardized mean 

difference. The definitions of SMD are available in Flury et al. (1986). This table allows users to 

inspect the treatment assignment mechanism and compare how covariates may different 

between treatment groups.    

The next tables (Table 1.1.2) shows the estimated ATE with SD and the 95% confidence interval. 

The estimate of ATE is -1.02 with the corresponding 95% equal tail credible interval (CI) of (-1.23, 

-0.81). Recalling that the data was simulated by setting the averaged treatment effect to -1 for the 

sample, it correctly estimated the ATE.   

Further down, Table 1.1.3 presents estimated potential outcomes by treatment groups. It reports 

that the expected mean and its standard error for potential outcomes are 𝑌(0) = 1.64 and 𝑌(1) =



2.66. More detailed results are presented: MCMC posterior estimate of ATE (Figure 1.1.9) and of 

the estimates of potential outcome (Figure 1.1.10). The figures are interactive. By hovering the 

pointers, users are provided with the corresponding posterior estimates of the treatment 

effectiveness and potential outcomes. At last, showing in the side-by-side bar chart, are the 

estimated posterior probability of the potential outcomes being less than or equal to the chosen 

value under each of the treatment assignments (Figure 1.1.11). Users may set different values 

using the sliding bar. 

 

Figure 1.1.8. MCMC trace plot of potential outcomes 

 

Table 1.1.1. Descriptive statistics by treatment groups 
 

 

Table 1.1.2. Estimated averaged causal treatment effect 

 

Table 1.1.3. Estimated potential outcomes 



 

Figure 1.1.9. Histogram of averaged treatment effect estimates 

 

Figure 1.1.10. Histogram of potential outcome estimates 
 



 
 

Figure 1.1.11. Bar chart of likelihood of Y <= 2.67 by C.A 
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4.2. Non-Adaptive Types of Treatments 

Example 1.2: Binary Treatment with a Bounded Continuous Outcome  

Juvenile idiopathic arthritis (JIA), a chronic inflammatory disease, is one of the most common 
childhood autoimmune diseases and a major cause of childhood disability. If managed well, 
children with JIA can be symptom free. However, if not managed well, patients may suffer from 
pain, deformation of the joints, and the inability to perform daily tasks as simple as walking 
upstairs or lifting things. The advent of disease modifying anti rheumatoid drugs (DMARDs), 
particularly the biologic DMARDs (bDMARDS), has made it possible for inducing an inactive 
disease status in children with JIA. However, it is not clear whether the early introduction of 
treatment using biologic DMARDs is more effective than the more conventional nonbiological 
DMARDs (nbDMARDs) therapy.  There was limited evidence from randomized clinical trials 
suggesting that the early combination of biologic and nonbiologic DMARDs (n+nbDMARDs) could 
lead to better clinical outcomes than the nbDMARDs alone. The real world evidence of 
effectiveness however is lacking.  
 
For the purpose of evaluating the clinical effectiveness of early aggressive b+nbDMARDs vs. the 
more conventional nbDMARDs approach in treating children with newly diagnosed poly articular 
course of JIA (pcJIA), this study utilized data collected from a completed prospectively followed 
up inception cohort research study (Seid et al 2014). The patients were cared for at a large 
pediatric rheumatology clinic center and were eligible to be enrolled into the study soon after 
being diagnosed with JIA. The patients were followed up at 6 and 12 months after baseline. All 



study visits coincided with their regular clinical visits. Demographic and health related quality of 
life were collected via personal interview, and treatment and clinical variables were collected from 
reviewing patients’ health records.  Only a subset of pcJIA patients receiving a DMARDs 
medication prescription were included in this CER study.  

 
 A snap shot of the data structure is shown in the Figure 1.2.1. Table 1.2.1 provides the 
description of the data fields. 

 

 
Figure 1.2.1. Data structure 

 
 

Variable Name Description 

Outcome Jadas6 Juvenile Arthritis Disease Activity Score (cJADAS) at 6 
months of follow up. Value ranges from 0-40, with higher 
score indicating more disease activities. 

Treatment C.treatment_group Treatment group: 0 = nbDMARDs; 1 = b+nbDMARDs. 
Baseline 

Covariate 
 
 
 
 
 

jadas0 Juvenile Arthritis Disease Activity score at baseline. Value 
ranges from 0-40, with higher score indicating more 
disease activities. 

chaq_score Functional ability measured by the Childhood Health 
Assessment Questionnaire, range from 0 to 3, with higher 
value indicting higher functional disability. 

timediag Time since date of diagnosis of JIA (days) at the baseline. 
Baseline is the date when patient enrolled into the study. 

C.RF_pos Positive Rheumatoid Factor (RF): 0 = no Vs. 1 = yes. 
C.Female Gender: 0 = Male; 1 = Female 
C.private Private Insurance: 0 = No; 1 = Yes 
age Age at the baseline 

Table 1.2.1. Data description 
 

The baseline measures include demographic characteristics and disease specific clinical 
characteristics. The primary outcome is the Juvenile Arthritis Disease Activity Score (JADAS10) 
at the 6 months follow up visit. JADAS10 is a widely used outcome measure for children with JIA 
(Consolaro et al, 2009). This summary disease activity score is derived from four clinical 
outcomes: physician’s global evaluation of patient’s disease activity (0-10), patient’s rating of his 
or her wellbeing (0-10), the number of active joint counts (truncated at 10) and the erythrocyte 
sedimentation rate or SED rate which is a marker for inflammation activity. As the result, JADAS 
is a bounded summary score that ranges between 0 and 40 with lower values indicating less 
disease activity.  

 
 

Step 1. Choose outcome and treatment variables (Figure 1.2.2) 
The outcome variable and its type should be chosen. Since JADAS is bounded between 0 and 
40, the lower and upper thresholds are specified here. C.treatment_group is the treatment 
variable.    



 
Figure 1.2.2. Selected Outcome and Treatment Variables 

 

Step 2. Building the Model (Figure 1.2.3) 
The patients’ age, time since diagnosis, baseline JADAS score, and CHAQ score are identified 
confounders. These variables adding a positive Rheumatoid Factor are expected to explain the 
variation in JADAS outcome at 6 months thus are included into the explanatory variables.  

 

 
Figure 1.2.3. Selected covariates in the model 

 

Step 3. Run and show results 
5000 ‘burn-in’ and 5000 MCMC samples after ‘burn-in’ are considered here. The results of 
descriptive analysis by treatment groups are shown in Table 1.2.2. Table 1.2.3 shows the 
summary table of the estimated ATE evaluated for the expected JADAS score reduction for the 
early combination treatment vs. the nbDMARDs. The estimated ATE is 3.17, with the 95% 
interval estimate of (-0.15, 6.48) suggesting that, compared to nbDMARDs, b+nbDMARDs are 
expected to improve disease activities by a 3-point reduction in JADAS. The summary table of the 
estimated potential outcomes by treatment group is shown in Table 1.2.4. Figures 1.2.4 and 1.2.5 
show the histograms of the estimated ATE and of the potential outcome estimates. Figure 1.2.6 
shows that if treated on nbDMARDs, the patient has a 37% likelihood of achieving JADAS <= 
8.12; while if treated on an early combination of b+nbDMARDs, the patient has a 99% likelihood 
of achieving JADAS <= 8.12. The cut-point of 8.12 is chosen as it corresponds to a twofold 
reduction of the sample mean JADAS from the baseline.  

 



Table 1.2.2. Descriptive statistics by treatment groups 

Table 1.2.3. Estimated averaged causal treatment effect 

Table 1.2.4. Estimated potential outcomes 

Figure 1.2.4. Histogram of averaged treatment effect estimates 



 
 

Figure 1.2.5. Histogram of potential outcome estimates 

 
Figure 1.2.6. Bar chart of likelihood of jadas6 <= 8.12 by treatment group 

 

Example 1.3: Multi-level Treatment with a Post-treatment Confounder 

Here, we compare the effectiveness of three DMARD approaches by investigating whether an 
early combination of b+nbDMARD is more effective in reducing disease activity 6 months later 
compared to mono therapy with nbDMARDs or  bDMARDS in treating children with newly 
diagnosed polyarticular course of Juvenile Idiopathic Arthritis (pcJIA). The dataset was derived 
from a single institute electronic health records Epic database dating from January 2009 to 
December 2017. Children 1-19 years of age, newly diagnosed with pcJIA, and receiving their 1st 
prescription of DMARDs soon after diagnosis were eligible.  Table 1.3.1 provides the description 
of the variables in the data. 



 
Variable Name Description 

Outcome cJadas6 Clinical Juvenile Arthritis Disease Activity Score 
(cJADAS) after 6 months of treatment. Value ranges 
from 0-30, with higher scores indicating more disease 
activities. 

Treatment C.treatment_group Treatment group: 0 = nbDMARDs; 1 =  b+nbDMARDs; 2 
=  bDMARDs 

Baseline 
Covariate 

 
 
 
 
 

cjadas0 Clinical Juvenile Arthritis Disease Activity score at 
baseline, i.e. the initiation of the first DMARD. Value 
ranges from 0-30, with higher scores indicating more 
disease activities. 

timediag Time since date of diagnosis of JIA (days) at the 
baseline. Baseline is the date that DMARDS were first 
prescribed for each patient. 

C.JIA_subtype JIA Subtype: 1 = Poly RF-; 2 =  Poly RF+; 3 = Oligo; 4 = 
Other 

C.Female Gender: 0 = Male; 1 = Female 
C.private Private Insurance: 0 = No; 1 = Yes 
age Age at the baseline, i.e. the 1st DMARDs prescription. 

Post 
treatment 
Covariate 

diffvisits Days between baseline (i.e. the 1st DMARDs) and the six 
month follow-up visit.  

 
Table 1.3.1. Data description  

 

Step 1. Choose variables (Figure 1.3.1) 
 

Clinical Juvenile Arthritis Disease Activity Score (cJADAS) is a brief version JADAS, which is a 
more suitable outcome measure that is directly available in clinic for children with JIA. This 
summary disease activity score is derived from physicians’ global evaluation of each patient’s 
disease activity (0-10), rating of his or her wellbeing (0-10), and the number of active joint counts 
(truncated at 10). Thus, this bounded summary score ranges between 0 and 30, with lower 
values indicating less disease activity.  
 
For the purpose of evaluating our research question, C.treatment_group is coded into three 
categories:  0 indicating the patient received a prescription of nbDMARDS, 1indicating 
prescription of b+nbDMARDs, and 2 indicating prescription of bDMARDs.  
 

Step 2. Select covariates in the model (Figure 1.3.2) 
 
The model includes the baseline variables of age, gender, disease subtype, insurance status, 
cJADAS0, and the timediag variables as confounder variables. These variables along with the 
treatment duration were entered as explanatory variables.  
 

Step 3. Run and show results 
 
After 2000 ‘burn-in’ which allows the MCMC to achieve convergence the study results are derived 
from the additional 2000 MCMC.  
 
Table 1.3.2 presents the descriptive statistics of the baseline patient characteristics by their 
treatment assignment. As expected, patients assigned to b+nbDMARDs have a more severe 
presentation of disease activity at baseline than the other two groups.  
 



 
Figure 1.3.1. Selected variables 

 

Figure 1.3.2. Selected covariates in the model 

 
 

Table 1.3.2. Descriptive statistics by treatment groups 
 



 

Table 1.3.3. Estimated averaged causal treatment effect 

 

Table 1.3.4. Estimated potential outcomes 

 
Table 1.3.4 provides the estimated expected potential outcomes. Table 1.3.3 provides the 
estimated average treatment effects and their 95% confidence intervals comparing among the 
three treatment groups. The results suggest that if treated on b+nbDMARDs, patients are 
expected to achieve lower disease activity at six months on average than the other two treatment 
groups, with estimated cJADAS score of 5.9 and 95% CI of (4.8, 7.1), compared to 7.7, 95% CI of 
(6.8, 8.3) on nbDMARDs and 6.8, 95% CI of (5.0, 8.6) on the bDMARDs.  The results suggest 
that, on average, the nb+bDMARD treatment is expected to lead to a 1.7-point (95%CI of 0.20, 
3.23) reduction in cJADAS after six months compared to the nbDMARD treatment.  
 
Users can choose to show the histogram of the estimated ATEs (Figure 1.3.3) and the estimated 
potential outcomes (Figure 1.3.5). Users can hide any traces in the plot by clicking on the legend 
on the right side (Figure 1.3.4). In each of the histograms, the user could obtain a more detailed 
report of the results by hovering the mouse over the specific histogram. For example, if a user is 
interested in finding if the probability of 0-1 is greater than 0, then (s)he could click on the pink 
histogram in Figure 1.2.3, then move the mouse to the bar at ATE=0.  The user could also save 
the entire figure into a PNG file, to be used for dissemination of the results.    



 

Figure 1.3.3. Histogram of averaged treatment effect estimates 

 

Figure 1.3.4. Histogram of averaged treatment effect estimates without 1-2 group 



 

Figure 1.3.5. Histogram of potential outcome estimates 

  



Example 1.4: Binary Treatment with a Counting Outcome 

This example uses the same data from Example 1.2 and chooses the “Active Joints Count” as an 

example with the counting outcome. To treat it as the counting outcome, please set its type as 

categorical in the variable list panel.   

 

Step 1. Choose variables (Figure 1.4.1) 
Since the outcome is not continuous Bayesian additive regression tree (BART; Hill 2011) instead 
of GPMatch is used for the counting outcome. In the example, the heterogeneous treatment 
effect is not considered. 
 

 
 

Figure 1.4.1. Selected variables 
 

Step 2. Select covariates in the model (Figure 1.4.2) 
Since BART does not distinguish the confounder from the explanatory variable, users were asked 
to select the covariates in the outcome model. Similar covariates are chosen here as Example 
1.2. Since the BART approach does not distinguish the confounding and explanatory variables in 
modeling the outcome you may leave the confounding variable selection empty.  

 

 
Figure 1.4.2. Selected covariates in the model 

 

Step 3. Run and show results 
5000 ‘burn-in’ and 5000 MCMC samples after ‘burn-in’ are considered here. Table 1.4.1 shows 
the summary table of descriptive analysis by treatment group. The estimated ATE is 1.14 (Table 
1.4.2) and its 95% confidence interval is (-0.96, 3.25). The results suggest that b+nbDMARDs is 
more effective than nbDMARDs. If treated on the early combination, patients are expected to 
reduce one more active joint by six months, as opposed to being treated on the nbDMARDs. . 
Table 1.4.3 shows the estimated potential outcomes by treatment group. Users can also choose 
to show the histogram of ATE and the potential outcomes. 
 



 
Table 1.4.1. Descriptive statistics by treatment groups 

 

 
Table 1.4.2. Estimated averaged causal treatment effect 

 

 
Table 1.4.3. Estimated potential outcomes 
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Example 1.5: Subgroup Treatment Effect for a Binary Treatment  

Heterogeneous treatment effects (HTE) refer to the fact that treatment effects may vary across 
sub-populations or change as a function of a continuous factor. This example shows how to use 
the app to estimate the heterogeneous effects. The example data in Example 1.2 is considered 
here. Potential heterogeneous treatment effects by Rheumatoid Factor (RF) and Juvenile Arthritis 
Disease Activity scores (JADAS) at baseline are evaluated. 
 

Step 1. Choose variables  
The similar selections are chosen as Example 1.2.  

 

Step 2. Select covariates in the model (Figure 1.5.1) 
The covariates are selected the same way as in the Example 1.2. By checking on the 
“Heterogeneous Treatment Effect” box, an additional variable selection panel for HTE is shown. 
Users can select the variables which may have heterogeneous effects. In this example, 
Rheumatoid Factor (RF) and JADAS at baseline are considered. 

 
Figure 1.5.1. Selected covariates 

 
 

Step 3. Run and show results 
5000 ‘burn-in’ and 5000 MCMC samples are input here. After clicking on the “Go” button, the 
results are shown in the “Result” tab.  
 
Similar tables and figures such as Example 1.2 are provided. Users can choose “Yes” for the 
question of “Do you want to show HTE?” to show the results of heterogeneous effects. Users can 
select the values of the treatment variable as the control or treatment group (Figure 1.5.2). Then 
users should choose one of the variables which may have the heterogeneous effect. The 
available variables of HTE here are from the input of Figure 1.5.1. After selection, users can hit 
the “Go” button to calculate the heterogeneous effects. The corresponding results are shown in 
an interactive graph. Except for the selected variable with HTE, the values of other covariates in 
the model are the observed values for the calculation of HTE. Please note that the calculation 
may need some time. For a categorical variable, violin plots overlaid with box plots by the 
categorical variable are shown in Figure 1.5.3. Violin plots show the kernel probability density of 
the estimated HTEs. Box plots show the median of the estimated HTEs and a box indicates the 
interquartile range. The corresponding values are shown in the hover text. The plot shows that 
the effectiveness of b+nbDMARDs compared to nbDMARDs is bigger on patients with positive 
Rheumatoid Factor (RF) than patients with non-positive RF after 6 months of treatment. For a 
continuous variable, the estimated HTE and its 95% confidence interval by the values of the 
continuous variable are shown in Figure 1.5.4. The corresponding values are also shown in the 
hover text. The plot shows that the effectiveness of b+nbDMARDs compared to nbDMARDs is 



bigger on the patients, but the effect is not related to the JADAS values at baseline. Users can 
also specify the values of variables which may have the heterogeneous effects (Figure 1.5.5). 
The histogram of estimated potential outcomes is shown in Figure 1.5.6. The results suggest RF+ 
patients are more likely to benefit more from the nb+bDMARD treatment approach than the 
nbDMARD only.  

 

 
 

Figure 1.5.2. Selection in HTE panel 
 

 
 

Figure 1.5.3. Estimated HTEs by Rheumatoid Factor 
 
 



 
 

Figure 1.5.4. Estimated HTEs by JADAs at baseline 
 

 
Figure 1.5.5. Specify the covariates 

 

 
 

Figure 1.5.6. Potential outcome estimates on specified covariates 

  



Example 1.6: Continuous Treatment in Dose-Response Setting 

Simulated data are used here to show how to use the app to handle the data with a continuous 
treatment. The sample size is 200. Here, the observed data are (𝑋𝑖 , 𝐷𝑜𝑠𝑒𝑖, 𝑌𝑖) and the generative 
models are 

𝑋~𝑁(0,1), 
𝐷𝑜𝑠𝑒~𝑁(12,1), 

𝑌~𝑁(2 + 2𝑋 + 𝐷𝑜𝑠𝑒, 1). 
 
Figures 1.6.1 and 1.6.2 show how to choose outcome and treatment and covariates in the model. 
2000 ‘burn-in’ and 2000 MCMC samples are used to run the analyses. Since the treatment 
variable is continuous, users need to input the specified values of treatment variables (Figure 
1.6.1) which are used to calculate the ATE. A space should be added to separate these values. In 
the example, 10, 12 and 14 for “Dose” are input here. Estimated average treatment effects (Table 
1.6.2) and estimated potential outcomes (Table 1.6.3) are calculated based on these specified 
values of “Dose”. In the Table 1.6.2, the estimated ATE effects of “10-12”, “10-14” and “12-14” are 
close to the true values -2, -4 and -2. The 95% confidence intervals cover the true values. The 
estimated potential outcomes of “Dose” at “10”, “12” and “14” are also close to the true values 12, 
14 and 16 in the Table 1.6.3. The corresponding histograms are shown in Figures 1.6.3 and 
1.6.4. The histograms of ATE for “10-12” and “12-14” are overlapped in Figure 1.6.3. Users can 
click on the legend on the right side of the figure to show or hide histograms of ATE (Figure 
1.6.5). Table 1.6.1 shows the results of descriptive analysis by treatment groups. Since “Dose” is 
a continuous variable, user-defined cut points can be used to categorize it. And the descriptive 
analysis is done based on the new generated treatment groups. The default cut point is the 
median value of the treatment variable. Users can choose “Yes” for the question of “Do you want 
to input cut points to categorize <Dose>?”. After “Yes” is chosen, users can input the specified 
values of “Dose” in Figure 1.6.6. After clicking on the “Show Table 1” button, the results of 
descriptive analysis by users-specified treatment groups are shown in Table 1.6.4. 
 

 
 

Figure 1.6.1. Selected variables 



 

Figure 1.6.2. Selected covariates in the model 

 

Figure 1.6.3. Histogram of averaged treatment effect estimates 

 

Figure 1.6.4. Histogram of potential outcome estimates 



 

Figure 1.6.5. Histogram of ATE with hiding histogram of “10-12” 

 

Table 1.6.1. Descriptive statistics by treatment groups 

 

Table 1.6.2. Estimated averaged causal treatment effect 



 

Table 1.6.3. Estimated potential outcomes 

 

Figure 1.6.6. Input specified values of treatment to do a descriptive analysis 

 

Table 1.6.4. Descriptive statistics by user specified treatment groups 

 

 

 

  



Example 1.7: Composite Binary and Continuous Treatments 

Often the treatment consists of more than one intervention. For example, given the same 
medication treatment, different doses may be used. Thus, patients who are treated on the same 
medication in fact are receiving different treatments if the dose assignment is different. Here, we 
demonstrate the use of the PCATS App to handle such a composite treatment. Simulated data 
are used with a sample size of 200. Here, the observed data are (𝑋𝑖 , 𝐴𝑖, 𝐷𝑜𝑠𝑒𝑖 , 𝑌𝑖) and the 
generative models are 

𝑋~𝑁(0,1), 
𝐴~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

𝐷𝑜𝑠𝑒~𝑁(12,1), 
𝑌~𝑁(2 + 2𝑋 + 3𝐴 + 𝐷𝑜𝑠𝑒 + 𝐴 ∗ 𝐷𝑜𝑠𝑒, 1). 

 
Step 1. Choose variables  
As shown in Figure 1.7.1, the outcome “Y” is continuous. Variables “C.A” and “Dose” are chosen 
as treatment variables. Please note that, at most, 2 treatment variables can be chosen in the app.  
 

 
 

Figure 1.7.1. Selected variables 

Step 2. Select covariates in the model  
Variable “X” is chosen in the covariance function of GP term and in the mean function (Figure 
1.7.2). The heterogeneous treatment effect box is checked because there is an interaction of the 
two treatment variables. For the HTE with “C.A”, “Dose” is chosen. 
 

Step 3. Run and show results 
2000 ‘burn-in’ and 2000 MCMC samples are considered here. Since one treatment variable, 
“Dose”, is continuous, users need to specify the values of “Dose” as Example 1.6. 10, 12 and 14 
for “Dose” are also considered here. The results of descriptive analysis are shown in Table 1.7.1. 
Table 1.7.2 shows the summary table of the estimated averaged treatment effect and Table 1.7.3 
shows the summary table of the estimated potential outcomes. In Table 1.7.3, the estimated 
potential outcomes are very close to the true values 12, 14, 16, 25, 29 and 33.  Users can choose 
to show the results of heterogeneous effects (Figure 1.7.3). After selection, the estimated HTE 
and its 95% confidence interval by the values of the continuous variable are shown in Figure 
1.7.4. 
 
The results suggest that the treatment effect of A differs by the dosage with the higher dosage 
corresponding to the stronger treatment effect.  
 



 

Figure 1.7.2. Selected covariates in the model 

 

Figure 1.7.3. Selection in HTE panel 

 
 

Table 1.7.1. Descriptive statistics by treatment groups 



 

Table 1.7.2. Estimated averaged causal treatment effect 

 

Table 1.7.3. Estimated potential outcomes 



 

Figure 1.7.4. Estimated HTEs by Dose 

  



4.3. Adaptive Types of Treatments 

Example 2.1: Binary Treatment at Both Decision Point 

In clinical practice, patients may be treated with a series of treatments for a long time. At some 
time points physicians may change the treatment according to the patients’ disease 
characteristics. This example shows how to use the app to estimate the average treatment effect 
(ATE) for data with two time points. Simulated data are considered here. The simulation setting is 
listed as follows: 

 𝑋~𝑁(0,1) 

 𝐴1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

 𝐿1|𝐴1, 𝑋~𝑁(0.25 + 0.3𝐴1 − 0.2𝑋, 1) 

 𝐴2|𝐿1, 𝐴1, 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑥𝑝𝑖𝑡(−0.2 − 0.38𝐴1 + 𝐿1)) 

 𝑌|𝐴1, 𝑋, 𝐿1, 𝐴2~𝑁(−2 + 2.5𝐴1 + 3.5𝐴2 + 0.5𝐴1𝐴2 − 0.6𝐿1, 22)  

The expectation of the potential outcomes 𝑌𝑖(𝑎1, 𝑎2) can be derived as 

𝐸(𝑌(𝑎1, 𝑎2)) = −2.15 + 2.32𝑎1 + 3.5𝑎2 + 0.5𝑎1𝑎2. 

 
A step-by-step instruction is shown below: 
 

Step 1. Choose variables and covariates at stage 1 (Figure 2.1.1) 
“L1” is the continuous outcome and “C.A1” is the treatment at the first stage. “X” is chosen as 
confounding and explanatory variables. There is no heterogeneous treatment effect at any stage. 
 

Step 2. Choose variables and covariates at stage 2 (Figure 2.1.2) 
Y is the continuous outcome and “C.A2” is the treatment at the second stage. “L1” and “X” are 
chosen as confounding and explanatory variables. 
 

Step 3. Run and show results 
2000 ‘burn-in’ and 2000 MCMC samples after ‘burn-in’ are considered here. The results are 
shown stage by stage.  
 
For stage 1, Figure 2.1.3 lists three tables for the descriptive analysis by the treatment, the 
estimated ATE, and the estimated potential outcomes. Table 2 in Figure 2.1.3, shows that the 
estimated ATE is -0.34 which is very close to the true value 0.28. The estimated potential 
outcomes are also very good. Figure 2.1.4 shows the histogram of the estimated ATE, and Figure 
2.1.5 shows the histogram of the estimated potential outcomes and the bar chart of the likelihood 
of L1 by the treatment group “C.A1” less than or equal to a value that can be chosen by users. 
 
Figure 2.1.6 shows the summary table of the results for stage 2. All 95% confidence intervals of 
the estimated potential outcomes in Table 6 cover the true values. Figure 2.1.7 shows the 
histogram of the estimated ATE, and Figure 2.1.8 shows the histogram of the estimated potential 
outcomes and the bar chart of the likelihood of Y <= 1.5 by the treatment group “C.A1” and “C.A2. 
  



 
 

Figure 2.1.1. Selected variables and covariates at stage 1 
 

 
 

Figure 2.1.2. Selected variables and covariates at stage 1 
 



 
Figure 2.1.3. Results at stage 1 

 

 
Figure 2.1.4. Histogram of averaged treatment effect estimates at stage 1 

 



 
Figure 2.1.5. Histogram of potential outcome estimates and Bar chart of likelihood of L1 <=0.22 

by C.A1 at stage 1 
 
 



 
Figure 2.1.6. Results at stage 2 

 

 
Figure 2.1.7. Histogram of averaged treatment effect estimates at stage 2 

 



 
 

Figure 2.1.8. Histogram of potential outcome estimates and Bar chart of likelihood of Y <=1.5 by 
C.A1 and C.A2 at stage 2 

  



Example 2.2: Subgroup HTE for a Binary Treatment at Both Decision Point 

This example shows how to use the app to estimate the subgroup heterogeneous treatment 
effects (HTE). The data is simulated from the following generative models: 
 

𝑋 = −5,0,5 𝑤𝑖𝑡ℎ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

3
,
1

3
,
1

3
 

𝐴0~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑥𝑝𝑖𝑡(0.3 − 0.05𝑋)) 

𝐿1~𝑁(0.75𝑋 − 0.75𝐴0 − 0.25𝐴0𝑋, 1) 

𝐴1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑥𝑝𝑖𝑡(0.05𝑋 + 0.2𝐴0 − 0.05𝐿1 − 0.1𝐿1 ∗ 𝐴0 − 0.01𝐿1
2)) 

𝑌~𝑁(3 + 0.5𝐴0 + 0.4𝐴0𝑋 − 𝐿1 − 𝐿1
2 + 2𝐴1 − 𝐴0𝐴1 + 𝐴1𝐿1, 1) 

Figure 2.2.1 and Figure 2.2.2 show how to choose the outcomes and treatments in both stages, 
and the covariates in the model. 2000 ‘burn-in’ and 2000 MCMC samples after ‘burn-in’ are 
considered here. The results are shown stage by stage.  
 
Figure 2.2.3 lists three tables for the descriptive analysis by the treatment at stage 1, the 
estimated ATE and the estimated potential outcomes at stage 1. The estimated ATE is 0.78 and 
its 95% confidence interval covers the true value “0.75”. Figure 2.2.4 shows the histogram of the 
estimated ATE and Figure 2.2.5 shows the histogram of the estimated potential outcomes at 
stage 1 and the bar chart of the likelihood of the outcomes “L1” <= -0.8 over the treatment group 
“C.A0”. The likelihood is 0 for the group C.A0=0 and 0.11 for the group C.A0=1. As shown in 
Figure 2.2.6, users can choose to show the estimated HTE and then control and treatment 
groups. In the example, C.A0=0 is chosen as the control group and C.A0=1 is the treatment 
group. After clicking on the “Go” button, the estimated HTE with its 95% confidence interval over 
X will be shown in Figure 2.2.7. The plot shows that C.A0=1 has a positive treatment effect and 
the effect decreases with the increase in X when X<-2.4, while C.A0=1 has a negative treatment 
effect and the effect increases with the increase in X when >2.4. Users can choose to show HTEs 
which are calculated on the user-specified value of HTE variables (Figure 2.2.8). Figure 2.2.9 
plots the histogram of the estimated potential outcomes on these specified values. For other 
covariates included in the models, the observed values are used.  
 
For the second stage, Figure 2.2.10 shows the summary tables of descriptive analysis by the 
treatments, the estimated ATE and the estimated potential outcomes at stage 2. For table 6 in 
Figure 2.2.10, the 95% confidence intervals of the estimated potential outcomes cover the true 
values -6.375, -4.375, -0.479 and -0.229. Figure 2.2.11 shows the histogram of the estimated 
ATEs, and Figure 2.2.12 shows the histogram of the estimated potential outcomes. The HTE 
panel at stage 2 is shown in Figure 2.2.13. Figure 2.2.14 shows the estimated HTE with its 95% 
confidence interval over L1.  
 



 
 

Figure 2.2.1. Selected variables and covariates at stage 1 

 



 
 

Figure 2.2.2. Selected variables and covariates at stage 2 

 



 
Figure 2.2.3. Results at stage 1 

 

 
Figure 2.2.4. Histogram of averaged treatment effect estimates at stage 1 



 
 

Figure 2.2.5. Histogram of potential outcome estimates and Bar chart of likelihood of L1 <=-0.8 
by C.A0  

 



 
Figure 2.2.6. HTE panel at stage 1 

 

 
 

Figure 2.2.7. HTE over X at stage 1 

 

 
Figure 2.2.8. Show HTE on specified values at stage 1 

 



 
 

Figure 2.2.9. Show HTE on specified values at stage 1 

 

 
Figure 2.2.10. Results at stage 2 

 



 
 

Figure 2.2.11. Histogram of averaged treatment effect estimates at stage 2 

 

 
Figure 2.2.12. Histogram of potential outcome estimates and Bar chart of likelihood of Y <=-4.75 by C.A0 

and C.A1 



 

 
 

Figure 2.2.13. HTE panel at stage 2 

 

 
 

Figure 2.2.14. HTE over L1 at stage 2 

 
  



Example 2.3: Binary outcome at stage 1 and continuous outcome at stage 2  

This example shows how to use the app to estimate the average treatment effect (ATE) for data 
with two different types of outcome at time points. Simulated data are considered here based on 
the following simulation setting (Daniel et al., 2013): 

 𝑈0~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.4) 

 𝐴0~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

 𝐿1|𝐴0, 𝑈0~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑥𝑝𝑖𝑡(0.25 + 0.3𝐴0 − 0.2𝑈0 − 0.05𝐴0𝑈0)) 

 𝐴1|𝐿1, 𝐴0, 𝑈0~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑥𝑝𝑖𝑡(0.4 + 0.5𝐴0 − 0.3𝐿1 − 0.4𝐴0𝐿1)) 

 𝑌|𝐴0, 𝑈0, 𝐿1, 𝐴1~𝑁(0.25 − 0.5𝐴0 − 0.75𝐴1 + 0.2𝐴0𝐴1 − 𝑈0, 0.2)  

The expectation of the potential outcomes 𝑌𝑖(𝑎1, 𝑎2) can be derived as 

𝐸(𝑌(𝑎1, 𝑎2)) = 2.1 − 0.5𝑎0 − 0.75𝑎1 + 0.2𝑎0𝑎1. 

 

Step 1. Choose variables and covariates at stage 1 (Figure 2.3.1) 
“L1” is the binary outcome and “A0” is the treatment at the first stage. “U0” is chosen as 
confounding and explanatory variables. Since there is an interaction of 𝐴0 and 𝑈0, 𝑈0 is selected 
as the variable which has the heterogeneous treatment effect. 
 

 
Figure 2.3.1. Selected variables and covariates at stage 1 



 

Step 2. Choose variables and covariates at stage 2 (Figure 2.3.2) 
Y is the continuous outcome and “A1” is the treatment at the second stage. “L1” and “U0” are 
chosen as confounding and explanatory variables. 

 
 

Figure 2.3.2. Selected variables and covariates at stage 2 

 
Step 3. Run and show results 
2000 ‘burn-in’ and 2000 MCMC samples after ‘burn-in’ are considered here. The results are 
shown stage by stage. 
 
Figure 2.3.3 shows the tables for the descriptive analysis by the treatment at stage 1, the 
estimated ATE, and the estimated potential outcomes at stage1.Table 2 in Figure 2.3.3, shows 
that the estimated ATE is 0.06 and its 95% confidence interval is (-0.10,0.17). Figure 2.3.4 is the 
violin plots overlaid with box plots by U0.  
 
Figure 2.3.5 shows the summary table of the results for stage 2. The estimated potential 
outcomes in Table 6 are close to the true values. 

 



 
Figure 2.3.3. Results at stage 1 

 

 
Figure 2.3.4. Violin plot of L1 by U0 at stage 1 



 
Figure 2.3.5. Results at stage 2 
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