U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Selph SS, Skelly AC, Wasson N, et al. Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2021 Oct. (Comparative Effectiveness Review, No. 241.)

Cover of Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury

Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury [Internet].

Show details

Appendix CExcluded Studies List

Table C-1Study exclusion reasons

Full Text

Exclusion Reason

Exclusion Code
Ineligible population (not multiple sclerosis, cerebral palsy or spinal cord injury)3
Ineligible intervention (e.g., < than 10 sessions and or < than 10 days, only family/caregiver observed)4
Ineligible comparator5
Ineligible outcomes6
Ineligible design (i.e., case reports, case series)7
Pre-post studies8
Studies outside of search dates (before January 2008 or for systematic reviews 2014 or older)9
Not a study (letter, editorial, nonsystematic review)10
Inadequate samples size (MS and SCI n<30 and CP n<20)11
Systematic review, not used, but checked for includable studies12
Not English language13
Non-U.S. applicable study setting14
Nonhuman population (animal study)15

Note: Codes 1–2 used for included studies and background

1.
Abasiyanik Z, Ertekin O, Kahraman T, et al. The effects of clinical pilates training on walking, balance, fall risk, respiratory and cognitive functions in persons with multiple sclerosis: a randomized controlled trial. Mult Scler. 2018;Conference: 23rd annual RIMS conference. 2018. Netherlands 24(6):862. Exclusion: 10. [PubMed: 31377306]
2.
Abasiyanik Z, Ertekin O, Kahraman T, et al. The effects of Clinical Pilates training on walking, balance, fall risk, respiratory, and cognitive functions in persons with multiple sclerosis: A randomized controlled trial. Explore (NY). 2019 Jul 17;17:17. doi: 10.1016/j.explore.2019.07.010. PMID: 31377306. Exclusion: 4. [PubMed: 31377306] [CrossRef]
3.
Abbaspoor E, Zolfaghari M, Ahmadi B, et al. The effect of combined functional training on BDNF, IGF-1, and their association with health-related fitness in the multiple sclerosis women. Growth Horm IGF Res. 2020 Jun;52:101320. doi: 10.1016/j.ghir.2020.101320. PMID: 32305012. Exclusion: 11. [PubMed: 32305012] [CrossRef]
4.
Abd-Elmonem AM, Elhady HSA. Effect of rebound exercises on balance in children with spastic diplegia. Int J Ther Rehabil. 2018 Sep;25(9):467–74. doi: 10.12968/ijtr.2018.25.9.467. Exclusion: 14. [CrossRef]
5.
Abdel Gawad HA, Abdel Karim AE, Mohammed AH. Shock wave therapy for spastic plantar flexor muscles in hemiplegic cerebral palsy children. Egypt J Med Hum Genet. 2015;16(3):269–75. doi: 10.1016/j.ejmhg.2014.12.007. Exclusion: 14. [CrossRef]
6.
Abdel-Aziem AA, El-Basatiny HM. Effectiveness of backward walking training on walking ability in children with hemiparetic cerebral palsy: a randomized controlled trial. Clin Rehabil. 2017 Jun;31(6):790–7. doi: 10.1177/0269215516656468. PMID: 27356944. Exclusion: 14. [PubMed: 27356944] [CrossRef]
7.
Abouelkheir RAA, Khalil ME, Abd-Elfattah HM. Hippotherapy versus traditional physiotherapy on gait in spastic diaplegic children. Indian J Public Health Res Dev. 2019;10(12):1472–5. doi: 10.37506/v10/i12/2019/ijphrd/192416. Exclusion: 6. [CrossRef]
8.
Aburub A, Khalil H, Al-Sharman A, et al. The association between physical activity and sleep characteristics in people with multiple sclerosis. Mult Scler Relat Disord. 2017 Feb;12:29–33. doi: 10.1016/j.msard.2016.12.010. PMID: 28283102. Exclusion: 4. [PubMed: 28283102] [CrossRef]
9.
Adamson BC, Ensari I, Motl RW. Effect of exercise on depressive symptoms in adults with neurologic disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1329–38. doi: 10.1016/j.apmr.2015.01.005. PMID: 25596001. Exclusion: 12. [PubMed: 25596001] [CrossRef]
10.
Adepoju F, Hamzat T, Akinyinka O. Comparative efficacy of progressive resistance exercise and biomechanical ankle platform system on functional indices of children with cerebral palsy. Ethiop. 2017 Jan;27(1):11–6. doi: 10.4314/ejhs.v27i1.3. PMID: 28458486. Exclusion: 14. [PMC free article: PMC5390224] [PubMed: 28458486] [CrossRef]
11.
Afkar A, Ashouri A, Rahmani M, et al. Effect of exercise therapy on quality of life of patients with multiple sclerosis in Iran: a systematic review and meta-analysis. Neurol Sci. 2017 Nov;38(11):1901–11. doi: 10.1007/s10072-017-3047-x. PMID: 28687973. Exclusion: 12. [PubMed: 28687973] [CrossRef]
12.
Aguirre-Guemez AV, Perez-Sanpablo AI, Quinzanos-Fresnedo J, et al. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: a systematic review with meta-analysis. J Spinal Cord Med. 2017 Oct 25;42(2):142–54. doi: 10.1080/10790268.2017.1390644. PMID: 29065788. Exclusion: 12. [PMC free article: PMC6419626] [PubMed: 29065788] [CrossRef]
13.
Aidar FJ, Carneiro AL, Costa Moreira O, et al. Effects of resistance training on the physical condition of people with multiple sclerosis. J Sports Med Phys Fitness. 2018 Jul–Aug;58(7–8):1127–34. doi: 10.23736/S0022-4707.17.07621-6. PMID: 28944644. Exclusion: 11. [PubMed: 28944644] [CrossRef]
14.
Aidar FJ, Gama de Matos D, de Souza RF, et al. Influence of aquatic exercises in physical condition in patients with multiple sclerosis. J Sports Med Phys Fitness. 2018 May;58(5):684–9. doi: 10.23736/S0022-4707.17.07151-1. PMID: 28462574. Exclusion: 11. [PubMed: 28462574] [CrossRef]
15.
Akbar M, Brunner M, Ewerbeck V, et al. Do overhead sports increase risk for rotator cuff tears in wheelchair users? Arch Phys Med Rehabil. 2015 Mar;96(3):484–8. doi: 10.1016/j.apmr.2014.09.032. PMID: 25449196. Exclusion: 4. [PubMed: 25449196] [CrossRef]
16.
Akbar N, Sandroff BM, Wylie GR, et al. Progressive resistance exercise training and changes in resting-state functional connectivity of the caudate in persons with multiple sclerosis and severe fatigue: a proof-of-concept study. Neuropsychol. 2018 Apr 2018:1–13. doi: 10.1080/09602011.2018.1449758. PMID: 29618280. Exclusion: 11. [PubMed: 29618280] [CrossRef]
17.
Akkurt H, Kirazli Y, Karapolat H, et al. The effects of aerobic exercise on cardiopulmonary functions, quality of life, psychological state, disability and metabolic syndrome parameters in patients with spinal cord injury. Turk J Phys Med Rehabil 2013;59:409. doi: 10.4274/tftr.24.59.1. Exclusion: 10. [CrossRef]
18.
Alabdulwahab SS. Electrical stimulation improves gait in children with spastic diplegic cerebral palsy. NeuroRehabilitation. 2011;29(1):37–43. doi: 10.3233/NRE-2011-0675. PMID: 21876294. Exclusion: 4. [PubMed: 21876294] [CrossRef]
19.
Alashram AR, Padua E, Annino G. Effects of whole body vibration on motor impairments in patients with neurological disorders: a systematic review. Am J Phys Med Rehabil. 2019 Jun 21;21:21. doi: 10.1097/PHM.0000000000001252. PMID: 31246611. Exclusion: 12. [PubMed: 31246611] [CrossRef]
20.
Alemdaroglu E, Yanikoglu I, Oken O, et al. Horseback riding therapy in addition to conventional rehabilitation program decreases spasticity in children with cerebral palsy: a small sample study. Complement Ther Clin Pract. 2016 May;23:26–9. doi: 10.1016/j.ctcp.2016.02.002. PMID: 27157954. Exclusion: 11. [PubMed: 27157954] [CrossRef]
21.
Ali MS, Awad AS, Elassal MI. The effect of two therapeutic interventions on balance in children with spastic cerebral palsy: a comparative study. J Taibah Univ Med Sci. 2019 Aug;14(4):350–6. doi: 10.1016/j.jtumed.2019.05.005. PMID: 31488967. Exclusion: 14. [PMC free article: PMC6717138] [PubMed: 31488967] [CrossRef]
22.
Ali MSM, Elazem FHA, Anwar GM. Effect of core stabilizing program on balance in spastic diplegic cerebral palsy children. Int J Pharmtech Res. 2016;9(5):129–36. Exclusion: 14.
23.
Alphonsus KB, Su Y, D’Arcy C. The effect of exercise, yoga and physiotherapy on the quality of life of people with multiple sclerosis: systematic review and meta-analysis. Complement Ther Med. 2019 Apr;43:188–95. doi: 10.1016/j.ctim.2019.02.010. PMID: 30935529. Exclusion: 12. [PubMed: 30935529] [CrossRef]
24.
AlSaif AA, Alsenany S. Effects of interactive games on motor performance in children with spastic cerebral palsy. J Phys Ther Sci. 2015 Jun;27(6):2001–3. doi: 10.1589/jpts.27.2001. PMID: 26180367. Exclusion: 4. [PMC free article: PMC4500030] [PubMed: 26180367] [CrossRef]
25.
Alvarenga-Filho H, Sacramento PM, Ferreira TB, et al. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. J Neuroimmunol. 2016 Apr 15;293:91–9. doi: 10.1016/j.jneuroim.2016.02.014. PMID: 27049568. Exclusion: 11. [PubMed: 27049568] [CrossRef]
26.
Ameer MA, Fayez ES, Elkholy HH. Improving spatiotemporal gait parameters in spastic diplegic children using treadmill gait training. J Bodywork Mov Ther. 2019;23(4):937–42. doi: 10.1016/j.jbmt.2019.02.003. Exclusion: 14. [PubMed: 31733786] [CrossRef]
27.
Ammann-Reiffer C, Bastiaenen CH, Meyer-Heim AD, et al. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT). BMC Pediatr. 2017 Mar 2;17(1):64. doi: 10.1186/s12887-017-0815-y. PMID: 28253887. Exclusion: 10. [PMC free article: PMC5333417] [PubMed: 28253887] [CrossRef]
28.
Andreu L, Ramos-Campo DJ, Avila-Gandia V, et al. Acute effects of whole-body vibration training on neuromuscular performance and mobility in hypoxia and normoxia in persons with multiple sclerosis: A crossover study. Mult Scler Relat Disord. 2020 Jan;37:101454. doi: 10.1016/j.msard.2019.101454. PMID: 31670008. Exclusion: 11. [PubMed: 31670008] [CrossRef]
29.
Angeli CA, Boakye M, Morton RA, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018 Sep 27;379(13):1244–50. doi: 10.1056/NEJMoa1803588. PMID: 30247091. Exclusion: 5. [PubMed: 30247091] [CrossRef]
30.
Angsupaisal M, Visser B, Alkema A, et al. Therapist-designed adaptive riding in children with cerebral palsy: results of a feasibility study. Phys Ther. 2015 Aug;95(8):1151–62. doi: 10.2522/ptj.20140146. PMID: 25908525. Exclusion: 7. [PubMed: 25908525] [CrossRef]
31.
Anonymous. Erratum. Mult Scler. 2016 Oct;22(12):9–11. PMID: 26041800. Exclusion: 10.
32.
Antonelli CBB, Hartz CS, da Silva Santos S, et al. Effects of inspiratory muscle training with progressive loading on respiratory muscle function and sports performance in high-performance wheelchair basketball athletes: a randomized clinical trial. Int J Sports Physiol Perform. 2019 Oct 28:1–5. doi: 10.1123/ijspp.2018-0979. PMID: 31172823. Exclusion: 3. [PubMed: 31172823] [CrossRef]
33.
Antunes FN, Pinho ASD, Kleiner AFR, et al. Different horse’s paces during hippotherapy on spatio-temporal parameters of gait in children with bilateral spastic cerebral palsy: a feasibility study. Res Dev Disabil. 2016 Dec;59:65–72. doi: 10.1016/j.ridd.2016.07.015. PMID: 27518920. Exclusion: 4. [PubMed: 27518920] [CrossRef]
34.
Aravind N, Harvey LA, Glinsky JV. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord. 2019 Jun;57(6):449–60. doi: 10.1038/s41393-019-0242-z. PMID: 30723256. Exclusion: 12. [PubMed: 30723256] [CrossRef]
35.
Arbour-Nicitopoulos K, Sweet S, Lamontagne ME, et al. A randomized controlled trial to test the effects of the SCI get fit toolkit on physical activity behavior and cognitions in adults with spinal cord injury: a preliminary analysis. J Spinal Cord Med. 2014 Sep;37(5):650. doi: 10.1179/1079026814Z.000000000315. PMID: 25229743. Exclusion: 10. [CrossRef]
36.
Armstrong EL, Spencer S, Kentish MJ, et al. Efficacy of cycling interventions to improve function in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Clin Rehabil. 2019 Jul;33(7):1113–29. doi: 10.1177/0269215519837582. PMID: 30935240. Exclusion: 12. [PubMed: 30935240] [CrossRef]
37.
Arntzen EC. Does a combination of individualised physiotherapy treatment and gait training on a treadmill influence gait in persons with multiple sclerosis? Physiotherapy. 2011;97(Supplement 1):18–1415. Exclusion: 10.
38.
Ashe MC, Eng JJ, Krassioukov AV, et al. Response to functional electrical stimulation cycling in women with spinal cord injuries using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography: a case series. J Spinal Cord Med. 2010;33(1):68–72. doi: 10.1080/10790268.2010.11689676. PMID: 20397446. Exclusion: 7. [PMC free article: PMC2853332] [PubMed: 20397446] [CrossRef]
39.
Astorino TA, Thum JS. Within-session responses to high-intensity interval training in spinal cord injury. Disabil Rehabil. 2018 Feb;40(4):444–9. doi: 10.1080/09638288.2016.1260648. PMID: 27930890. Exclusion: 5. [PubMed: 27930890] [CrossRef]
40.
Awan WA, Masood T. Role of stretching exercises in the management of constipation in spastic cerebral palsy. J Ayub Med Coll Abbottabad. 2016 Oct–Dec;28(4):798–801. PMID: 28586619. Exclusion: 4. [PubMed: 28586619]
41.
Aye T, Thein S, Hlaing T. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy. J Phys Ther Sci. 2016 Jan;28(2):671–6. doi: 10.1589/jpts.28.671. PMID: 27065561. Exclusion: 14. [PMC free article: PMC4793031] [PubMed: 27065561] [CrossRef]
42.
Azizi S, Marzbani H, Raminfard S, et al. The impact of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with cerebral palsy. Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:1150–3. doi: 10.1109/EMBC.2017.8037033. PMID: 29060079. Exclusion: 4. [PubMed: 29060079] [CrossRef]
43.
Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018 Feb;56(2):106–16. doi: 10.1038/s41393-017-0013-7. PMID: 29105657. Exclusion: 8. [PubMed: 29105657] [CrossRef]
44.
Backus D, Berry A. Commentary on: “Calling Out MS Fatigue: Feasibility and Preliminary Effects of a Pilot Randomized Telephone-Delivered Exercise Intervention for Multiple Sclerosis Fatigue”. J Neurol Phys Ther. 2020 Jan;44(1):32–3. doi: 10.1097/NPT.0000000000000304. PMID: 31834218. Exclusion: 4. [PubMed: 31834218] [CrossRef]
45.
Backus D, Burdett B, Hawkins L, et al. Outcomes after functional electrical stimulation cycle training in individuals with multiple sclerosis who are nonambulatory. Int J MS Care. 2017 May–Jun;19(3):113–21. doi: 10.7224/1537-2073.2015-036. PMID: 28603459. Exclusion: 11. [PMC free article: PMC5460864] [PubMed: 28603459] [CrossRef]
46.
Baek J-H, Kim J-W, Kim S-Y, et al. Acute effect of repeated passive motion exercise on shoulder position sense in patients with hemiplegia: a pilot study. NeuroRehabilitation. 2009;25(2):101–6. doi: 10.3233/NRE-2009-0504. PMID: 19822940. Exclusion: 3. [PubMed: 19822940] [CrossRef]
47.
Bakkum AJ, de Groot S, Onderwater MQ, et al. Metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury. J Spinal Cord Med. 2014 Nov;37(6):758–64. doi: 10.1179/2045772313Y.0000000164. PMID: 24621028. Exclusion: 4. [PMC free article: PMC4231964] [PubMed: 24621028] [CrossRef]
48.
Bania T, Todd K, Taylor N. Effects of strength training on the habitual physical activity and sedentary behaviour of young people with diplegic cerebral palsy. Abstracts of the European Academy of Childhood Disability 25th Annual Meeting, 10–12 October 2013, Newcastle-Gateshead, UK. Dev Med Child Neurol. 2013 Oct;55(S2):19. doi: 10.1111/dmcn.12258. Exclusion: 10. [CrossRef]
49.
Bansi J, Bloch W, Gamper U, et al. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult Scler. 2013 Apr;19(5):613–21. doi: 10.1177/1352458512458605. PMID: 22936334. Exclusion: 4. [PubMed: 22936334] [CrossRef]
50.
Bansi J, Bloch W, Gamper U, et al. Cycling under immersion affects growth factor BDNF, cardiorespiratory fitness, fatigue and health-related quality of life in persons with multiple sclerosis. A randomized controlled study. Mult Scler J Exp Transl Clin. 2014 START: 2014 Jun 6 CONFERENCE END: 2014 Jun 7, 19th Annual Rehabilitation in Multiple Sclerosis Conference, RIMS 2014 Brighton United Kingdom;20(7):979–80. doi: 10.1177/1352458514533628. Exclusion: 4. [CrossRef]
51.
Bansi J, Bloch W, Gamper U, et al. Endurance training in MS: short-term immune responses and their relation to cardiorespiratory fitness, health-related quality of life, and fatigue. J Neurol. 2013 Dec;260(12):2993–3001. doi: 10.1007/s00415-013-7091-z. PMID: 24036849. Exclusion: 4. [PubMed: 24036849] [CrossRef]
52.
Barati AA, Rajabi R, Shahrbanian S, et al. Investigation of the effect of sensorimotor exercises on proprioceptive perceptions among children with spastic hemiplegic cerebral palsy. J Hand Ther. 2020 Mar 10;10:10. doi: 10.1016/j.jht.2019.12.003. PMID: 32169259. Exclusion: 4. [PubMed: 32169259] [CrossRef]
53.
Barbarulo AM, Lus G, Signoriello E, et al. Integrated cognitive and neuromotor rehabilitation in multiple sclerosis: a pragmatic study. Front Behav Neurosci. 2018 Sep 5;12(196) doi: 10.3389/fnbeh.2018.00196. PMID: 30271331. Exclusion: 5. [PMC free article: PMC6146227] [PubMed: 30271331] [CrossRef]
54.
Barclay A, Paul L, MacFarlane N, et al. The effect of cycling using active-passive trainers on spasticity, cardiovascular fitness, function and quality of life in people with moderate to severe Multiple Sclerosis (MS); a feasibility study. Mult Scler Relat Disord. 2019 Sep;34:128–34. doi: 10.1016/j.msard.2019.06.019. PMID: 31260943. Exclusion: 11. [PubMed: 31260943] [CrossRef]
55.
Barfield JP, Malone LA. Perceived exercise benefits and barriers among power wheelchair soccer players. J Rehabil Res Dev. 2013;50(2):231–8. PMID: 23761004. Exclusion: 7. [PubMed: 23761004]
56.
Barfield JP, Newsome L, Malone LA. Exercise intensity during power wheelchair soccer. Arch Phys Med Rehabil. 2016 Nov;97(11):1938–44. doi: 10.1016/j.apmr.2016.05.012. PMID: 27288710. Exclusion: 3. [PubMed: 27288710] [CrossRef]
57.
Barry A, Cronin O, Ryan AM, et al. Impact of short-term cycle ergometer training on quality of life, cognition and depressive symptomatology in multiple sclerosis patients: a pilot study. Neurol Sci. 2018 Mar;39(3):461–9. doi: 10.1007/s10072-017-3230-0. PMID: 29280019. Exclusion: 5. [PubMed: 29280019] [CrossRef]
58.
Barthelemy A, Gagnon DH, Duclos C. Gait-like vibration training improves gait abilities: a case report of a 62-year-old person with a chronic incomplete spinal cord injury. Spinal Cord Ser Cases. 2016 Jul 21;2:16012. doi: 10.1038/scsandc.2016.12. PMID: 28053756. Exclusion: 7. [PMC free article: PMC5129401] [PubMed: 28053756] [CrossRef]
59.
Bauerfeind J, Koper M, Wieczorek J, et al. Sports injuries in wheelchair rugby - A pilot study. J Hum Kinet. 2015 Nov 22;48:123–32. doi: 10.1515/hukin-2015-0098. PMID: 26834880. Exclusion: 11. [PMC free article: PMC4721614] [PubMed: 26834880] [CrossRef]
60.
Baunsgaard CB, Nissen UV, Brust AK, et al. Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med. 2018 Sep 28;50(9):806–13. doi: 10.2340/16501977-2372. PMID: 30183055. Exclusion: 8. [PubMed: 30183055] [CrossRef]
61.
Baxter K. The effect of core strengthening versus extremity strengthening on mobility measures in patients with multiple sclerosis. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2018;78(10-B(E)):No Pagination Specified. Exclusion: 12.
62.
Bayon C, Martin-Lorenzo T, Moral-Saiz B, et al. A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation. J Neuroengineering Rehabil. 2018 Jul 27;15(1):69. doi: 10.1186/s12984-018-0412-9. PMID: 30053857. Exclusion: 11. [PMC free article: PMC6063005] [PubMed: 30053857] [CrossRef]
63.
Beani E, Menici V, Ferrari A, et al. Feasibility of a home-based action observation training for children with unilateral cerebral palsy: An explorative study. Front Neurol. 2020;11 doi: 10.3389/fneur.2020.00016. Exclusion: 4. [PMC free article: PMC7059420] [PubMed: 32180754] [CrossRef]
64.
Bedair R, Al-Talawy H, Shoukry K, et al. Impact of virtual reality games as an adjunct treatment tool on upper extremity function of spastic hemiplegic children. Int J Pharmtech Res. 2016;9(6):1–8. Exclusion: 14.
65.
Bernhardt L, Marziniak M. Specific resistance training for patients with multiple sclerosis. Mult Scler J Exp Transl Clin. START: 2011 Oct 19 CONFERENCE END: 2011 Oct 22, 5th Joint Triennial Congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis Amsterdam Netherlands;17(10 SUPPL. 1):S465. Exclusion: 10.
66.
Biasotto-Gonzalez DA, Grecco LC, Neto HP, et al. Effect of treadmill gait training on static and functional balance in children with cerebral palsy: randomized controlled clinical trial. Gait Posture. 2013;38:S69–S70. doi: 10.1016/j.gaitpost.2013.07.150. Exclusion: 10. [CrossRef]
67.
Bickel CS, Yarar-Fisher C, Mahoney ET, et al. Neuromuscular electrical stimulation-induced resistance training after SCI: A review of the dudley protocol. Top Spinal Cord Inj Rehabil. 2015;21(4):294–302. doi: 10.1310/sci2104-294. PMID: 26689694. Exclusion: 8. [PMC free article: PMC4750814] [PubMed: 26689694] [CrossRef]
68.
Birgani PM, Ashtiyani M, Rasooli A, et al. Can an anti-gravity treadmill improve stability of children with cerebral palsy? Conf Proc IEEE Eng Med Biol Soc. 2016 08;2016:5465–8. doi: 10.1109/EMBC.2016.7591963. PMID: 28269494. Exclusion: 11. [PubMed: 28269494] [CrossRef]
69.
Bisson EJ, Fakolade A, Petrin J, et al. Exercise interventions in multiple sclerosis rehabilitation need better reporting on comorbidities: a systematic scoping review. Clin Rehabil. 2017 Oct;31(10):1305–12. doi: 10.1177/0269215517698734. PMID: 28933610. Exclusion: 12. [PubMed: 28933610] [CrossRef]
70.
Blackmore AM, Gibson N, Cooper MS, et al. Interventions for management of respiratory disease in young people with cerebral palsy: a systematic review. Child Care Health Dev. 2019 Sep;45(5):754–71. doi: 10.1111/cch.12703. PMID: 31276598. Exclusion: 4. [PubMed: 31276598] [CrossRef]
71.
Bloemen M, Van Wely L, Mollema J, et al. Evidence for increasing physical activity in children with physical disabilities: a systematic review. Dev Med Child Neurol. 2017 10;59(10):1004–10. doi: 10.1111/dmcn.13422. PMID: 28374442. Exclusion: 12. [PubMed: 28374442] [CrossRef]
72.
Bochkezanian V, Newton RU, Trajano GS, et al. Effects of neuromuscular electrical stimulation in people with spinal cord injury. Med Sci Sports Exerc. 2018 Sep;50(9):1733–9. doi: 10.1249/MSS.0000000000001637. PMID: 29634640. Exclusion: 11. [PubMed: 29634640] [CrossRef]
73.
Bochkezanian V, Raymond J, de Oliveira CQ, et al. Can combined aerobic and muscle strength training improve aerobic fitness, muscle strength, function and quality of life in people with spinal cord injury? A systematic review. Spinal Cord. 2015 Jun;53(6):418–31. doi: 10.1038/sc.2015.48. PMID: 25823799. Exclusion: 12. [PubMed: 25823799] [CrossRef]
74.
Booth ATC, Buizer AI, Meyns P, et al. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018 Sep;60(9):866–83. doi: 10.1111/dmcn.13708. PMID: 29512110. Exclusion: 12. [PubMed: 29512110] [CrossRef]
75.
Booth S. Aquatic exercise rehabilitation for the paediatric Cerebral Palsied client group - specifically children aged 10–12 yrs, presenting with Spastic Diplegia and classified as GMFCS-E&R Level III Aqualines: The Journal of the Hydrotherapy Association of Chartered Physiotherapists. 2014;26(2):14–22. Exclusion: 10.
76.
Borel B, Lacroix J, Daviet JC, et al. Intensity level and on-court role of wheelchair rugby players during competition. J Sports Med Phys Fitness. 2018 May 29;29:29. doi: 10.23736/S0022-4707.18.08214-2. PMID: 29845832. Exclusion: 3. [PubMed: 29845832] [CrossRef]
77.
Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Europ J Paediatr Neurol. 2010 Nov;14(6):496–502. doi: 10.1016/j.ejpn.2010.01.002. PMID: 20138788. Exclusion: 8. [PubMed: 20138788] [CrossRef]
78.
Boyd RN. Functional progressive resistance training improves muscle strength but not walking ability in children with cerebral palsy. J Physiother. 2012;58(3):197. doi: 10.1016/S1836-9553(12)70111-X. PMID: 22884187. Exclusion: 10. [PubMed: 22884187] [CrossRef]
79.
Braendvik SM, Koret T, Helbostad JL, et al. Treadmill training or progressive strength training to improve walking in people with multiple sclerosis? A randomized parallel group trial. Physiother Res Int. 2016 Dec;21(4):228–36. doi: 10.1002/pri.1636. PMID: 26110230. Exclusion: 11. [PubMed: 26110230] [CrossRef]
80.
Brazg G, Fahey M, Holleran CL, et al. Effects of training intensity on locomotor performance in individuals with chronic spinal cord injury: a randomized crossover study. Neurorehabil Neural Repair. 2017 Oct–Nov;31(10–11):944–54. doi: 10.1177/1545968317731538. PMID: 29081250. Exclusion: 11. [PMC free article: PMC5729047] [PubMed: 29081250] [CrossRef]
81.
Brochetti AM, Brose SW, Kuemmel AM, et al. Interdisciplinary bodyweight management program for persons with SCI. J Spinal Cord Med. 2018 Dec 1–7. doi: 10.1080/10790268.2018.1547860. PMID: 30517834. Exclusion: 11. [PMC free article: PMC7006810] [PubMed: 30517834] [CrossRef]
82.
Broekmans T, Roelants M, Alders G, et al. Exploring the effects of a 20-week whole-body vibration training programme on leg muscle performance and function in persons with multiple sclerosis. J Rehabil Med. 2010 Oct;42(9):866–72. doi: 10.2340/16501977-0609. PMID: 20878048. Exclusion: 11. [PubMed: 20878048] [CrossRef]
83.
Broekmans T, Roelants M, Feys P, et al. Effects of long-term resistance training and simultaneous electro-stimulation on muscle strength and functional mobility in multiple sclerosis. Mult Scler. 2010 Apr;17(4):468–77. doi: 10.1177/1352458510391339. PMID: 21148266. Exclusion: 11. [PubMed: 21148266] [CrossRef]
84.
Brown SH, Lewis CA, McCarthy JM, et al. The effects of internet-based home training on upper limb function in adults with cerebral palsy. Neurorehabil Neural Repair. 2010 Jul–Aug;24(6):575–83. doi: 10.1177/1545968310361956. PMID: 20581338. Exclusion: 11. [PubMed: 20581338] [CrossRef]
85.
Brurok B. Effect from lower extremity vascular occlusion during arm cycling on Vo2peak in persons with SCI. Med Sci Sports Exerc. 2011 May;43(5):84. doi: 10.1249/01.MSS.0000402927.14509.8c. Exclusion: 11. [CrossRef]
86.
Brurok B, Helgerud J, Karlsen T, et al. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil. 2011 May;90(5):407–14. doi: 10.1097/PHM.0b013e31820f960f. PMID: 21389841. Exclusion: 11. [PubMed: 21389841] [CrossRef]
87.
Brurok B, Torhaug T, Leivseth G, et al. Effect of leg vascular occlusion on arm cycling peak oxygen uptake in spinal cord-injured individuals. Spinal Cord. 2012 Apr;50(4):298–302. doi: 10.1038/sc.2011.129. PMID: 22124351. Exclusion: 11. [PubMed: 22124351] [CrossRef]
88.
Buehner JJ, Forrest GF, Schmidt-Read M, et al. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Arch Phys Med Rehabil. 2012 Sep;93(9):1530–40. doi: 10.1016/j.apmr.2012.02.035. PMID: 22920450. Exclusion: 8. [PubMed: 22920450] [CrossRef]
89.
Buhroo AM, Hussain SA. Role of IFT in rehabilitation of neurogenic bladder in patients with traumatic spinal cord injuries. JK Practitioner. 2011 Jan–Jun;16(1–2):24–6. Exclusion: 11.
90.
Buker DB, Oyarce CC, Plaza RS. Effects of spinal cord injury in heart rate variability after acute and chronic exercise: a systematic review. Top Spinal Cord Inj Rehabil. 2018;24(2):167–76. doi: 10.1310/sci17-00028. PMID: 29706761. Exclusion: 12. [PMC free article: PMC5915108] [PubMed: 29706761] [CrossRef]
91.
Burdea GC, Cioi D, Kale A, et al. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series. IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):165–73. doi: 10.1109/TNSRE.2012.2206055. PMID: 22773059. Exclusion: 7. [PMC free article: PMC4228314] [PubMed: 22773059] [CrossRef]
92.
Bures AK, Kuld S, Weiland AC, et al. Efficacy of an internet-based program (MS Intakt) to promote physical activity after inpatient rehabilitation in persons with multiple sclerosis-a randomized controlled study. Mult Scler. 2017 Oct;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(S3):413. doi: 10.1177/1352458517731404. Exclusion: 10. [CrossRef]
93.
Burnfield JM, Buster TW, Pfeifer CM, et al. Adapted motor-assisted elliptical for rehabilitation of children with physical disabilities. J Med Device. 2019;13(1) doi: 10.1115/1.4041588. Exclusion: 11. [CrossRef]
94.
Burns AS, Marino RJ, Kalsi-Ryan S, et al. Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J. 2017 Sep;7(3 ):175S–94S. doi: 10.1177/2192568217703084. PMID: 29164023. Exclusion: 12. [PMC free article: PMC5684843] [PubMed: 29164023] [CrossRef]
95.
Byrnes K, Wu PJ, Whillier S. Is pilates an effective rehabilitation tool? A systematic review. J Bodywork Mov Ther. 2018 Jan;22(1):192–202. doi: 10.1016/j.jbmt.2017.04.008. PMID: 29332746. Exclusion: 12. [PubMed: 29332746] [CrossRef]
96.
Calabro RS, Naro A, Leo A, et al. Usefulness of robotic gait training plus neuromodulation in chronic spinal cord injury: a case report. J Spinal Cord Med. 2017 Jan;40(1):118–21. doi: 10.1080/10790268.2016.1153275. PMID: 27077568. Exclusion: 7. [PMC free article: PMC5376144] [PubMed: 27077568] [CrossRef]
97.
Callesen J, Cattaneo D, Brincks J, et al. How does strength training and balance training affect gait and fatigue in patients with multiple sclerosis? A study protocol of a randomized controlled trial. NeuroRehabilitation. 2018;42(2):131–42. doi: 10.3233/NRE-172238. PMID: 29562556. Exclusion: 10. [PubMed: 29562556] [CrossRef]
98.
Camerota F, Celletti C, Di Sipio E, et al. Focal muscle vibration, an effective rehabilitative approach in severe gait impairment due to multiple sclerosis. J Neurol Sci. 2017 Jan 15;372:33–9. doi: 10.1016/j.jns.2016.11.025. PMID: 28017240. Exclusion: 4. [PubMed: 28017240] [CrossRef]
99.
Campbell E, Coulter EH, Mattison PG, et al. Physiotherapy rehabilitation for people with progressive multiple sclerosis: a systematic review. Arch Phys Med Rehabil. 2016 Jan;97(1):141–51. doi: 10.1016/j.apmr.2015.07.022. PMID: 26281954. Exclusion: 12. [PubMed: 26281954] [CrossRef]
100.
Canning KL, Hicks AL. Benefits of adhering to the Canadian physical activity guidelines for adults with multiple sclerosis beyond aerobic fitness and strength. Int J MS Care. 2020 Jan–Feb;22(1):15–21. doi: 10.7224/1537-2073.2018-061. PMID: 32123524. Exclusion: 6. [PMC free article: PMC7041616] [PubMed: 32123524] [CrossRef]
101.
Canori A, Amiri AM, Thapa-Chhetry B, et al. Relationship between pain, fatigue, and physical activity levels during a technology-based physical activity intervention. J Spinal Cord Med. 2020 Jun 04:1–8. doi: 10.1080/10790268.2020.1766889. PMID: 32496966. Exclusion: 4. [PMC free article: PMC8288141] [PubMed: 32496966] [CrossRef]
102.
Cardenas DD, Felix ER, Cowan R, et al. Effects of home exercises on shoulder pain and pathology in chronic spinal cord injury: A randomized controlled trial. Am J Phys Med Rehabil. 2020 Jun;99(6):504–13. doi: 10.1097/PHM.0000000000001362. PMID: 31851011. Exclusion: 4. [PubMed: 31851011] [CrossRef]
103.
Carlon SL, Taylor NF, Shields N, et al. Aerobic training for young people with cerebral palsy in specialist schools: a pilot randomised controlled trial. Dev Med Child Neurol. 2014;56(12). Exclusion: 10.
104.
Carter AM. The effects of a pragmatic exercise intervention in people with multiple sclerosis. Dissertation Abstracts International Section C: Worldwide. 2018 Apr;75(4-C):No Pagination Specified. doi: 10.1177/1352458513519354. PMID: 24421303. Exclusion: 12. [CrossRef]
105.
Carter AM, Daley AJ, Kesterton SW, et al. Pragmatic exercise intervention in people with mild to moderate multiple sclerosis: a randomised controlled feasibility study. Contemp Clin Trials. 2013 Jul;35(2):40–7. doi: 10.1016/j.cct.2013.04.003. PMID: 23612222. Exclusion: 11. [PubMed: 23612222] [CrossRef]
106.
Carty A, McCormack K, Coughlan GF, et al. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch Phys Med Rehabil. 2012 May;93(5):790–5. doi: 10.1016/j.apmr.2011.10.030. PMID: 22444027. Exclusion: 4. [PubMed: 22444027] [CrossRef]
107.
Carvalho A, Santos M, Maciel P, et al. T-1237C polymorphism of TLR9 gene is not associated with multiple sclerosis in the Portuguese population. Mult Scler. 2008 May;14(4):550–2. doi: 10.1177/1352458507084594. PMID: 18208876. Exclusion: 4. [PubMed: 18208876] [CrossRef]
108.
Carvalho I, Pinto SM, Chagas DDV, et al. Robotic gait training for individuals with cerebral palsy: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017 11;98(11):2332–44. doi: 10.1016/j.apmr.2017.06.018. PMID: 28751254. Exclusion: 12. [PubMed: 28751254] [CrossRef]
109.
Castillo-Bueno I, Ramos-Campo DJ, Rubio-Arias JA. Effects of whole-body vibration training in patients with multiple sclerosis: a systematic review. Neurologia. 2018 Oct;33(8):534–48. doi: 10.1016/j.nrl.2016.04.007. PMID: 27448520. Exclusion: 13. [PubMed: 27448520] [CrossRef]
110.
Castro O, Ng K, Novoradovskaya E, et al. A scoping review on interventions to promote physical activity among adults with disabilities. Disabil Health J. 2018 Apr;11(2):174–83. doi: 10.1016/j.dhjo.2017.10.013. PMID: 29132847. Exclusion: 12. [PubMed: 29132847] [CrossRef]
111.
Cattaneo D, Gervasoni E, Pupillo E, et al. Educational and exercise intervention to prevent falls and improve participation in subjects with neurological conditions: The NEUROFALL randomized controlled trial. Front Neurol. 2019;10:865. doi: 10.3389/fneur.2019.00865. PMID: 31572282. Exclusion: 3. [PMC free article: PMC6754067] [PubMed: 31572282] [CrossRef]
112.
Chaikhot D, Reed K, Petroongrad W, et al. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men. J Strength Cond Res. 2018 Jul 17;17:17. doi: 10.1519/JSC.0000000000002738. PMID: 30024482. Exclusion: 3. [PubMed: 30024482] [CrossRef]
113.
Champagne D, Corriveau H, Dugas C. Effect of hippotherapy on motor proficiency and function in children with cerebral palsy who walk. Phys Occup Ther Pediatr. 2017 Feb;37(1):51–63. doi: 10.3109/01942638.2015.1129386. PMID: 26930110. Exclusion: 11. [PubMed: 26930110] [CrossRef]
114.
Chamudot R, Parush S, Rigbi A, et al. Effectiveness of modified constraint-induced movement therapy compared with bimanual therapy home programs for infants with hemiplegia: A randomized controlled trial. Am J Occup Ther. 2018;72(6):1–9. doi: 10.5014/ajot.2018.025981. PMID: 30760393. Exclusion: 4. [PubMed: 30760393] [CrossRef]
115.
Chang HJ, Kwon J-Y, Lee J-Y, et al. The effects of hippotherapy on the motor function of children with spastic bilateral cerebral palsy. J Phys Ther Sci. 2012;24(12):1277–80. Exclusion: 8.
116.
Chang SH, Afzal T, Group TSCE, et al. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study. Pilot feasibility stud. 2018 Mar 5;4:62. doi: 10.1186/s40814-018-0247-y. PMID: 29556414. Exclusion: 11. [PMC free article: PMC5839068] [PubMed: 29556414] [CrossRef]
117.
Chappell A, Allison G, Gibson N, et al. Functional leg stiffness in children with cerebral palsy: Can it be optimised? Dev Med Child Neurol. 2020;62:19. doi: 10.1111/dmcn.14469. Exclusion: 10. [CrossRef]
118.
Chappell A, Allison GT, Williams G, et al. The effect of a running training intervention on ankle power generation in children and adolescents with cerebral palsy: A randomized controlled trial. Clin Biomech. 2020;76:N.PAG-N.PAG. doi: 10.1016/j.clinbiomech.2020.105024. Exclusion: 6. [PubMed: 32416406] [CrossRef]
119.
Charron S, McKay KA, Tremlett H. Physical activity and disability outcomes in multiple sclerosis: a systematic review (2011–2016). Mult Scler Relat Disord. 2018 Feb;20:169–77. doi: 10.1016/j.msard.2018.01.021. PMID: 29414293. Exclusion: 12. [PubMed: 29414293] [CrossRef]
120.
Chen CL, Chen CY, Liaw MY, et al. Efficacy of home-based virtual cycling training on bone mineral density in ambulatory children with cerebral palsy. Osteoporos Int. 2013 Apr;24(4):1399–406. doi: 10.1007/s00198-012-2137-0. PMID: 23052930. Exclusion: 4. [PubMed: 23052930] [CrossRef]
121.
Chen CL, Hong WH, Cheng HY, et al. Muscle strength enhancement following home-based virtual cycling training in ambulatory children with cerebral palsy. Res Dev Disabil. 2012 Jul–Aug;33(4):1087–94. doi: 10.1016/j.ridd.2012.01.017. PMID: 22502833. Exclusion: 4. [PubMed: 22502833] [CrossRef]
122.
Cheng HY, Ju YY, Chen CL, et al. Managing lower extremity muscle tone and function in children with cerebral palsy via eight-week repetitive passive knee movement intervention. Res Dev Disabil. 2013 Jan;34(1):554–61. doi: 10.1016/j.ridd.2012.09.020. PMID: 23123868. Exclusion: 4. [PubMed: 23123868] [CrossRef]
123.
Cheng HY, Ju YY, Chen CL, et al. Effects of whole body vibration on spasticity and lower extremity function in children with cerebral palsy. Hum Mov Sci. 2015 Feb;39:65–72. doi: 10.1016/j.humov.2014.11.003. PMID: 25461434. Exclusion: 11. [PubMed: 25461434] [CrossRef]
124.
Cheng HY, Ju YY, Chen CL, et al. Managing spastic hypertonia in children with cerebral palsy via repetitive passive knee movements. J Rehabil Med. 2012 Mar;44(3):235–40. doi: 10.2340/16501977-0937. PMID: 22366894. Exclusion: 4. [PubMed: 22366894] [CrossRef]
125.
Cheng HY, Yu YC, Wong AM, et al. Effects of an eight-week whole body vibration on lower extremity muscle tone and function in children with cerebral palsy. Res Dev Disabil. 2015 Mar;38:256–61. doi: 10.1016/j.ridd.2014.12.017. PMID: 25575288. Exclusion: 11. [PubMed: 25575288] [CrossRef]
126.
Cherni Y, Ballaz L, Lemaire J, et al. Effect of low dose robotic-gait training on walking capacity in children and adolescents with cerebral palsy. Neurophysiol Clin. 2020 Sep 30;30:30. doi: 10.1016/j.neucli.2020.09.005. PMID: 33011059. Exclusion: 8. [PubMed: 33011059] [CrossRef]
127.
Chinniah H, Natarajan M, Ramanathan R, et al. Effects of horse riding simulator on sitting motor function in children with spastic cerebral palsy. Physiother Res Int. e1870 p. 2020 Oct;25(4):e1870. doi: 10.1002/pri.1870. PMID: 32808394. Exclusion: 14. [PubMed: 32808394] [CrossRef]
128.
Chiu HC, Ada L, Lee HM. Upper limb training using Wii Sports Resort for children with hemiplegic cerebral palsy: a randomized, single-blind trial. Clin Rehabil. 2014 Oct;28(10):1015–24. doi: 10.1177/0269215514533709. PMID: 24849793. Exclusion: 4. [PubMed: 24849793] [CrossRef]
129.
Cho C, Hwang W, Hwang S, et al. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J Exp Med. 2016 Mar;238(3):213–8. doi: 10.1620/tjem.238.213. PMID: 26947315. Exclusion: 11. [PubMed: 26947315] [CrossRef]
130.
Chochowska M, Zgorzalewicz-Stachowiak M, Sereda-Wiszowaty E. Influence of chosen factors on efficiency of NDB-Bobath method in rehabilitation of children with cerebral palsy. Fizjoterapia. 2008;16(3):8–24. doi: 10.2478/v10109-009-0024-9. Exclusion: 8. [CrossRef]
131.
Chong HJ, Cho SR, Jeong E, et al. Finger exercise with keyboard playing in adults with cerebral palsy: a preliminary study. J Exerc Rehabil. 2013;9(4):420–5. doi: 10.12965/jer.130050. PMID: 24278895. Exclusion: 4. [PMC free article: PMC3836538] [PubMed: 24278895] [CrossRef]
132.
Chou RC, Taylor JA, Solinsky R. Effects of hybrid-functional electrical stimulation (FES) rowing whole-body exercise on neurologic improvement in subacute spinal cord injury: secondary outcomes analysis of a randomized controlled trial. Spinal Cord. 2020 Aug;58(8):914–20. doi: 10.1038/s41393-020-0445-3. PMID: 32094516. Exclusion: 4. [PMC free article: PMC7415604] [PubMed: 32094516] [CrossRef]
133.
Choudhary A, Gulati S, Kabra M, et al. Efficacy of modified constraint induced movement therapy in improving upper limb function in children with hemiplegic cerebral palsy: a randomized controlled trial. Brain Dev. 2013 Oct;35(9):870–6. doi: 10.1016/j.braindev.2012.11.001. PMID: 23238223. Exclusion: 4. [PubMed: 23238223] [CrossRef]
134.
Christy JB, Chapman CG, Murphy P. The effect of intense physical therapy for children with cerebral palsy. J Pediatr Rehabil Med. 2012;5(3):159–70. doi: 10.3233/PRM-2012-0208. PMID: 23023248. Exclusion: 11. [PubMed: 23023248] [CrossRef]
135.
Cichon R, Maszczyk A, Stastny P, et al. Effects of krankcycle training on performance and body composition in wheelchair users. J Hum Kinet. 2015 Nov 22;48:71–8. doi: 10.1515/hukin-2015-0093. PMID: 26834875. Exclusion: 11. [PMC free article: PMC4721625] [PubMed: 26834875] [CrossRef]
136.
Cimino V, Chisari CG, Raciti G, et al. Objective evaluation of Nintendo Wii Fit Plus balance program training on postural stability in Multiple Sclerosis patients: a pilot study. Int J Rehabil Res. 2020 May 02;02:02. doi: 10.1097/MRR.0000000000000408. PMID: 32371848. Exclusion: 11. [PubMed: 32371848] [CrossRef]
137.
Clapham ED, Lamont LS, Shim M, et al. Effectiveness of surf therapy for children with disabilities. Disabil Health J. 2019 Aug 2:100828. doi: 10.1016/j.dhjo.2019.100828. PMID: 31422168. Exclusion: 3. [PubMed: 31422168] [CrossRef]
138.
Cleary SL, Taylor NF, Dodd KJ, et al. An aerobic exercise program for young people with cerebral palsy in specialist schools: a phase I randomized controlled trial. Dev Neurorehabil. 2017 Aug;20(6):331–8. doi: 10.1080/17518423.2016.1265602. PMID: 28045554. Exclusion: 11. [PubMed: 28045554] [CrossRef]
139.
Clutterbuck G, Auld M, Johnston L. Active exercise interventions improve gross motor function of ambulant/semi-ambulant children with cerebral palsy: a systematic review. Disabil Rehabil. 2019 Jan 05;41(10):1131–51. doi: 10.1080/09638288.2017.1422035. PMID: 29303007. Exclusion: 12. [PubMed: 29303007] [CrossRef]
140.
Clutterbuck GL, Auld ML, Johnston LM. SPORTS STARS: a practitioner-led, peer-group sports intervention for ambulant children with cerebral palsy. Activity and participation outcomes of a randomised controlled trial. Disabil Rehabil. 2020 Jun 30;30:1–9. doi: 10.1080/09638288.2020.1783376 PMID: 32603238. Exclusion: 4. [PubMed: 32603238] [CrossRef]
141.
Clutterbuck GL, Auld ML, Johnston LM. SPORTS STARS: a practitioner-led, peer-group sports intervention for ambulant, school-aged children with cerebral palsy. Parent and physiotherapist perspectives. Disabil Rehabil. 2020 Jul 7;7:1–10. doi: 10.1080/09638288.2020.1785558. PMID: 32633156. Exclusion: 4. [PubMed: 32633156] [CrossRef]
142.
Cohen ET, Kietrys D, Fogerite SG, et al. Feasibility and impact of an 8-week integrative yoga program in people with moderate multiple sclerosis-related disability: a pilot study. Int J MS Care. 2017 Jan–Feb;19(1):30–9. doi: 10.7224/1537-2073.2015-046. PMID: 28243184. Exclusion: 11. [PMC free article: PMC5315321] [PubMed: 28243184] [CrossRef]
143.
Cohen ET, Kietrys D, Gould Fogerite S, et al. Feasibility and impact of an 8-week integrative yoga program in people with moderate multiple sclerosis- related disability. Int J MS Care. 2017;19(1):30–9. doi: 10.7224/1537-2073.2015-046. Exclusion: 11. [PMC free article: PMC5315321] [PubMed: 28243184] [CrossRef]
144.
Cohen L, Delafontaine A. Impact of pectoralis major stretching on vital capacity in patients with low tetraplegia: randomized controlled study. Kinesitherapie. 2018;18(195):3–9. doi: 10.1016/j.kine.2017.11.008. Exclusion: 13. [CrossRef]
145.
Cohen M, Wetzel J, Pohle-Krauza RJ, et al. Impact of locomotor training and level of injury on ventilatory function in persons’ with motor-incomplete spinal cord injury. Physiotherapy. 2011 Jun;97:eS1338. doi: 10.1016/j.physio.2011.04.002. PMID: 29339898. Exclusion: 10. [CrossRef]
146.
Cohen-Holzer M, Katz-Leurer M, Meyer S, et al. The effect of bimanual training with or without constraint on hand functions in children with unilateral cerebral palsy: a non-randomized clinical trial. Phys Occup Ther Pediatr. 2017 Oct 20;37(5):516–27. doi: 10.1080/01942638.2017.1280871. PMID: 28266881. Exclusion: 11. [PubMed: 28266881] [CrossRef]
147.
Cohen-Holzer M, Katz-Leurer M, Reinstein R, et al. The effect of combining daily restraint with bimanual intensive therapy in children with hemiparetic cerebral palsy: a self-control study. NeuroRehabilitation. 2011;29(1):29–36. doi: 10.3233/NRE-2011-0674. PMID: 21876293. Exclusion: 4. [PubMed: 21876293] [CrossRef]
148.
Cohen-Holzer M, Sorek G, Kerem J, et al. The impact of combined constraint-induced and bimanual arm training program on the perceived hand-use experience of children with unilateral cerebral palsy. Dev Neurorehabil. 2017 Aug;20(6):355–60. doi: 10.1080/17518423.2016.1238017. PMID: 27739919. Exclusion: 4. [PubMed: 27739919] [CrossRef]
149.
Cohen-Holzer M, Sorek G, Schweizer M, et al. The influence of a constraint and bimanual training program using a variety of modalities on endurance and on the cardiac autonomic regulation system of children with unilateral cerebral palsy: a self-control clinical trial. NeuroRehabilitation. 2017;41(1):119–26. doi: 10.3233/NRE-171463. PMID: 28505992. Exclusion: 4. [PubMed: 28505992] [CrossRef]
150.
Collett J, Meaney A, Howells K, et al. Acute recovery from exercise in people with multiple sclerosis: an exploratory study on the effect of exercise intensities. Disabil Rehabil. 2017 Mar;39(6):551–8. doi: 10.3109/09638288.2016.1152604. PMID: 26972274. Exclusion: 4. [PubMed: 26972274] [CrossRef]
151.
Conklyn D, Stough D, Novak E, et al. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: a pilot study. Neurorehabil Neural Repair. 2010 Nov–Dec;24(9):835–42. doi: 10.1177/1545968310372139. PMID: 20643882. Exclusion: 4. [PubMed: 20643882] [CrossRef]
152.
Cook O, Frost G, Twose D, et al. CAN-flip: A pilot gymnastics program for children with cerebral palsy. Adapt Phys Act Q. 2015 Oct;32(4):349–70. doi: 10.1123/APAQ.2015-0026. PMID: 26485738. Exclusion: 11. [PubMed: 26485738] [CrossRef]
153.
Coote S, Hayes S, Uszynski M, et al. Group aerobic and strength training combined with social cognitive theory based education, results of the step it up RCT. Arch Phys Med Rehabil. 2016;Conference:. 2016 american congress of rehabilitation medicine annual conference, ACRM 2016. United states. Conference start: 20161030. Conference end: 20161104 97(12):e4. Exclusion: 10.
154.
Coote S, Hayes S, Uszynski M, et al. Group Aerobic and Strength Training Combined With Social Cognitive Theory Based Education, Results of The Step it up RCT…2016 ACRM / American Congress of Rehabilitation Medicine Annual Conference 30 October - 4 November 2016, Chicago, IL. Arch Phys Med Rehabil. 2016;97(12):e4–e. doi: 10.1016/j.apmr.2016.09.009. Exclusion: 10. [CrossRef]
155.
Coote S, Hughes L, Rainsford G, et al. Pilot randomized trial of progressive resistance exercise augmented by neuromuscular electrical stimulation for people with multiple sclerosis who use walking aids. Arch Phys Med Rehabil. 2015 Feb;96(2):197–204. doi: 10.1016/j.apmr.2014.09.021. PMID: 25308884. Exclusion: 4. [PubMed: 25308884] [CrossRef]
156.
Coote S, Uszynski M, Herring MP, et al. Effect of exercising at minimum recommendations of the multiple sclerosis exercise guideline combined with structured education or attention control education - secondary results of the step it up randomised controlled trial. BMC Neurol. 2017 Jun 24;17(1):119. doi: 10.1186/s12883-017-0898-y. PMID: 28646860. Exclusion: 4. [PMC free article: PMC5483256] [PubMed: 28646860] [CrossRef]
157.
Corsi C, Santos MM, Moreira RFC, et al. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: a systematic review. Disabil Rehabil. 2019 Oct 7:1–10. doi: 10.1080/09638288.2019.1671500. PMID: 31588810. Exclusion: 12. [PubMed: 31588810] [CrossRef]
158.
Corvillo I, Varela E, Armijo F, et al. Efficacy of aquatic therapy for multiple sclerosis: a systematic review. Eur J Phys Rehabil Med. 2017 Dec;53(6):944–52. doi: 10.23736/S1973-9087.17.04570-1. PMID: 28215060. Exclusion: 12. [PubMed: 28215060] [CrossRef]
159.
Costantino C, Pedrini MF, Licari O. Neuromuscular taping versus sham therapy on muscular strength and motor performance in multiple sclerosis patients. Disabil Rehabil. 2016;38(3):277–81. doi: 10.3109/09638288.2015.1038365. PMID: 25893397 Exclusion: 4. [PubMed: 25893397] [CrossRef]
160.
Coulter EH, McLean AN, Hasler JP, et al. The effectiveness and satisfaction of web-based physiotherapy in people with spinal cord injury: a pilot randomised controlled trial. Spinal Cord. 2017 Apr;55(4):383–9. doi: 10.1038/sc.2016.125. PMID: 27596027. Exclusion: 4. [PubMed: 27596027] [CrossRef]
161.
Covarrubias-Escudero F, Rivera-Lillo G, Torres-Castro R, et al. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury. J Spinal Cord Med. 2019;42(1):57–64. doi: 10.1080/10790268.2017.1389676. PMID: 29058553. Exclusion: 11. [PMC free article: PMC6340274] [PubMed: 29058553] [CrossRef]
162.
Crane DA, Hoffman JM, Reyes MR. Benefits of an exercise wellness program after spinal cord injury. J Spinal Cord Med. 2017 03;40(2):154–8. doi: 10.1179/2045772315Y.0000000038. PMID: 26108561. Exclusion: 8. [PMC free article: PMC5430471] [PubMed: 26108561] [CrossRef]
163.
Cratsenberg KA, Deitrick CE, Harrington TK, et al. Effectiveness of exercise programs for management of shoulder pain in manual wheelchair users with spinal cord injury. J Neurol Phys Ther. 2015 Oct;39(4):197–203. doi: 10.1097/NPT.0000000000000103. PMID: 26308939. Exclusion: 3. [PubMed: 26308939] [CrossRef]
164.
Credeur DP, Stoner L, Dolbow DR, et al. Increasing physical activity in spinal cord injury: upper-body exercise alone not enough? Arch Phys Med Rehabil. 2016;97(1):171–3. doi: 10.1016/j.apmr.2015.09.009. PMID: 26710856. Exclusion: 10. [PubMed: 26710856] [CrossRef]
165.
Cruickshank TM, Reyes AR, Ziman MR. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine (Baltimore). 2015 Jan;94(4):e411. doi: 10.1097/MD.0000000000000411. PMID: 25634170. Exclusion: 12. [PMC free article: PMC4602948] [PubMed: 25634170] [CrossRef]
166.
D’Ancona CA, Clilclet A, Ikari LY, et al. Impact of treadmill gait training with neuromuscular electrical stimulation on the urodynamic profile of patients with high cervical spinal cord injury. Einstein. 2010 Sep;8(3):325–8. doi: 10.1590/S1679-45082010AO1691. PMID: 26760148. Exclusion: 11. [PubMed: 26760148] [CrossRef]
167.
D’Hooghe M, Van Gassen G, Kos D, et al. Improving fatigue in multiple sclerosis by smartphone-supported energy management: the MS TeleCoach feasibility study. Mult Scler Relat Disord. 2018 May;22:90–6. doi: 10.1016/j.msard.2018.03.020. PMID: 29649789. Exclusion: 4. [PubMed: 29649789] [CrossRef]
168.
D’Hooghe M B, Feys P, Deltour S, et al. Impact of a 5-day expedition to machu picchu on persons with multiple sclerosis. Mult Scler Int. 2014;2014:761210. doi: 10.1155/2014/761210. PMID: 24967103. Exclusion: 4. [PMC free article: PMC4055387] [PubMed: 24967103] [CrossRef]
169.
D’Oliveira GL, Figueiredo FA, Passos MC, et al. Physical exercise is associated with better fat mass distribution and lower insulin resistance in spinal cord injured individuals. J Spinal Cord Med. 2014 Jan;37(1):79–84. doi: 10.1179/2045772313Y.0000000147. PMID: 24090139. Exclusion: 11. [PMC free article: PMC4066554] [PubMed: 24090139] [CrossRef]
170.
D’Orio VL, Foley FW, Armentano F, et al. Cognitive and motor functioning in patients with multiple sclerosis: neuropsychological predictors of walking speed and falls. J Neurol Sci. 2012 May 15;316(1–2):42–6. doi: 10.1016/j.jns.2012.02.003. PMID: 22353853. Exclusion: 4. [PubMed: 22353853] [CrossRef]
171.
Dalgas U, Stenager E, Jakobsen J, et al. Effects of resistance training in relapsing-remitting multiple sclerosis-a randomised controlled trial. Mult Scler. 2009 Sep;15(9):S13. doi: 10.1177/1352458509106961. Exclusion: 8. [CrossRef]
172.
Dalgas U, Stenager E, Lund C, et al. Maximal EMG activity increases following resistance training in patients with multiple sclerosis (#140). Mult Scler J Exp Transl Clin. START: 2012 May 31 CONFERENCE END: 2012 Jun 2, 17th Annual Conference of Rehabilitation in Multiple Sclerosis, RIMS 2012 Hamburg Germany;18(5):S24. Exclusion: 10.
173.
Dalgas U, Stenager E, Sloth M, et al. The effect of exercise on depressive symptoms in multiple sclerosis based on a meta-analysis and critical review of the literature. Eur J Neurol. 2015 Mar;22(3):443-e34. doi: 10.1111/ene.12576. PMID: 25327395. Exclusion: 12. [PubMed: 25327395] [CrossRef]
174.
Darrah J, Law M. Focus on function: a clinical trial of two intervention approaches for children with cerebral palsy. Physiotherapy. 2011 Jun;97 doi: 10.1016/j.physio.2011.04.002. PMID: 17900362 Exclusion: 10. [CrossRef]
175.
Das SP, Ganesh GS. Evidence-based approach to physical therapy in cerebral palsy. Indian J Orthop. 2019 Jan–Feb;53(1):20–34. doi: 10.4103/ortho.IJOrtho_241_17. PMID: 30905979. Exclusion: 7. [PMC free article: PMC6394183] [PubMed: 30905979] [CrossRef]
176.
Dauwan M, Begemann MJH, Slot MIE, et al. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta-analysis of randomized controlled trials. J Neurol. 2019 Aug 14;14:14. doi: 10.1007/s00415-019-09493-9. PMID: 31414194. Exclusion: 12. [PMC free article: PMC7990819] [PubMed: 31414194] [CrossRef]
177.
Davies BL, Arpin DJ, Liu M, et al. Two different types of high-frequency physical therapy promote improvements in the balance and mobility of persons with multiple sclerosis. Arch Phys Med Rehabil. 2016 Dec;97(12):2095–101. doi: 10.1016/j.apmr.2016.05.024. PMID: 27373745. Exclusion: 11. [PubMed: 27373745] [CrossRef]
178.
de Freitas GR, Szpoganicz C, Ilha J. Does neuromuscular electrical stimulation therapy increase voluntary muscle strength after spinal cord injury? A systematic review. Top Spinal Cord Inj Rehabil. 2018;24(1):6–17. doi: 10.1310/sci16-00048. PMID: 29434456. Exclusion: 12. [PMC free article: PMC5791925] [PubMed: 29434456] [CrossRef]
179.
de Groot S, de Bruin M, Noomen SP, et al. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. Clin Biomech. 2008 May;23(4):434–41. doi: 10.1016/j.clinbiomech.2007.11.001. PMID: 18077065. Exclusion: 11. [PubMed: 18077065] [CrossRef]
180.
de Groot S, Kouwijzer I, Baauw M, et al. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Ser Cases. 2018 Aug 24;4(79) doi: 10.1038/s41394-018-0103-6. PMID: 30155275. Exclusion: 8. [PMC free article: PMC6109145] [PubMed: 30155275] [CrossRef]
181.
De Keersmaecker E, Lefeber N, Geys M, et al. Virtual reality during gait training: does it improve gait function in persons with central nervous system movement disorders? A systematic review and meta-analysis. NeuroRehabilitation. 2019;44(1):43–66. doi: 10.3233/NRE-182551. PMID: 30814368. Exclusion: 12. [PubMed: 30814368] [CrossRef]
182.
de Oliveira BI, Howie EK, Dunlop SA, et al. SCIPA Com: outcomes from the spinal cord injury and physical activity in the community intervention. Spinal Cord. 2016 Oct;54(10):855–60. doi: 10.1038/sc.2015.235. PMID: 26782840. Exclusion: 8. [PubMed: 26782840] [CrossRef]
183.
de Oliveira G, Tavares Mda C, de Faria Oliveira JD, et al. Yoga training has positive effects on postural balance and its influence on activities of daily living in people with multiple sclerosis: a pilot study. Explore (NY). 2016 Sep–Oct;12(5):325–32. doi: 10.1016/j.explore.2016.06.005. PMID: 27426024. Exclusion: 11. [PubMed: 27426024] [CrossRef]
184.
de Paz RH, Serrano-Munoz D, Perez-Nombela S, et al. Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review. J Neuroengineering Rehabil. 2019 Sep 14;16(1):114. doi: 10.1186/s12984-019-0591-z. PMID: 31521179. Exclusion: 12. [PMC free article: PMC6744683] [PubMed: 31521179] [CrossRef]
185.
de Rossi G, Matos-Souza JR, Costa ESAD, et al. Physical activity and improved diastolic function in spinal cord-injured subjects. Med Sci Sports Exerc. 2014;46(5):887–92. doi: 10.1249/MSS.0000000000000187. PMID: 24126969. Exclusion: 8. [PubMed: 24126969] [CrossRef]
186.
de Souza JA, Corrêa JCF, Agnol LD, et al. Effects of transcranial direct current stimulation on the rehabilitation of painful shoulder following a stroke: protocol for a randomized, controlled, double-blind, clinical trial. Trials. 2019 Mar 15;20(1):165. doi: 10.1186/s13063-019-3266-y. PMID: 30876431. Exclusion: 3. [PMC free article: PMC6419802] [PubMed: 30876431] [CrossRef]
187.
de Souza-Teixeira F, Costilla S, Ayan C, et al. Effects of resistance training in multiple sclerosis. Int J Sports Med. 2009 Apr;30(4):245–50. doi: 10.1055/s-0028-1105944. PMID: 19199197. Exclusion: 11. [PubMed: 19199197] [CrossRef]
188.
Declerck M, Verheul M, Daly D, et al. Benefits and enjoyment of a swimming intervention for youth with cerebral palsy: an RCT study. Pediatr Phys Ther. 2016;28(2):162–9. doi: 10.1097/PEP.0000000000000235. PMID: 26871379. Exclusion: 11. [PubMed: 26871379] [CrossRef]
189.
Dehghansai N, Lemez S, Wattie N, et al. A systematic review of influences on development of athletes with disabilities. Adapt Phys Act Q. 2017 Jan;34(1):72–90. doi: 10.1123/APAQ.2016-0030. PMID: 28218871. Exclusion: 12. [PubMed: 28218871] [CrossRef]
190.
Dehghansai N, Lemez S, Wattie N, et al. Training and development of Canadian wheelchair basketball players. EJSS (Champaign). 2017 Jun;17(5):511–8. doi: 10.1080/17461391.2016.1276636. PMID: 28099092. Exclusion: 4. [PubMed: 28099092] [CrossRef]
191.
Del Rosario-Montejo O, Molina-Rueda F, Munoz-Lasa S, et al. Effectiveness of equine therapy in children with psychomotor impairment. Neurologia. 2015 Sep;30(7):425–32. doi: 10.1016/j.nrl.2013.12.023. PMID: 24656851. Exclusion: 13. [PubMed: 24656851] [CrossRef]
192.
Deley G, Denuziller J, Casillas JM, et al. One year of training with FES has impressive beneficial effects in a 36-year-old woman with spinal cord injury. J Spinal Cord Med. 2017 Jan;40(1):107–12. doi: 10.1080/10790268.2015.1117192. PMID: 26832125. Exclusion: 7. [PMC free article: PMC5376139] [PubMed: 26832125] [CrossRef]
193.
Demaneuf T, Aitken Z, Karahalios A, et al. Effectiveness of exercise interventions for pain reduction in people with multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2019 Jan;100(1):128–39. doi: 10.1016/j.apmr.2018.08.178. PMID: 30240593. Exclusion: 6. [PubMed: 30240593] [CrossRef]
194.
Dennett R, Hendrie W, Jarrett L, et al. “I’m in a very good frame of mind”: a qualitative exploration of the experience of standing frame use in people with progressive multiple sclerosis. BMJ Open. 2020 Oct 28;10(10):e037680. doi: 10.1136/bmjopen-2020-037680. PMID: 33115893. Exclusion: 4. [PMC free article: PMC7594359] [PubMed: 33115893] [CrossRef]
195.
Depiazzi J, Smith N, Gibson N, et al. Aquatic high intensity interval training to improve aerobic capacity is feasible in adolescents with cerebral palsy: pilot randomised controlled trial. Clin Rehabil. 2020 Sep 09:269215520956499. doi: 10.1177/0269215520956499. PMID: 32907375. Exclusion: 11. [PubMed: 32907375] [CrossRef]
196.
Dettmers C, Sulzmann M, Ruchay-Plossl A, et al. Endurance exercise improves walking distance in MS patients with fatigue. Acta Neurol Scand. 2009 Oct;120(4):251–7. doi: 10.1111/j.1600-0404.2008.01152.x. PMID: 19178385. Exclusion: 4. [PubMed: 19178385] [CrossRef]
197.
Deutsch JE, Guarrera-Bowlby P, Myslinski MJ, et al. Is there evidence that active videogames increase energy expenditure and exercise intensity for people poststroke and with cerebral palsy? Games Health J. 2015 Feb;4(1):31–7. doi: 10.1089/g4h.2014.0082. PMID: 26181678. Exclusion: 12. [PubMed: 26181678] [CrossRef]
198.
Devasahayam AJ, Downer MB, Ploughman M. The effects of aerobic exercise on the recovery of walking ability and neuroplasticity in people with multiple sclerosis: a systematic review of animal and clinical studies. Mult Scler Int. 2017;2017 doi: 10.1155/2017/4815958. PMID: 29181199. Exclusion: 12. [PMC free article: PMC5664281] [PubMed: 29181199] [CrossRef]
199.
Dewar R, Love S, Johnston LM. Exercise interventions improve postural control in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2015 Jun;57(6):504–20. doi: 10.1111/dmcn.12660. PMID: 25523410. Exclusion: 12. [PubMed: 25523410] [CrossRef]
200.
Dingley AA, Pyne DB, Youngson J, et al. Effectiveness of a dry-land resistance training program on strength, power, and swimming performance in paralympic swimmers. J Strength Cond Res. 2015 Mar;29(3):619–26. doi: 10.1519/JSC.0000000000000684. PMID: 25226306. Exclusion: 11. [PubMed: 25226306] [CrossRef]
201.
Diong J, Boswell-Ruys C. Exercise training programmes to improve hand-rim wheelchair propulsion capacity: PEDro systematic review update. Br J Sports Med. 2015 Oct;49(19):1284–5. doi: 10.1136/bjsports-2015-094583. PMID: 25645117. Exclusion: 10. [PubMed: 25645117] [CrossRef]
202.
DiPiro ND, Embry AE, Fritz SL, et al. Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury. Spinal Cord. 2016 Sep;54(9):675–81. doi: 10.1038/sc.2015.212. PMID: 26666508. Exclusion: 11. [PMC free article: PMC4909592] [PubMed: 26666508] [CrossRef]
203.
DiPiro ND, Holthaus KD, Morgan PJ, et al. Lower extremity strength is correlated with walking function after incomplete SCI. Top Spinal Cord Inj Rehabil. 2015;21(2):133–9. doi: 10.1310/sci2102-133. PMID: 26364282. Exclusion: 11. [PMC free article: PMC4568094] [PubMed: 26364282] [CrossRef]
204.
Ditunno JF, Scivoletto G, Patrick M, et al. Validation of the walking index for spinal cord injury in a US and European clinical population. Spinal Cord. 2008 Mar;46(3):181–8. PMID: 17502878. Exclusion: 4. [PubMed: 17502878]
205.
Divanoglou A, Georgiou M. Perceived effectiveness and mechanisms of community peer-based programmes for spinal cord injuries-a systematic review of qualitative findings. Spinal Cord. 2017 Mar;55(3):225–34. doi: 10.1038/sc.2016.147. PMID: 27845356. Exclusion: 7. [PubMed: 27845356] [CrossRef]
206.
Dlugonski D, Motl RW, Mohr DC, et al. Internet-delivered behavioral intervention to increase physical activity in persons with multiple sclerosis: sustainability and secondary outcomes. Psychol Health Med. 2012;17(6):636–51. doi: 10.1080/13548506.2011.652640. PMID: 22313192. Exclusion: 4. [PubMed: 22313192] [CrossRef]
207.
Do J-H, Yoo E-Y, Jung M-Y, et al. The effects of virtual reality-based bilateral arm training on hemiplegic children’s upper limb motor skills. NeuroRehabilitation. 2016;38(2):115–27. doi: 10.3233/NRE-161302. PMID: 26923353. Exclusion: 11. [PubMed: 26923353] [CrossRef]
208.
Dodd K, Taylor NF, Shields N, et al. Strength training can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: a randomised controlled trial. Physiotherapy. 2011 Jun;97:eS293–4. doi: 10.1016/j.physio.2011.04.002. Exclusion: 10. [PubMed: 21677021] [CrossRef]
209.
Dolbow DR, Gorgey AS, Khalil RK, et al. Effects of a fifty-six month electrical stimulation cycling program after tetraplegia: case report. J Spinal Cord Med. 2017 Jul;40(4):485–8. doi: 10.1080/10790268.2016.1234750. PMID: 27808003. Exclusion: 7. [PMC free article: PMC5537967] [PubMed: 27808003] [CrossRef]
210.
Dolbow DR, Gorgey AS, Recio AC, et al. Activity-based restorative therapies after spinal cord injury: inter-institutional conceptions and perceptions. Aging Dis. 2015 Aug;6(4):254–61. doi: 10.14336/AD.2014.1105. PMID: 26236547. Exclusion: 10. [PMC free article: PMC4509474] [PubMed: 26236547] [CrossRef]
211.
Dolbow JD, Dolbow DR, Stevens SL, et al. Restorative effects of aquatic exercise therapies on motor, gait, and cardiovascular function in children with cerebral palsy: a review of literature. Journal of Aquatic Physical Therapy. 2017 Summer;25(1):22–9. Exclusion: 12.
212.
Domagalska-Szopa M, Szopa A, Czamara A. Dependence of gait deviation on weight-bearing asymmetry and postural instability in children with unilateral cerebral palsy. PLoS One. 2016;11(10):e0165583. doi: 10.1371/journal.pone.0165583. PMID: 27788247. Exclusion: 4. [PMC free article: PMC5082807] [PubMed: 27788247] [CrossRef]
213.
Donati AR, Shokur S, Morya E, et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016 Aug 11;6 doi: 10.1038/srep30383. PMID: 27513629. Exclusion: 11. [PMC free article: PMC4980986] [PubMed: 27513629] [CrossRef]
214.
Donenberg JG, Fetters L, Johnson R. The effects of locomotor training in children with spinal cord injury: a systematic review. Dev Neurorehabil. 2019 Jun 19;22(4):272–87. doi: 10.1080/17518423.2018.1487474. PMID: 29920126. Exclusion: 12. [PubMed: 29920126] [CrossRef]
215.
Dong VA, Fong KN, Chen YF, et al. ‘Remind-to-move’ treatment versus constraint-induced movement therapy for children with hemiplegic cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2017 Feb;59(2):160–7. doi: 10.1111/dmcn.13216. PMID: 27503605. Exclusion: 4. [PubMed: 27503605] [CrossRef]
216.
Dong VA, Tung IH, Siu HW, et al. Studies comparing the efficacy of constraint-induced movement therapy and bimanual training in children with unilateral cerebral palsy: a systematic review. Dev Neurorehabil. 2013;16(2):133–43. doi: 10.3109/17518423.2012.702136. PMID: 22946588. Exclusion: 9. [PubMed: 22946588] [CrossRef]
217.
Dost G, Dulgeroglu D, Yildirim A, et al. The effects of upper extremity progressive resistance and endurance exercises in patients with spinal cord injury. J Back Musculoskeletal Rehabil. 2014;27(4):419–26. doi: 10.3233/BMR-140462. PMID: 24614829. Exclusion: 11. [PubMed: 24614829] [CrossRef]
218.
Dowling AV, Eberly V, Maneekobkunwong S, et al. Telehealth monitor to measure physical activity and pressure relief maneuver performance in wheelchair users. Assist Technol. 2017;29(4):202–9. doi: 10.1080/10400435.2016.1220993. PMID: 27687753. Exclusion: 4. [PMC free article: PMC5629123] [PubMed: 27687753] [CrossRef]
219.
Druzbicki M, Rusek W, Snela S, et al. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J Rehabil Med. 2013 Apr;45(4):358–63. doi: 10.2340/16501977-1114. PMID: 23450428. Exclusion: 6. [PubMed: 23450428] [CrossRef]
220.
Druzbicki M, Rusek W, Szczepanik M, et al. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng. 2010;12(3):53–8. PMID: 21243970. Exclusion: 11. [PubMed: 21243970]
221.
Duffell LD, Brown GL, Mirbagheri MM. Facilitatory effects of anti-spastic medication on robotic locomotor training in people with chronic incomplete spinal cord injury. J Neuroengineering Rehabil. 2015 Mar 20;12:29. doi: 10.1186/s12984-015-0018-4. PMID: 25881322. Exclusion: 4. [PMC free article: PMC4376342] [PubMed: 25881322] [CrossRef]
222.
Duffell LD, Brown GL, Mirbagheri MM. Interventions to reduce spasticity and improve function in people with chronic incomplete spinal cord injury: distinctions revealed by different analytical methods. Neurorehabil Neural Repair. 2015 Jul;29(6):566–76. doi: 10.1177/1545968314558601. PMID: 25398727. Exclusion: 6. [PMC free article: PMC4431959] [PubMed: 25398727] [CrossRef]
223.
Duffell LD, Rowlerson AM, Donaldson Nde N, et al. Effects of endurance and strength-directed electrical stimulation training on the performance and histological properties of paralyzed human muscle: a pilot study.[Erratum appears in Muscle Nerve. 2011 Jan;43(1):154]. Muscle Nerve. 2010 Nov;42(5):756–63. doi: 10.1002/mus.21746. PMID: 20976779. Exclusion: 11. [PubMed: 20976779] [CrossRef]
224.
Duncan B, Shen K, Zou LP, et al. Evaluating intense rehabilitative therapies with and without acupuncture for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2012 May;93(5):808–15. doi: 10.1016/j.apmr.2011.12.009. PMID: 22541308. Exclusion: 4. [PubMed: 22541308] [CrossRef]
225.
Dunne AC, Allan DB, Hunt KJ. Characterisation of oxygen uptake response to linearly increasing work rate during robotics-assisted treadmill exercise in incomplete spinal cord injury. Biomed Signal Process Control. 2010;5(1):70–5. doi: 10.1016/j.bspc.2009.09.003. Exclusion: 4. [CrossRef]
226.
Duquette SA, Guiliano AM, Starmer DJ. Whole body vibration and cerebral palsy: a systematic review. J Can Chiropractic Assoc. 2015 Sep;59(3):245–52. PMID: 26500358. Exclusion: 12. [PMC free article: PMC4593045] [PubMed: 26500358]
227.
Dybesland AR, Normann B. Group physiotherapy targeting core stability and balance in individuals with multiple sclerosis. ‘Movement analyses and individualisations: potent change-making tools’. Eur J Physiother. 2019;21(2):98–106. doi: 10.1080/21679169.2018.1496473. Exclusion: 7. [CrossRef]
228.
Edwards KA, Molton IR, Smith AE, et al. Relative importance of baseline pain, fatigue, sleep, and physical activity: predicting change in depression in adults with multiple sclerosis. Arch Phys Med Rehabil. 2016 Aug;97(8):1309–15. doi: 10.1016/j.apmr.2016.02.025. PMID: 27016262. Exclusion: 4. [PubMed: 27016262] [CrossRef]
229.
Edwards T, Barfield JP, Niemiro GM, et al. Physiological responses during a 25-km time trial in elite wheelchair racing athletes. Spinal Cord Ser Cases. 2018 Aug 14;4(77) doi: 10.1038/s41394-018-0114-3. PMID: 30131876. Exclusion: 11. [PMC free article: PMC6092408] [PubMed: 30131876] [CrossRef]
230.
Edwards T, Motl RW, Pilutti LA. Cardiorespiratory demand of acute voluntary cycling with functional electrical stimulation in individuals with multiple sclerosis with severe mobility impairment. Appl Physiol Nutr Metab. 2018 Jan;43(1):71–6. doi: 10.1139/apnm-2017-0397. PMID: 28881147. Exclusion: 11. [PubMed: 28881147] [CrossRef]
231.
Edwards T, Motl RW, Sebastiao E, et al. Pilot randomized controlled trial of functional electrical stimulation cycling exercise in people with multiple sclerosis with mobility disability. Mult Scler Relat Disord. 2018 Nov 8;26:103–11. doi: 10.1016/j.msard.2018.08.020. PMID: 30243234. Exclusion: 11. [PubMed: 30243234] [CrossRef]
232.
Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: a systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31–9. doi: 10.1016/j.msard.2017.06.003. PMID: 28755682. Exclusion: 12. [PubMed: 28755682] [CrossRef]
233.
Eerden S, Dekker R, Hettinga FJ. Maximal and submaximal aerobic tests for wheelchair-dependent persons with spinal cord injury: a systematic review to summarize and identify useful applications for clinical rehabilitation. Disabil Rehabil. 2018 Mar;40(5):497–521. doi: 10.1080/09638288.2017.1287623. PMID: 28637157. Exclusion: 12. [PubMed: 28637157] [CrossRef]
234.
Eftekhari E, Etemadifar M. Impact of clinical mat pilates on body composition and functional indices in female patients with multiple sclerosis. Crescent Journal of Medical and Biological Sciences. 2018 Oct;5(4):297–305. Exclusion: 11.
235.
Eftekhari E, Etemadifar M. Interleukin-10 and brain-derived neurotrophic factor responses to the mat pilates training in women with multiple sclerosis. Scientia Medica. 2018;28(4) doi: 10.15448/1980-6108.2018.4.31668. Exclusion: 11. [CrossRef]
236.
Eftekhari E, Mostahfezian M, Etemadifar M, et al. Resistance training and vibration improve muscle strength and functional capacity in female patients with multiple sclerosis. Asian J Sports Med. 2012 Dec;3(4):279–84. PMID: 23342227. Exclusion: 11. [PMC free article: PMC3525825] [PubMed: 23342227]
237.
Ehling R, Edlinger M, Hermann K, et al. Successful long-term management of spasticity in patients with multiple sclerosis using a software application (APP): a pilot study. Mult Scler Relat Disord. 2017 Oct;17:15–21. doi: 10.1016/j.msard.2017.06.013. PMID: 29055449. Exclusion: 11. [PubMed: 29055449] [CrossRef]
238.
El Shemy SA. Trunk endurance and gait changes after core stability training in children with hemiplegic cerebral palsy: a randomized controlled trial. J Back Musculoskeletal Rehabil. 2018 Nov 28;31(6):1159–67. doi: 10.3233/BMR-181123. PMID: 30056415. Exclusion: 14. [PubMed: 30056415] [CrossRef]
239.
El-Basatiny HM, Abdel-Aziem AA. Effect of backward walking training on postural balance in children with hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil. 2015 May;29(5):457–67. doi: 10.1177/0269215514547654. PMID: 25258425. Exclusion: 14. [PubMed: 25258425] [CrossRef]
240.
El-Kader SMA. Impact of respiratory muscle training on blood gases and pulmonary function among patients with cervical spinal cord injury. Electron J Gen Med. 2018;15(3) doi: 10.29333/ejgm/85190. Exclusion: 14. [CrossRef]
241.
El-Meniawy GH, Thabet NS. Modulation of back geometry in children with spastic diplegic cerebral palsy via hippotherapy training. Egypt J Med Hum Genet. 2012;13(1):63–71. doi: 10.1016/j.ejmhg.2011.10.004. Exclusion: 14. [CrossRef]
242.
El-Shamy SM. Effect of whole-body vibration on muscle strength and balance in diplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2014 Feb;93(2):114–21. doi: 10.1097/PHM.0b013e3182a541a4. PMID: 24434887. Exclusion: 14. [PubMed: 24434887] [CrossRef]
243.
El-Shamy SM. Effects of antigravity treadmill training on gait, balance, and fall risk in children with diplegic cerebral palsy. Am J Phys Med Rehabil. 2017 Nov;96(11):809–15. doi: 10.1097/PHM.0000000000000752. PMID: 28410250. Exclusion: 14. [PubMed: 28410250] [CrossRef]
244.
El-Shamy SM, Abd El Kafy EM. Effect of balance training on postural balance control and risk of fall in children with diplegic cerebral palsy. Disabil Rehabil. 2014;36(14):1176–83. doi: 10.3109/09638288.2013.833312. PMID: 24032716. Exclusion: 14. [PubMed: 24032716] [CrossRef]
245.
El-Shamy SM, Abdelaal AA. WalkAide efficacy on gait and energy expenditure in children with hemiplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2016 Sep;95(9):629–38. doi: 10.1097/PHM.0000000000000514. PMID: 27149586. Exclusion: 14. [PubMed: 27149586] [CrossRef]
246.
El-Shamy SM, Eid MA, El-Banna MF. Effect of extracorporeal shock wave therapy on gait pattern in hemiplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2014 Dec;93(12):1065–72. doi: 10.1097/PHM.0000000000000133. PMID: 24879552. Exclusion: 4. [PubMed: 24879552] [CrossRef]
247.
El-Shamy SM, El-Banna MF. Effect of Wii training on hand function in children with hemiplegic cerebral palsy. Physiother Theory Pract. 2020;36(1):38–44. doi: 10.1080/09593985.2018.1479810. PMID: 29792556. Exclusion: 14. [PubMed: 29792556] [CrossRef]
248.
Ellapen TJ, Hammill HV, Swanepoel M, et al. The health benefits and constraints of exercise therapy for wheelchair users: a clinical commentary. Afr J Disabil. 2017;6:337. doi: 10.4102/ajod.v6i0.337. PMID: 28936414. Exclusion: 12. [PMC free article: PMC5594262] [PubMed: 28936414] [CrossRef]
249.
Ellapen TJ, Hammill HV, Swanepoel M, et al. The benefits of hydrotherapy to patients with spinal cord injuries. Afr J Disabil. 2018 May 16;7(0):450. doi: 10.4102/ajod.v7i0.450. PMID: 29850439. Exclusion: 12. [PMC free article: PMC5968875] [PubMed: 29850439] [CrossRef]
250.
Elnaggar RK, Elbanna MF. Evaluation of independent versus integrated effects of reciprocal electrical stimulation and botulinum toxin-A on dynamic limits of postural stability and ankle kinematics in spastic diplegia: a single-blinded randomized trial. Eur J Phys Rehabil Med. 2019 Apr;55(2):241–9. doi: 10.23736/S1973-9087.18.05196-1. PMID: 29904047. Exclusion: 4. [PubMed: 29904047] [CrossRef]
251.
Elnahhas AM, Elshennawy S, Aly MG. Effects of backward gait training on balance, gross motor function, and gait in children with cerebral palsy: a systematic review. Clin Rehabil. 2018 Jul 25;33(1):3–12. doi: 10.1177/0269215518790053. PMID: 30043634. Exclusion: 12. [PubMed: 30043634] [CrossRef]
252.
Elshafey MA, Abd-Elaziem A, Gouda RE. Corrigendum to “functional stretching exercise submitted for spastic diplegic children: a randomized control study”. Rehabil Res Pract. 2016;2016 doi: 10.1155/2016/1615024. PMID: 27721993 Exclusion: 10. [PMC free article: PMC5046042] [PubMed: 27721993] [CrossRef]
253.
Elsworth C, Winward C, Sackley C, et al. Supported community exercise in people with long-term neurological conditions: a phase II randomized controlled trial. Clin Rehabil. 2011 Jul;25(7):588–98. doi: 10.1177/0269215510392076. PMID: 21382866. Exclusion: 3. [PubMed: 21382866] [CrossRef]
254.
Elvrum AK, Braendvik SM, Saether R, et al. Effectiveness of resistance training in combination with botulinum toxin-A on hand and arm use in children with cerebral palsy: a pre-post intervention study. BMC Pediatr. 2012 Jul 2;12:91. doi: 10.1186/1471-2431-12-91. PMID: 22747635. Exclusion: 11. [PMC free article: PMC3511174] [PubMed: 22747635] [CrossRef]
255.
Emara H. Effect of a new physical therapy concept on dynamic balance in children with spastic diplegic cerebral palsy. Egypt J Med Hum Genet. 2015 Jan;16(1):77–83. doi: 10.1016/j.ejmhg.2014.09.001. Exclusion: 14. [CrossRef]
256.
English C. Patients spend an alarmingly high proportion of the day sedentary. Int J Ther Rehabil. 2011 Feb;18(2):117. doi: 10.12968/ijtr.2011.18.2.117. Exclusion: 10. [CrossRef]
257.
Ensari I, Motl RW, Pilutti LA. Exercise training improves depressive symptoms in people with multiple sclerosis: results of a meta-analysis. J Psychosom Res. 2014 Jun;76(6):465–71. doi: 10.1016/j.jpsychores.2014.03.014. PMID: 24840141. Exclusion: 9. [PubMed: 24840141] [CrossRef]
258.
Ensari I, Sandroff BM, Motl RW. Effects of single bouts of walking exercise and yoga on acute mood symptoms in people with multiple sclerosis. Int J MS Care. 2016 Jan–Feb;18(1):1–8. doi: 10.7224/1537-2073.2014-104. PMID: 26917992. Exclusion: 11. [PMC free article: PMC4766946] [PubMed: 26917992] [CrossRef]
259.
Ensari I, Sandroff BM, Motl RW. Intensity of treadmill walking exercise on acute mood symptoms in persons with multiple sclerosis. Anxiety Stress Coping. 2017 Jan;30(1):15–25. doi: 10.1080/10615806.2016.1146710. PMID: 26828264. Exclusion: 11. [PubMed: 26828264] [CrossRef]
260.
Erickson ML, Ryan TE, Backus D, et al. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve. 2017 May;55(5):669–75. doi: 10.1002/mus.25393. PMID: 27576602. Exclusion: 11. [PMC free article: PMC5332531] [PubMed: 27576602] [CrossRef]
261.
Eriks-Hoogland I, de Groot S, Snoek G, et al. Association of shoulder problems in persons with spinal cord injury at discharge from inpatient rehabilitation with activities and participation 5 years later. Arch Phys Med Rehabil. 2016 Jan;97(1):84–91. doi: 10.1016/j.apmr.2015.08.432. PMID: 26376446. Exclusion: 8. [PubMed: 26376446] [CrossRef]
262.
Ertekin O, Özakbaş S, Idiman E, et al. The effects of low and severe disability on walking abilities and quality of life in multiple sclerosis patients: 6-month follow-up study. Noropsikiyatri Arsivi. 2013;50(1):23–9. doi: 10.4274/npa.y6213. Exclusion: 11. [CrossRef]
263.
ErtekIn O, Özakbaş S, Idiman E, et al. Quality of life, fatigue and balance improvements after home-based exercise program in multiple sclerosis patients. Noropsikiyatri Arsivi. 2012;49(1):33–8. doi: 10.4274/npa.y6091. Exclusion: 4. [CrossRef]
264.
Esclarin-De Ruz A, Alcobendas-Maestro M, Casado-Lopez R, et al. [A robotic system for gait re-education in patients with an incomplete spinal cord injury]. Rev Neurol. 2009 Dec 16–31;49(12):617–22. PMID: 20013712. Exclusion: 13. [PubMed: 20013712]
265.
Esnouf JE, Taylor PN, Mann GE, et al. Impact on activities of daily living using a functional electrical stimulation device to improve dropped foot in people with multiple sclerosis, measured by the Canadian Occupational Performance Measure. Mult Scler. 2010 Sep;16(9):1141–7. doi: 10.1177/1352458510366013. PMID: 20601398. Exclusion: 4. [PubMed: 20601398] [CrossRef]
266.
Espinosa IB, Platas MG, Chavez JJR, et al. Randomized and blinded study to assess the complementary therapies contribution to treat MS. Mult Scler. 2015;Conference:. 2015 progress in MS research conference. Melbourne, VIC australia. Conference start: 20151029. Conference end: 20151030. Conference publication:(var.pagings) 21(14):21. Exclusion: 10.
267.
Estes S, Iddings JA, Ray S, et al. Comparison of single-session dose response effects of whole body vibration on spasticity and walking speed in persons with spinal cord injury. Neurother. 2018 Jul;15(3):684–96. doi: 10.1007/s13311-018-0644-1. PMID: 29959653. Exclusion: 4. [PMC free article: PMC6095785] [PubMed: 29959653] [CrossRef]
268.
Estes SP, Iddings JA, Field-Fote EC. Priming neural circuits to modulate spinal reflex excitability. Front Neurol. 2017 Feb 3;8:17. doi: 10.3389/fneur.2017.00017. PMID: 28217104. Exclusion: 4. [PMC free article: PMC5289977] [PubMed: 28217104] [CrossRef]
269.
Etoom M, Khraiwesh Y, Lena F, et al. Effectiveness of physiotherapy interventions on spasticity in people with multiple sclerosis: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2018 Nov;97(11):793–807. doi: 10.1097/PHM.0000000000000970. PMID: 29794531. Exclusion: 12. [PubMed: 29794531] [CrossRef]
270.
Eugster-Buesch F, de Bruin ED, Boltshauser E, et al. Forced-use therapy for children with cerebral palsy in the community setting: a single-blinded randomized controlled pilot trial. J Pediatr Rehabil Med. 2012;5(2):65–74. doi: 10.3233/PRM-2012-0198. PMID: 22699097. Exclusion: 4. [PubMed: 22699097] [CrossRef]
271.
Evans N, Hartigan C, Kandilakis C, et al. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):122–32. doi: 10.1310/sci2102-122. PMID: 26364281. Exclusion: 11. [PMC free article: PMC4568093] [PubMed: 26364281] [CrossRef]
272.
Faes Y, Banz N, Buscher N, et al. Acute effects of partial-body vibration in sitting position. World J Orthop. 2018 Sep 18;9(9):156–64. doi: 10.5312/wjo.v9.i9.156. PMID: 30254972. Exclusion: 3. [PMC free article: PMC6153134] [PubMed: 30254972] [CrossRef]
273.
Fakolade A, Bisson EJ, Petrin J, et al. Effect of comorbidities on outcomes of neurorehabilitation interventions in multiple sclerosis: A scoping review. Int J MS Care. 2016 Nov–Dec;18(6):282–90. doi: 10.7224/1537-2073.2016-015. PMID: 27999522. Exclusion: 12. [PMC free article: PMC5166594] [PubMed: 27999522] [CrossRef]
274.
Fakolade A, Finlayson M, Plow M. Using telerehabilitation to support people with multiple sclerosis: a qualitative analysis of interactions, processes, and issues across three interventions. Br J Occup Ther. 2017;80(4):259–68. doi: 10.1177/0308022617690405. Exclusion: 4. [CrossRef]
275.
Fang Y, Morse LR, Nguyen N, et al. Functional electrical stimulation (FES)-assisted rowing combined with zoledronic acid, but not alone, preserves distal femur strength and stiffness in people with chronic spinal cord injury. Osteoporos Int. 2020 Sep 04;04:04. doi: 10.1007/s00198-020-05610-x. PMID: 32888047. Exclusion: 4. [PubMed: 32888047] [CrossRef]
276.
Fasoli SE, Fragala-Pinkham M, Hughes R, et al. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008 Nov;87(11):929–36. doi: 10.1097/PHM.0b013e31818a6aa4. PMID: 18936558. Exclusion: 11. [PubMed: 18936558] [CrossRef]
277.
Fasoli SE, Fragala-Pinkham M, Hughes R, et al. Robotic therapy and botulinum toxin type A: a novel intervention approach for cerebral palsy. Am J Phys Med Rehabil. 2008 Dec;87(12):1022–5. doi: 10.1097/PHM.0b013e31817fb346. PMID: 18617860. Exclusion: 7. [PubMed: 18617860] [CrossRef]
278.
Federici S, Meloni F, Bracalenti M, et al. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. NeuroRehabilitation. 2015;37(3):321–40. doi: 10.3233/NRE-151265. PMID: 26529583. Exclusion: 12. [PubMed: 26529583] [CrossRef]
279.
Fehlings D, Switzer L, Findlay B, et al. Interactive computer play as “motor therapy” for individuals with cerebral palsy. Semin Pediatr Neurol. 2013 Jun;20(2):127–38. doi: 10.1016/j.spen.2013.06.003. PMID: 23948687. Exclusion: 9. [PubMed: 23948687] [CrossRef]
280.
Feitosa LC, Muzzolon SRB, Rodrigues DCB, et al. The effect of adapted sports in quality of life and biopsychosocial profile of children and adolescents with cerebral palsy. Rev Paul Pediatr. 2017 Oct–Dec;35(4):429–35. doi: 10.1590/1984-0462/;2017;35;4;00001. PMID: 29185624. Exclusion: 11. [PMC free article: PMC5737272] [PubMed: 29185624] [CrossRef]
281.
Felippe LA, Salgado PR, de Souza Silvestre D, et al. A controlled clinical trial on the effects of exercise on cognition and mobility in adults with multiple sclerosis. Am J Phys Med Rehabil. 2019 Feb;98(2):97–102. doi: 10.1097/PHM.0000000000000987. PMID: 29927751. Exclusion: 11. [PubMed: 29927751] [CrossRef]
282.
Felippe LA, Salgado PR, Silvestre DS, et al. A controlled clinical trial on the effects of exercise on cognition and mobility in adults with multiple sclerosis. Am J Phys Med Rehabil. 2019 Feb;98(2):97–102. doi: 10.1097/PHM.0000000000000987. PMID: 29927751. Exclusion: 11. [PubMed: 29927751] [CrossRef]
283.
Feltham MG, Collett J, Izadi H, et al. Cardiovascular adaptation in people with multiple sclerosis following a twelve week exercise programme suggest deconditioning rather than autonomic dysfunction caused by the disease. Results from a randomized controlled trial. Eur J Phys Rehabil Med. 2013 Dec;49(6):765–74. PMID: 23877228. Exclusion: 11. [PubMed: 23877228]
284.
Fenuta AM, Hicks AL. Metabolic demand and muscle activation during different forms of bodyweight supported locomotion in men with incomplete SCI. Biomed Res Int. 2014;2014 doi: 10.1155/2014/632765. PMID: 24971340. Exclusion: 11. [PMC free article: PMC4055602] [PubMed: 24971340] [CrossRef]
285.
Fernandes LC, Chitra J, Metgud D, et al. Effectiveness of artifical [sic] horse riding on postural control in spastic diplegics - RCT. Indian J Physiother Occup Ther. 2008;2(4):36–40. Exclusion: 3.
286.
Ferre CL, Brandao M, Surana B, et al. Caregiver-directed home-based intensive bimanual training in young children with unilateral spastic cerebral palsy: a randomized trial. Dev Med Child Neurol. 2017 May;59(5):497–504. doi: 10.1111/dmcn.13330. PMID: 27864822. Exclusion: 4. [PubMed: 27864822] [CrossRef]
287.
Ferreira AP, Pegorare AB, Salgado PR, et al. Impact of a pelvic floor training program among women with multiple sclerosis: a controlled clinical trial. Am J Phys Med Rehabil. 2016 Jan;95(1):1–8. doi: 10.1097/PHM.0000000000000302. PMID: 25888662. Exclusion: 11. [PubMed: 25888662] [CrossRef]
288.
Feys P, Coninx K, Kerkhofs L, et al. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS. J Neuroengineering Rehabil. 2015 Jul 23;12:60. doi: 10.1186/s12984-015-0043-3. PMID: 26202325. Exclusion: 11. [PMC free article: PMC4511982] [PubMed: 26202325] [CrossRef]
289.
Feys P, Moumdjian L, Van Halewyck F, et al. Effects of an individual 12-week community-located “start-to-run” program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Mult Scler. 2019 Nov 1;25(1):92–103. doi: 10.1177/1352458517740211. PMID: 29113572. Exclusion: 4. [PubMed: 29113572] [CrossRef]
290.
Field T. Yoga research review. Complement Ther Clin Pract. 2016 Aug;24:145–61. doi: 10.1016/j.ctcp.2016.06.005. PMID: 27502816. Exclusion: 3. [PubMed: 27502816] [CrossRef]
291.
Filipi ML, Kucera DL, Filipi EO, et al. Improvement in strength following resistance training in MS patients despite varied disability levels. NeuroRehabilitation. 2011;28(4):373–82. doi: 10.3233/NRE-2011-0666. PMID: 21725171. Exclusion: 8. [PubMed: 21725171] [CrossRef]
292.
Filipi ML, Leuschen MP, Huisinga J, et al. Impact of resistance training on balance and gait in multiple sclerosis. Int J MS Care. 2010;12(1):6–12. doi: 10.7224/1537-2073-12.1.6. Exclusion: 8. [CrossRef]
293.
Fischer M, Vialleron T, Laffaye G, et al. Long-term effects of whole-body vibration on human gait: a systematic review and meta-analysis. Front Neurol. 2019;10:627. doi: 10.3389/fneur.2019.00627. PMID: 31316447. Exclusion: 12. [PMC free article: PMC6611385] [PubMed: 31316447] [CrossRef]
294.
Fisher-Pipher SPD, Kenyon LKPDPP, Westman MPD. Improving balance, mobility, and dual-task performance in an adolescent with cerebral palsy: a case report. Physiother Theory Pract. 2017 Jul;33(7):586–95. doi: 10.1080/09593985.2017.1323359. PMID: 28509631. Exclusion: 7. [PubMed: 28509631] [CrossRef]
295.
Flachenecker P, Bures AK, Gawlik A, et al. Efficacy of an Internet-Based Program to Promote Physical Activity and Exercise after Inpatient Rehabilitation in Persons with Multiple Sclerosis: A Randomized, Single-Blind, Controlled Study. Int J Environ Res Public Health. 2020 Jun 24;17(12):24. doi: 10.3390/ijerph17124544. PMID: 32599767. Exclusion: 4. [PMC free article: PMC7344392] [PubMed: 32599767] [CrossRef]
296.
Fleerkotte BM, Koopman B, Buurke JH, et al. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroengineering Rehabil. 2014 Mar 4;11:26. doi: 10.1186/1743-0003-11-26. PMID: 24594284. Exclusion: 11. [PMC free article: PMC3975927] [PubMed: 24594284] [CrossRef]
297.
Fluet GG, Qiu Q, Kelly D, et al. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil. 2010;13(5):335–45. doi: 10.3109/17518423.2010.501362. PMID: 20828330. Exclusion: 11. [PMC free article: PMC3025751] [PubMed: 20828330] [CrossRef]
298.
Fornusek C, Davis GM, Russold MF. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength. Arch Phys Med Rehabil. 2013 May;94(5):990–3. doi: 10.1016/j.apmr.2012.10.010. PMID: 23123504. Exclusion: 11. [PubMed: 23123504] [CrossRef]
299.
Fornusek C, Hoang P. Neuromuscular electrical stimulation cycling exercise for persons with advanced multiple sclerosis. J Rehabil Med. 2014 Jul;46(7):698–702. doi: 10.2340/16501977-1792. PMID: 24763902. Exclusion: 11. [PubMed: 24763902] [CrossRef]
300.
Forrest GF, Lorenz DJ, Hutchinson K, et al. Ambulation and balance outcomes measure different aspects of recovery in individuals with chronic, incomplete spinal cord injury. Arch Phys Med Rehabil. 2012 Sep;93(9):1553–64. doi: 10.1016/j.apmr.2011.08.051. PMID: 22920452. Exclusion: 7. [PubMed: 22920452] [CrossRef]
301.
Forsberg AS, Von Koch L, Nilsagard YE. Effects of a balance programme focusing on core stability exercises and dual-task activities in persons with multiple sclerosis: a randomized controlled trial. Mult Scler J Exp Transl Clin. 2013 Oct;19(11 ):62–3. doi: 10.1177/1352458513502433. Exclusion: 10. [CrossRef]
302.
Fosdahl M, Holm I, Jahnsen R. The effect of progressive resistance exercise training and stretching of the hamstrings muscle in ambulant children with cerebral palsy - a randomized controlled trial. Dev Med Child Neurol. 2017;59:48. doi: 10.1111/dmcn.71_13511. Exclusion: 10. [CrossRef]
303.
Fosdahl MA, Jahnsen R, Kvalheim K, et al. Stretching and progressive resistance exercise in children with cerebal palsy: a randomised controlled trial. Pediatr Phys Ther. 2019 Jul;31(3):264–71. doi: 10.1097/PEP.0000000000000616. PMID: 31220010. Exclusion: 6. [PubMed: 31220010] [CrossRef]
304.
Foster H, DeMark L, Spigel PM, et al. The effects of backward walking training on balance and mobility in an individual with chronic incomplete spinal cord injury: a case report. Physiother Theory Pract. 2016 Oct;32(7):536–45. doi: 10.1080/09593985.2016.1206155. PMID: 27482619. Exclusion: 7. [PMC free article: PMC5300691] [PubMed: 27482619] [CrossRef]
305.
Fox EE, Hough AD, Creanor S, et al. The effects of pilates-based core stability training in ambulant people with multiple sclerosis: a multicentre, block randomised, double blinded placebo controlled trial. Mult Scler J Exp Transl Clin. 2013 Oct;19(11):40. doi: 10.1177/1352458513502433. Exclusion: 10. [CrossRef]
306.
Fox EJ, Tester NJ, Butera KA, et al. Retraining walking adaptability following incomplete spinal cord injury. Spinal Cord Ser Cases. 2017;3 doi: 10.1038/s41394-017-0003-1. PMID: 29449967. Exclusion: 7. [PMC free article: PMC5803746] [PubMed: 29449967] [CrossRef]
307.
Foy T, Perritt G, Thimmaiah D, et al. The SCIRehab project: treatment time spent in SCI rehabilitation. Occupational therapy treatment time during inpatient spinal cord injury rehabilitation. J Spinal Cord Med. 2011;34(2):162–75. doi: 10.1179/107902611X12971826988093. PMID: 21675355. Exclusion: 3. [PMC free article: PMC3066503] [PubMed: 21675355] [CrossRef]
308.
Fragala-Pinkham MA, Smith HJ, Lombard KA, et al. Aquatic aerobic exercise for children with cerebral palsy: a pilot intervention study. Physiother Theory Pract. 2014 Feb;30(2):69–78. doi: 10.3109/09593985.2013.825825. PMID: 24328930. Exclusion: 11. [PubMed: 24328930] [CrossRef]
309.
Fragoso YD, Santana DL, Pinto RC. The positive effects of a physical activity program for multiple sclerosis patients with fatigue. NeuroRehabilitation. 2008;23(2):153–7. PMID: 18525136. Exclusion: 11. [PubMed: 18525136]
310.
Francisco GE, Yozbatiran N, Berliner J, et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl 1):S171–S7. doi: 10.1097/PHM.0000000000000815. PMID: 28857769. Exclusion: 11. [PubMed: 28857769] [CrossRef]
311.
Frank R, Larimore J. Yoga as a method of symptom management in multiple sclerosis. Front Neurosci. 2015;9:133. doi: 10.3389/fnins.2015.00133. PMID: 25983675. Exclusion: 12. [PMC free article: PMC4415403] [PubMed: 25983675] [CrossRef]
312.
Freeman J, Hendrie W, Jarrett L, et al. Assessment of a home-based standing frame programme in people with progressive multiple sclerosis (SUMS): a pragmatic, multi-centre, randomised, controlled trial and cost-effectiveness analysis. Lancet neurol. 2019 Aug;18(8):736–47. doi: 10.1016/S1474-4422(19)30190-5. PMID: 31301748. Exclusion: 4. [PMC free article: PMC7646281] [PubMed: 31301748] [CrossRef]
313.
Freeman JA, Gear M, Pauli A, et al. The effect of core stability training on balance and mobility in ambulant individuals with multiple sclerosis: a multi-centre series of single case studies. Mult Scler. 2010 Nov;16(11):1377–84. doi: 10.1177/1352458510378126. PMID: 20699285. Exclusion: 7. [PubMed: 20699285] [CrossRef]
314.
Freeman JA, Hendrie W, Creanor S, et al. Standing up in multiple sclerosis (SUMS): protocol for a multi-centre randomised controlled trial evaluating the clinical and cost effectiveness of a home-based self-management standing frame programme in people with progressive multiple sclerosis. BMC Neurol. 2016 May 5;16:62. doi: 10.1186/s12883-016-0581-8. PMID: 27149954. Exclusion: 10. [PMC free article: PMC4858871] [PubMed: 27149954] [CrossRef]
315.
Frevel D, Maurer M. Internet-based home training is capable to improve balance in multiple sclerosis: a randomized controlled trial. Eur J Phys Rehabil Med. 2015 Feb;51(1):23–30. PMID: 24755773. Exclusion: 11. [PubMed: 24755773]
316.
Frisk RF, Jensen P, Kirk H, et al. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy. J Neurophysiol. 2017 Dec 1;118(6):3165–74. doi: 10.1152/jn.00508.2017. PMID: 28904105. Exclusion: 4. [PMC free article: PMC5814719] [PubMed: 28904105] [CrossRef]
317.
Froehlich-Grobe K, Aaronson LS, Washburn RA, et al. An exercise trial for wheelchair users: project workout on wheels. Contemp Clin Trials. 2012 Mar;33(2):351–63. doi: 10.1016/j.cct.2011.10.014. PMID: 22101206. Exclusion: 4. [PMC free article: PMC3268824] [PubMed: 22101206] [CrossRef]
318.
Froehlich-Grobe K, Lee J, Aaronson L, et al. Exercise for everyone: a randomized controlled trial of project workout on wheels in promoting exercise among wheelchair users. Arch Phys Med Rehabil. 2014 Jan;95(1):20–8. doi: 10.1016/j.apmr.2013.07.006. PMID: 23872080. Exclusion: 4. [PMC free article: PMC4610124] [PubMed: 23872080] [CrossRef]
319.
Fundaro C, Giardini A, Maestri R, et al. Motor and psychosocial impact of robot-assisted gait training in a real-world rehabilitation setting: a pilot study. PLoS One. 2018;13(2):e0191894. doi: 10.1371/journal.pone.0191894. PMID: 29444172. Exclusion: 5. [PMC free article: PMC5812583] [PubMed: 29444172] [CrossRef]
320.
Gagliardi C, Turconi AC, Biffi E, et al. Immersive virtual reality to improve walking abilities in cerebral palsy: a pilot study. Ann Biomed Eng. 2018 Sep;46(9):1376–84. doi: 10.1007/s10439-018-2039-1. PMID: 29704186. Exclusion: 11. [PubMed: 29704186] [CrossRef]
321.
Galea M, Dunlop S, Geraghty T, et al. Intensive exercise program after spinal cord injury (SCIPA full-on): a randomized controlled trial. Ann Phys Rehabil Med. 2018 Jul;61:e42. doi: 10.1016/j.rehab.2018.05.094. Exclusion: 10. [CrossRef]
322.
Galea MP, Panisset MG, El-Ansary D, et al. SCIPA Switch-On: a randomized controlled trial investigating the efficacy and safety of functional electrical stimulation-assisted cycling and passive cycling initiated early after traumatic spinal cord injury. Neurorehabil Neural Repair. 2017;31(6):540–51. doi: 10.1177/1545968317697035. Exclusion: 3. [CrossRef]
323.
Gandhi P, Chan K, Verrier MC, et al. Training to improve walking after pediatric spinal cord injury: a systematic review of parameters and walking outcomes. J Neurotrauma. 2017 May 1;34(9):1713–25. doi: 10.1089/neu.2016.4501. PMID: 27869534. Exclusion: 12. [PubMed: 27869534] [CrossRef]
324.
Gandolfi M, Geroin C, Picelli A, et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014;8:318. doi: 10.3389/fnhum.2014.00318. PMID: 24904361. Exclusion: 11. [PMC free article: PMC4033226] [PubMed: 24904361] [CrossRef]
325.
Gant KL, Nagle KG, Cowan RE, et al. Body system effects of a multi-modal training program targeting chronic, motor complete thoracic spinal cord injury. J Neurotrauma. 2018 Feb 1;35(3):411–23. doi: 10.1089/neu.2017.5105. PMID: 28795657. Exclusion: 11. [PMC free article: PMC6909697] [PubMed: 28795657] [CrossRef]
326.
Gao J, He L, Yu X, et al. Rehabilitation with a combination of scalp acupuncture and exercise therapy in spastic cerebral palsy. Complement Ther Clin Pract. 2019 May;35:296–300. doi: 10.1016/j.ctcp.2019.03.002. PMID: 31003673. Exclusion: 4. [PubMed: 31003673] [CrossRef]
327.
Garcia-Gomez S, Perez-Tejero J, Hoozemans M, et al. Effect of a home-based exercise program on shoulder pain and range of motion in elite wheelchair basketball players: a non-randomized controlled trial. Sports (Basel). 2019 Jul 24;7(8):24. doi: 10.3390/sports7080180. PMID: 31344871. Exclusion: 4. [PMC free article: PMC6723715] [PubMed: 31344871] [CrossRef]
328.
Garcia-Mendez Y, Pearlman JL, Boninger ML, et al. Health risks of vibration exposure to wheelchair users in the community. J Spinal Cord Med. 2013 Jul;36(4):365–75. doi: 10.1179/2045772313Y.0000000124. PMID: 23820152. Exclusion: 7. [PMC free article: PMC3758533] [PubMed: 23820152] [CrossRef]
329.
Garshick E, Mulroy S, Graves DE, et al. Active lifestyle is associated with reduced dyspnea and greater life satisfaction in spinal cord injury. Arch Phys Med Rehabil. 2016 10;97(10):1721–7. doi: 10.1016/j.apmr.2016.02.010. PMID: 26951870. Exclusion: 4. [PMC free article: PMC4802491] [PubMed: 26951870] [CrossRef]
330.
Gaspard L, Tombal B, Castille Y, et al. Pelvic floor muscles training, electrical stimulation, bladder training and lifestyle interventions to manage lower urinary tract dysfunction in multiple sclerosis: a systematic review. Prog Urol. 2014 Mar;24(4):222–8. doi: 10.1016/j.purol.2013.11.004. PMID: 24560290. Exclusion: 13. [PubMed: 24560290] [CrossRef]
331.
Gaspard L, Tombal B, Opsomer RJ, et al. [Physiotherapy and neurogenic lower urinary tract dysfunction in multiple sclerosis patients: a randomized controlled trial]. Prog Urol. 2014 Sep;24(11):697–707. doi: 10.1016/j.purol.2014.05.003. PMID: 25214451. Exclusion: 13. [PubMed: 25214451] [CrossRef]
332.
Gates PE, Banks D, Johnston TE, et al. Randomized controlled trial assessing participation and quality of life in a supported speed treadmill training exercise program vs. a strengthening program for children with cerebral palsy. J Pediatr Rehabil Med. 2012;5(2):75–88. doi: 10.3233/PRM-2012-0199. PMID: 22699098. Exclusion: 4. [PubMed: 22699098] [CrossRef]
333.
Gatica-Rojas V, Cartes-Velasquez R, Guzman-Munoz E, et al. Effectiveness of a Nintendo Wii balance board exercise programme on standing balance of children with cerebral palsy: a randomised clinical trial protocol. Contemp Clin Trials Commun. 2017 Jun;6:17–21. doi: 10.1016/j.conctc.2017.02.008. PMID: 29740634. Exclusion: 10. [PMC free article: PMC5936865] [PubMed: 29740634] [CrossRef]
334.
Gatica-Rojas V, Cartes-Velasquez R, Mendez-Rebolledo G, et al. Effects of a Nintendo Wii exercise program on spasticity and static standing balance in spastic cerebral palsy. Dev Neurorehabil. 2017 Aug;20(6):388–91. doi: 10.1080/17518423.2016.1211770. PMID: 27538127. Exclusion: 11. [PubMed: 27538127] [CrossRef]
335.
Gatica-Rojas V, Cartes-Velasquez R, Mendez-Rebolledo G, et al. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: a case series. J Phys Ther Sci. 2016 Aug;28(8):2414–7. doi: 10.1589/jpts.28.2414. PMID: 27630446. Exclusion: 7. [PMC free article: PMC5011610] [PubMed: 27630446] [CrossRef]
336.
Gatica-Rojas V, Mendez-Rebolledo G, Guzman-Munoz E, et al. Does Nintendo Wii balance board improve standing balance? A randomized controlled trial in children with cerebral palsy. Eur J Phys Rehabil Med. 2017 Aug;53(4):535–44. doi: 10.23736/S1973-9087.16.04447-6. PMID: 27882910. Exclusion: 11. [PubMed: 27882910] [CrossRef]
337.
Gauthier C, Brosseau R, Hicks AL, et al. Feasibility, safety, and preliminary effectiveness of a home-based self-managed high-intensity interval training program offered to long-term manual wheelchair users. Rehabil Res Pract. 2018;2018:8209360. doi: 10.1155/2018/8209360. PMID: 29888007. Exclusion: 4. [PMC free article: PMC5985105] [PubMed: 29888007] [CrossRef]
338.
Geddes EL, Costello E, Raivel K, et al. The effects of a twelve-week home walking program on cardiovascular parameters and fatigue perception of individuals with multiple sclerosis: a pilot study. Cardiopulm Phys Ther J. 2009 Mar;20(1):5–12. PMID: 20467528 Exclusion: 11. [PMC free article: PMC2845260] [PubMed: 20467528]
339.
Ghai S, Ghai I, Effenberg AO. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis. Clin Interv Aging. 2017;12:557–77. doi: 10.2147/CIA.S125201. PMID: 28356727. Exclusion: 12. [PMC free article: PMC5367902] [PubMed: 28356727] [CrossRef]
340.
Gharib NM, El-Maksoud GM, Rezk-Allah SS. Efficacy of gait trainer as an adjunct to traditional physical therapy on walking performance in hemiparetic cerebral palsied children: a randomized controlled trial. Clin Rehabil. 2011 Oct;25(10):924–34. doi: 10.1177/0269215511400768. PMID: 21427153. Exclusion: 14. [PubMed: 21427153] [CrossRef]
341.
Giacobbi PR, Jr., Dietrich F, Larson R, et al. Exercise and quality of life in women with multiple sclerosis. Adapt Phys Act Q. 2012 Jul;29(3):224–42. PMID: 22811564. Exclusion: 11. [PubMed: 22811564]
342.
Gibbons RS, Stock CG, Andrews BJ, et al. The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord. 2016 Oct;54(10):822–9. doi: 10.1038/sc.2015.228. PMID: 26754476. Exclusion: 11. [PubMed: 26754476] [CrossRef]
343.
Gibbs JC, Gagnon DH, Bergquist AJ, et al. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): a systematic review and scoping perspective. J Spinal Cord Med. 2017 Nov;40(6):733–47. doi: 10.1080/10790268.2017.1350341. PMID: 28703038. Exclusion: 12. [PMC free article: PMC5778937] [PubMed: 28703038] [CrossRef]
344.
Giesser B, Herlihy E, Plummer D’Amato P, et al. Randomised, controlled trial of robotic locomotor training in persons with multiple sclerosis. Mult Scler J Exp Transl Clin. 2011 Oct;17(10 SUPPL. 1):S480–S1. doi: 10.1177/1352458511422301. Exclusion: 10. [CrossRef]
345.
Gilbertson RM, Klatt MD. Mindfulness in motion for people with multiple sclerosis: a feasibility study. Int J MS Care. 2017 Sep–Oct;19(5):225–31. doi: 10.7224/1537-2073.2015-095. PMID: 29070962. Exclusion: 4. [PMC free article: PMC5649345] [PubMed: 29070962] [CrossRef]
346.
Gillett JG, Boyd RN, Carty CP, et al. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016 Sep;56:183–96. doi: 10.1016/j.ridd.2016.06.003. PMID: 27337690. Exclusion: 12. [PubMed: 27337690] [CrossRef]
347.
Gillett JG, Lichtwark GA, Boyd RN, et al. Functional anaerobic and strength training in young adults with cerebral palsy. Med Sci Sports Exerc. 2018 Aug;50(8):1549–57. doi: 10.1249/MSS.0000000000001614. PMID: 29557839. Exclusion: 11. [PubMed: 29557839] [CrossRef]
348.
Giray E, Karadag-Saygi E, Ozsoy T, et al. The effects of vest type dynamic elastomeric fabric orthosis on sitting balance and gross manual dexterity in children with cerebral palsy: a single-blinded randomised controlled study. Disabil Rehabil. 2020 Oct 7;42(3):410–8. doi: 10.1080/09638288.2018.1501098. PMID: 30293457. Exclusion: 4. [PubMed: 30293457] [CrossRef]
349.
Glinsky J, Harvey L, Korten M, et al. Short-term progressive resistance exercise may not be effective at increasing wrist strength in people with tetraplegia: a randomised controlled trial. Aust J Physiother. 2008;54(2):103–8. PMID: 18492001. Exclusion: 4. [PubMed: 18492001]
350.
Glinsky J, Harvey L, van Es P, et al. The addition of electrical stimulation to progressive resistance training does not enhance the wrist strength of people with tetraplegia: a randomized controlled trial. Clin Rehabil. 2009 Aug;23(8):696–704. doi: 10.1177/0269215509104171. PMID: 19470552. Exclusion: 4. [PubMed: 19470552] [CrossRef]
351.
Gollie JM, Guccione AA, Panza GS, et al. Effects of overground locomotor training on walking performance in chronic cervical motor incomplete spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2017 Jun;98(6):1119–25. doi: 10.1016/j.apmr.2016.10.022. PMID: 27965006. Exclusion: 11. [PubMed: 27965006] [CrossRef]
352.
Golzari Z, Shabkhiz F, Soudi S, et al. Combined exercise training reduces IFN-gamma and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int Immunopharmacol. 2010 Nov;10(11):1415–9. doi: 10.1016/j.intimp.2010.08.008. PMID: 20797460. Exclusion: 11. [PubMed: 20797460] [CrossRef]
353.
Gomes-Osman J, Tibbett JA, Poe BP, et al. Priming for improved hand strength in persons with chronic tetraplegia: a comparison of priming-augmented functional task practice, priming alone, and conventional exercise training. Front Neurol. 2017;7(JAN) doi: 10.3389/fneur.2016.00242. Exclusion: 4. [PMC free article: PMC5239780] [PubMed: 28144229] [CrossRef]
354.
Gonzales B, Chopard G, Charry B, et al. Effects of a training program involving body cooling on physical and cognitive capacities and quality of life in multiple sclerosis patients: a pilot study. Eur Neurol. 2017;78(1–2):71–7. doi: 10.1159/000477580. PMID: 28697504. Exclusion: 11. [PubMed: 28697504] [CrossRef]
355.
Goosey-Tolfrey V, Foden E, Perret C, et al. Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players. Br J Sports Med. 2010 Jul;44(9):665–8. doi: 10.1136/bjsm.2008.049486. PMID: 18603575. Exclusion: 11. [PubMed: 18603575] [CrossRef]
356.
Gorgey AS, Dolbow DR, Cifu DX, et al. Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. J Electromyogr Kinesiol. 2013 Aug;23(4):977–84. doi: 10.1016/j.jelekin.2013.04.007. PMID: 23683374. Exclusion: 11. [PubMed: 23683374] [CrossRef]
357.
Gorgey AS, Khalil RE, Gill R, et al. Effects of testosterone and evoked resistance exercise after spinal cord injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open. 2017 Apr 4;7(4) doi: 10.1136/bmjopen-2016-014125. PMID: 28377392. Exclusion: 11. [PMC free article: PMC5387951] [PubMed: 28377392] [CrossRef]
358.
Gorgey AS, Martin H, Metz A, et al. Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J Spinal Cord Med. 2016 Nov;39(6):699–712. doi: 10.1080/10790268.2016.1157970. PMID: 27077574. Exclusion: 11. [PMC free article: PMC5137575] [PubMed: 27077574] [CrossRef]
359.
Gorgey AS, Poarch HJ, Dolbow DD, et al. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehabil Res Dev. 2014;51(9):1455–68. doi: 10.1682/JRRD.2014.02.0054. PMID: 25803753. Exclusion: 4. [PubMed: 25803753] [CrossRef]
360.
Gorgey AS, Timmons MK, Dolbow DR, et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016 Jun;116(6):1231–44. doi: 10.1007/s00421-016-3385-z. PMID: 27155846. Exclusion: 11. [PubMed: 27155846] [CrossRef]
361.
Gorgey AS, Wade R, Sumrell R, et al. Exoskeleton training may improve level of physical activity after spinal cord injury: a case series. Top Spinal Cord Inj Rehabil. 2017;23(3):245–55. doi: 10.1310/sci16-00025. PMID: 29339900. Exclusion: 7. [PMC free article: PMC5562032] [PubMed: 29339900] [CrossRef]
362.
Gorla JI, Costa e Silva Ade A, Borges M, et al. Impact of wheelchair rugby on body composition of subjects with tetraplegia: a pilot study. Arch Phys Med Rehabil. 2016 Jan;97(1):92–6. doi: 10.1016/j.apmr.2015.09.007. PMID: 26433046. Exclusion: 11. [PubMed: 26433046] [CrossRef]
363.
Gorman P, Scott W, York H, et al. Robotic treadmill training does not improve timed measures of ambulatory function in chronic motor incomplete spinal cord injury: a pilot controlled clinical trial. Top Spinal Cord Inj Rehabil. 2011 Jun;16:63. doi: 10.1310/sci16S1-53. Exclusion: 10. [CrossRef]
364.
Gorman PH, Geigle PR, Chen K, et al. Reliability and relatedness of peak VO2 assessments during body weight supported treadmill training and arm cycle ergometry in individuals with chronic motor incomplete spinal cord injury. Spinal Cord. 2014 Apr;52(4):287–91. doi: 10.1038/sc.2014.6. PMID: 24534779. Exclusion: 4. [PubMed: 24534779] [CrossRef]
365.
Gorman PH, Scott W, York H, et al. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: a randomized controlled trial. J Spinal Cord Med. 2016;39(1):32–44. doi: 10.1179/2045772314Y.0000000281. PMID: 25520035. Exclusion: 11. [PMC free article: PMC4725790] [PubMed: 25520035] [CrossRef]
366.
Govil K, Noohu MM. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury. NeuroRehabilitation. 2013;33(1):147–52. doi: 10.3233/NRE-130939. PMID: 23949032. Exclusion: 14. [PubMed: 23949032] [CrossRef]
367.
Granja Dominguez A, Magni E, Hochsprung A. Gait and physiotherapy: effectiveness of a physiotherapy circuit training on the ability to walk and quality of live in a multiple sclerosis’s patients. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):970. Exclusion: 10.
368.
Grasmucke D, Zieriacks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg Focus. 2017 May;42(5):15. doi: 10.3171/2017.2.FOCUS171. PMID: 28463613. Exclusion: 8. [PubMed: 28463613] [CrossRef]
369.
Grazioli E, Tranchita E, Borriello G, et al. The effects of concurrent resistance and aerobic exercise training on functional dtatus in patients with multiple sclerosis. Curr Sports Med Rep. 2019 Dec;18(12):452–7. doi: 10.1249/JSR.0000000000000661. PMID: 31834177. Exclusion: 11. [PubMed: 31834177] [CrossRef]
370.
Grecco LA, de Freitas TB, Satie J, et al. Treadmill training following orthopedic surgery in lower limbs of children with cerebral palsy. Pediatr Phys Ther. 2013;25(2):187–92; discussion 93. doi: 10.1097/PEP.0b013e3182888495. PMID: 23542199. Exclusion: 11. [PubMed: 23542199] [CrossRef]
371.
Grecco LA, Oliveira CS, Duarte NA, et al. Cerebellar transcranial direct current stimulation in children with ataxic cerebral palsy: a sham-controlled, crossover, pilot study. Dev Neurorehabil. 2017 Apr;20(3):142–8. doi: 10.3109/17518423.2016.1139639. PMID: 27003795. Exclusion: 11. [PubMed: 27003795] [CrossRef]
372.
Grecco LA, Tomita SM, Christovao TC, et al. Effect of treadmill gait training on static and functional balance in children with cerebral palsy: a randomized controlled trial. Braz J Phys Ther. 2013 Jan–Feb;17(1):17–23. PMID: 23538455. Exclusion: 11. [PubMed: 23538455]
373.
Griffin L, Decker MJ, Hwang JY, et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009 Aug;19(4):614–22. doi: 10.1016/j.jelekin.2008.03.002. PMID: 18440241. Exclusion: 11. [PubMed: 18440241] [CrossRef]
374.
Guclu-Gunduz A, Citaker S, Irkec C, et al. The effects of pilates on balance, mobility and strength in patients with multiple sclerosis. NeuroRehabilitation. 2014;34(2):337–42. doi: 10.3233/NRE-130957. PMID: 23949064. Exclusion: 11. [PubMed: 23949064] [CrossRef]
375.
Guillamo E, Cobo-Calvo A, Oviedo GR, et al. Feasibility and effects of structured physical exercise interventions in adults with relapsing-remitting multiple sclerosis: a pilot study. J Sports Sci Med. 2018 Sep;17(3):426–36. PMID: 30116116. Exclusion: 11. [PMC free article: PMC6090399] [PubMed: 30116116]
376.
Gültekin Ö, Öneş K, Harman H, et al. The effects of respiratory exercises on respiratory functions and the quality of life in patients with thoracal spinal cord injury. Nobel Medicus. 2013;9(3):82–7. Exclusion: 8.
377.
Gunn H, Andrade J, Paul L, et al. A self-management programme to reduce falls and improve safe mobility in people with secondary progressive MS: the BRiMS feasibility RCT. Health Technol Assess. 2019 Jun;23(27):1–166. doi: 10.3310/hta23270. PMID: 31217069. Exclusion: 4. [PMC free article: PMC6627007] [PubMed: 31217069] [CrossRef]
378.
Gunn H, Markevics S, Haas B, et al. Systematic review: The effectiveness of interventions to reduce falls and improve balance in adults with multiple sclerosis. Arch Phys Med Rehabil. 2015 Oct;96(10):1898–912. doi: 10.1016/j.apmr.2015.05.018. PMID: 26070975. Exclusion: 2. [PubMed: 26070975] [CrossRef]
379.
Gurpinar B, Kara B, Idiman E. Effects of aquatic exercises on postural control and hand function in Multiple Sclerosis: Halliwick versus Aquatic Plyometric Exercises: a randomised trial. J Musculoskelet Neuronal Interact. 2020 Jun 01;20(2):249–55. PMID: 32481240. Exclusion: 11. [PMC free article: PMC7288381] [PubMed: 32481240]
380.
Hakansson NA, Hull ML. The effects of stimulating lower leg muscles on the mechanical work and metabolic response in functional electrically stimulated pedaling. IEEE Trans Neural Syst Rehabil Eng. 2010 Oct;18(5):498–504. doi: 10.1109/TNSRE.2010.2052132. PMID: 20529755. Exclusion: 4. [PubMed: 20529755] [CrossRef]
381.
Hale LA, Mulligan HF, Treharne GJ, et al. The feasibility and short-term benefits of Blue Prescription: a novel intervention to enable physical activity for people with multiple sclerosis. Disabil Rehabil. 2013 Jul;35(14):1213–20. doi: 10.3109/09638288.2012.723787. PMID: 23025293. Exclusion: 4. [PubMed: 23025293] [CrossRef]
382.
Hameau S, Bensmail D, Roche N, et al. Adaptations of fatigue and fatigability after a short intensive, combined rehabilitation program in patients with multiple sclerosis. J Rehabil Med. 2018 Jan 10;50(1):59–66. doi: 10.2340/16501977-2277. PMID: 28980009. Exclusion: 11. [PubMed: 28980009] [CrossRef]
383.
Hamed NS, Abd-elwahab MS. Pedometer-based gait training in children with spastic hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil. 2011 Feb;25(2):157–65. doi: 10.1177/0269215510382147. PMID: 20943714. Exclusion: 14. [PubMed: 20943714] [CrossRef]
384.
Hamed SA, El-Negamy TE, Waked NM. Effect of functional electrical stimulation on trunk curvature in spastic quadriplegic cerebral palsied children. Int J Pharmtech Res. 2016;9(5):31–6. Exclusion: 6.
385.
Hammond ER, Recio AC, Sadowsky CL, et al. Functional electrical stimulation as a component of activity-based restorative therapy may preserve function in persons with multiple sclerosis. J Spinal Cord Med. 2015 Jan;38(1):68–75. doi: 10.1179/2045772314Y.0000000238. PMID: 24976037. Exclusion: 8. [PMC free article: PMC4293536] [PubMed: 24976037] [CrossRef]
386.
Han DS, Hsiao MY, Wang TG, et al. Association of serum myokines and aerobic exercise training in patients with spinal cord injury: an observational study. BMC Neurol. 2016 Aug 17;16(1):142. doi: 10.1186/s12883-016-0661-9. PMID: 27534935. Exclusion: 5. [PMC free article: PMC4989481] [PubMed: 27534935] [CrossRef]
387.
Han EY, Choi JH, Kim SH, et al. The effect of weight bearing on bone mineral density and bone growth in children with cerebral palsy: a randomized controlled preliminary trial. Medicine (Baltimore). 2017 Mar;96(10) doi: 10.1097/MD.0000000000005896. PMID: 28272197. Exclusion: 11. [PMC free article: PMC5348145] [PubMed: 28272197] [CrossRef]
388.
Hansen D, Wens I, Keytsman C, et al. Is long-term exercise intervention effective to improve cardiac autonomic control during exercise in subjects with multiple sclerosis? A randomized controlled trial. Eur J Phys Rehabil Med. 2015 Apr;51(2):223–31. PMID: 24603938. Exclusion: 11. [PubMed: 24603938]
389.
Hansen D, Wens I, Keytsman C, et al. Ventilatory function during exercise in multiple sclerosis and impact of training intervention: cross-sectional and randomized controlled trial. Eur J Phys Rehabil Med. 2015 Oct;51(5):557–68. PMID: 25366519. Exclusion: 11. [PubMed: 25366519]
390.
Harkema SJ, Schmidt-Read M, Lorenz DJ, et al. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012 Sep;93(9):1508–17. doi: 10.1016/j.apmr.2011.01.024. PMID: 21777905. Exclusion: 11. [PubMed: 21777905] [CrossRef]
391.
Hartley S. Developing a self-management and exercise model for people with multiple sclerosis…including commentary by Plummer-D’Amato P and Giesser B. Int J Ther Rehabil. 2009;16(1):34–42. doi: 10.12968/ijtr.2009.16.1.37938. Exclusion: 8. [CrossRef]
392.
Harvey L, Fornusek C, Bowden J, et al. Electrical stimulation combined with progressive resistance training increases strength in people with spinal cord injury. Physiotherapy. 2011;97. Exclusion: 10.
393.
Harvey LA, Dunlop SA, Churilov L, et al. Early intensive hand rehabilitation is not more effective than usual care plus one-to-one hand therapy in people with sub-acute spinal cord injury (‘Hands On’): a randomised trial. J Physiother. 2016 Apr;62(2):88–95. doi: 10.1016/j.jphys.2016.02.013. PMID: 27008910. Exclusion: 4. [PubMed: 27008910] [CrossRef]
394.
Harvey LA, Dunlop SA, Churilov L, et al. Early intensive hand rehabilitation is not more effective than usual care plus one-to-one hand therapy in people with sub-acute spinal cord injury (‘Hands On’): a randomised trial. J Physiother. 2017 Oct;63(4):197–204. doi: 10.1016/j.jphys.2017.08.005. PMID: 28970100. Exclusion: 4. [PubMed: 28970100] [CrossRef]
395.
Harvey LA, Fornusek C, Bowden JL, et al. Electrical stimulation plus progressive resistance training for leg strength in spinal cord injury: a randomized controlled trial. Spinal Cord. 2010 Jul;48(7):570–5. doi: 10.1038/sc.2009.191. PMID: 20065991. Exclusion: 4. [PubMed: 20065991] [CrossRef]
396.
Harvey LA, Glinsky JV, Bowden JL. The effectiveness of 22 commonly administered physiotherapy interventions for people with spinal cord injury: a systematic review. Spinal Cord. 2016 Nov;54(11):914–23. doi: 10.1038/sc.2016.95. PMID: 27349607. Exclusion: 2. [PubMed: 27349607] [CrossRef]
397.
Harvey LA, Herbert RD, Glinsky J, et al. Effects of 6 months of regular passive movements on ankle joint mobility in people with spinal cord injury: a randomized controlled trial. Spinal Cord. 2009 Jan;47(1):62–6. doi: 10.1038/sc.2008.71. PMID: 18574489. Exclusion: 4. [PubMed: 18574489] [CrossRef]
398.
Harvey LA, Katalinic OM, Herbert RD, et al. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2017 Jan 9;1 doi: 10.1002/14651858.CD007455.pub3. PMID: 28146605. Exclusion: 4. [PMC free article: PMC6464268] [PubMed: 28146605] [CrossRef]
399.
Harvey LA, Lin CW, Glinsky JV, et al. The effectiveness of physical interventions for people with spinal cord injuries: a systematic review. Spinal Cord. 2009 Mar;47(3):184–95. doi: 10.1038/sc.2008.100. PMID: 18725889. Exclusion: 2. [PubMed: 18725889] [CrossRef]
400.
Hasnan N, Ektas N, Tanhoffer AI, et al. Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury. Med Sci Sports Exerc. 2013 Jun;45(6):1131–8. doi: 10.1249/MSS.0b013e3182805d5a. PMID: 23685444. Exclusion: 11. [PubMed: 23685444] [CrossRef]
401.
Hassani S, Joseph K, Ann F, et al. Assessment of strength and function in ambulatory children with cerebral palsy by GMFCS level and age: a cross-sectional study. Crit Rev Phys Rehabil Med. 2011;23(1–4):1–14. doi: 10.1615/CritRevPhysRehabilMed.v23.i1-4.10. Exclusion: 4. [CrossRef]
402.
Hayes HA, Gappmaier E, LaStayo PC. Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial. J Neurol Phys Ther. 2011 Mar;35(1):2–10. doi: 10.1097/NPT.0b013e31820b5a9d. PMID: 21475078. Exclusion: 11. [PubMed: 21475078] [CrossRef]
403.
Hayes HB, Jayaraman A, Herrmann M, et al. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014 Jan 14;82(2):104–13. doi: 10.1212/01.WNL.0000437416.34298.43. PMID: 24285617. Exclusion: 11. [PMC free article: PMC3897437] [PubMed: 24285617] [CrossRef]
404.
Hayes SC, James Wilcox CR, Forbes White HS, et al. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: a systematic review. J Spinal Cord Med. 2018 Sep;41(5):529–43. doi: 10.1080/10790268.2018.1426236. PMID: 29400988. Exclusion: 2. [PMC free article: PMC6117598] [PubMed: 29400988] [CrossRef]
405.
Hebert JR, Corboy JR, Manago MM, et al. Effects of vestibular rehabilitation on multiple sclerosis-related fatigue and upright postural control: a randomized controlled trial. Ann Neurol. 2012 Dec;72(S16):S34–5. doi: 10.1002/ana.23769. Exclusion: 10. [CrossRef]
406.
Hebert JR, Corboy JR, Vollmer T, et al. Efficacy of balance and eye-movement exercises for persons with multiple sclerosis (BEEMS). Neurology. 2018 Feb 27;90(9):797–807. doi: 10.1212/wnl.0000000000005013. PMID: 29386274. Exclusion: 4. [PubMed: 29386274] [CrossRef]
407.
Hegarty AK, Kurz MJ, Stuberg W, et al. Changes in mobility and muscle function of children with cerebral palsy after gait training: a pilot study. J Appl Biomech. 2016 Oct;32(5):469–86. doi: 10.1123/jab.2015-0311. PMID: 27348240. Exclusion: 7. [PubMed: 27348240] [CrossRef]
408.
Heine M, van de Port I, Rietberg MB, et al. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015 Sep 11(9) doi: 10.1002/14651858.CD009956.pub2. PMID: 26358158. Exclusion: 6. [PMC free article: PMC9554249] [PubMed: 26358158] [CrossRef]
409.
Hemachithra C, Meena N, Ramanathan R, et al. Immediate effect of horse riding simulator on adductor spasticity in children with cerebral palsy: A randomized controlled trial. Physiother Res Int. 2020 Jan;25(1) doi: 10.1002/pri.1809. PMID: 31502387. Exclusion: 4. [PubMed: 31502387] [CrossRef]
410.
Heneidy WE, Eltalawy HA, Kassem HI, et al. Impact of task-oriented training on balance in spastic hemiplegic cerebral palsied children. Physiotherapy quarterly. 2020;28(2):52–6. Exclusion: 14.
411.
Hernandez ME, Holtzer R, Chaparro G, et al. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J Neurol Sci. 2016 Nov 15;370:277–83. doi: 10.1016/j.jns.2016.10.002. PMID: 27772776. Exclusion: 11. [PubMed: 27772776] [CrossRef]
412.
Herring MP, Fleming KM, Hayes SP, et al. Moderators of exercise effects on depressive symptoms in multiple sclerosis: a meta-regression. Am J Prev Med. 2017 Oct;53(4):508–18. doi: 10.1016/j.amepre.2017.04.011. PMID: 28602542. Exclusion: 12. [PubMed: 28602542] [CrossRef]
413.
Hilderley AJ, Fehlings D, Lee GW, et al. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled cross-over trial. Springerplus. 2016;5(1):1886. doi: 10.1186/s40064-016-3535-0. PMID: 27843743. Exclusion: 10. [PMC free article: PMC5084143] [PubMed: 27843743] [CrossRef]
414.
Hilderley AJ, Fehlings D, Taylor M, et al. BeFAST or BeSTRONG: a randomized control trial comparing sports skill training to lower extremity strength training for children who have cerebral palsy. Dev Med Child Neurol. 2018 Oct;60:30-. doi: 10.1111/dmcn.44_14017. Exclusion: 10. [CrossRef]
415.
Hilgers C, Mundermann A, Riehle H, et al. Effects of whole-body vibration training on physical function in patients with multiple sclerosis. NeuroRehabilitation. 2013;32(3):655–63. doi: 10.3233/NRE-130888. PMID: 23648620. Exclusion: 4. [PubMed: 23648620] [CrossRef]
416.
Hiremath SV, Amiri AM, Thapa-Chhetry B, et al. Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: A pilot study. PLoS One. 2019;14(10):e0223762. doi: 10.1371/journal.pone.0223762. PMID: 31613909. Exclusion: 7. [PMC free article: PMC6793862] [PubMed: 31613909] [CrossRef]
417.
Hiremath SV, Amiri AM, Thapa-Chhetry B, et al. Correction: Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: A pilot study. PLoS One. 2019;14(11) doi: 10.1371/journal.pone.0225490. PMID: 31725792. Exclusion: 10. [PMC free article: PMC6855631] [PubMed: 31725792] [CrossRef]
418.
Hoang P, Lord S, Gandevia S, et al. Effects of a home-based step training program on balance, stepping, cognition and functional performance in people with multiple sclerosis-a randomized controlled trial. Mult Scler J Exp Transl Clin. 2015 Oct 21(14):11. doi: 10.1177/1352458515616527. Exclusion: 4. [PubMed: 25921035] [CrossRef]
419.
Hoang P, Schoene D, Gandevia S, et al. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis--a randomized controlled trial. Mult Scler. 2016 Jan;22(1):94–103. doi: 10.1177/1352458515579442. PMID: 25921035. Exclusion: 4. [PubMed: 25921035] [CrossRef]
420.
Hoare B, Imms C, Villanueva E, et al. Intensive therapy following upper limb botulinum toxin A injection in young children with unilateral cerebral palsy: a randomized trial. Dev Med Child Neurol. 2013 Mar;55(3):238–47. doi: 10.1111/dmcn.12054. PMID: 23236956. Exclusion: 4. [PubMed: 23236956] [CrossRef]
421.
Hobbs D. Can a novel ‘serious gaming’ technology improve upper limb sensation and function in children with cerebral palsy? A population-based cohort study and pilot randomised controlled trial. Dev Med Child Neurol. 2020 or 2018?;62:74. doi: 10.1111/dmcn.14469. Exclusion: 11. [CrossRef]
422.
Hoekstra F, van Nunen MP, Gerrits KH, et al. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. J Rehabil Res Dev. 2013;50(10):1411–22. doi: 10.1682/JRRD.2012.10.0186. PMID: 24699976. Exclusion: 11. [PubMed: 24699976] [CrossRef]
423.
Hoekstra S, Valent L, Gobets D, et al. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users. Disabil Rehabil. 2017 Aug;39(16):1581–8. doi: 10.1080/09638288.2016.1200677. PMID: 27385560. Exclusion: 8. [PubMed: 27385560] [CrossRef]
424.
Holleran CL, Hennessey PW, Leddy AL, et al. High-intensity variable stepping training in patients with motor incomplete spinal cord Injury: a case series. J Neurol Phys Ther. 2018 Apr;42(2):94–101. doi: 10.1097/NPT.0000000000000217. PMID: 29547484. Exclusion: 7. [PMC free article: PMC7128539] [PubMed: 29547484] [CrossRef]
425.
Horner-Johnson W, Drum CE, Abdullah N. A randomized trial of a health promotion intervention for adults with disabilities. Disabil Health J. 2011 Oct;4(4):254–61. doi: 10.1016/j.dhjo.2011.06.003. PMID: 22014673. Exclusion: 3. [PubMed: 22014673] [CrossRef]
426.
Hosl M, Bohm H, Eck J, et al. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic cerebral palsy. Gait Posture. 2018 Sep;65:121–8. doi: 10.1016/j.gaitpost.2018.07.171. PMID: 30055388. Exclusion: 11. [PubMed: 30558918] [CrossRef]
427.
Hosseini SS, Rajabi H, Sahraian MA, et al. Effects of 8-week home-based yoga and resistance training on muscle strength, functional capacity and balance in patients with multiple sclerosis: a randomized controlled study. Asian J Sports Med. 2018;9(3):1–7. doi: 10.5812/asjsm.68807. Exclusion: 11. [CrossRef]
428.
Hou J, Nelson R, Mohammad N, et al. Effect of Simultaneous Combined Treadmill Training and Magnetic Stimulation on Spasticity and Gait Impairments after Cervical Spinal Cord Injury. J Neurotrauma. 2020 Jul 20;20:20. doi: 10.1089/neu.2019.6961. PMID: 32340533. Exclusion: 15. [PubMed: 32340533] [CrossRef]
429.
Hoyme D. Body weight supported treadmill training versus gait trainer in young children with cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2017;78(4-B(E)):No Pagination Specified. Exclusion: 12.
430.
Hsieh YL, Yang CC, Sun SH, et al. Effects of hippotherapy on body functions, activities and participation in children with cerebral palsy based on ICF-CY assessments. Disabil Rehabil. 2017 Aug;39(17):1703–13. doi: 10.1080/09638288.2016.1207108. PMID: 27440177. Exclusion: 11. [PubMed: 27440177] [CrossRef]
431.
Hsu CW, Kang YN, Tseng SH. Effects of therapeutic exercise intensity on cerebral palsy outcomes: a systematic review with meta-regression of randomized clinical trials. Front Neurol. 2019;10:657. doi: 10.3389/fneur.2019.00657. PMID: 31293501. Exclusion: 12. [PMC free article: PMC6598595] [PubMed: 31293501] [CrossRef]
432.
Huang M, Liao LR, Pang MY. Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review. Clin Rehabil. 2017 Jan;31(1):23–33. doi: 10.1177/0269215515621117. PMID: 26658333. Exclusion: 12. [PubMed: 26658333] [CrossRef]
433.
Hubbard EA. The acute effects of high-intensity interval and continuous aerobic exercise on physiological and functional outcomes in persons with multiple sclerosis. Dissertation abstracts International: Section B: The Sciences and Engineering. 2019;80(5-B(E)):No Pagination Specified. Exclusion: 10.
434.
Hubli M, Currie KD, West CR, et al. Physical exercise improves arterial stiffness after spinal cord injury. J Spinal Cord Med. 2014 Nov;37(6):782–5. doi: 10.1179/2045772314Y.0000000232. PMID: 24976366. Exclusion: 6. [PMC free article: PMC4231967] [PubMed: 24976366] [CrossRef]
435.
Hughes L, Donnelly A, Rainsford G, et al. The clinical outcomes of augmenting an exercise programme with neuromuscular electrical stimulation in people with multiple sclerosis. Physiotherapy. 2011;97. Exclusion: 10.
436.
Hughes L, Donnelly A, Rainsford G, et al. Augmenting an exercise programme with neuromuscular electrical stimulation for people with multiple sclerosis-the effect on strength and fatigue. Physiotherapy. 2011;97. Exclusion: 10.
437.
Hugos CL, Bourdette D, Chen Y, et al. A group-delivered self-management program reduces spasticity in people with multiple sclerosis: a randomized, controlled pilot trial. Mult Scler J Exp Transl Clin. 2017 Mar 23;3(1) doi: 10.1177/2055217317699993. PMID: 28607753. Exclusion: 4. [PMC free article: PMC5433226] [PubMed: 28607753] [CrossRef]
438.
Hugos CL, Cameron MH. MS Spasticity: Take Control (STC) for ambulatory adults: protocol for a randomized controlled trial. BMC Neurol. 2020 Oct 07;20(1):368. doi: 10.1186/s12883-020-01902-1. PMID: 33028236. Exclusion: 4. [PMC free article: PMC7541326] [PubMed: 33028236] [CrossRef]
439.
Hugos CL, Cameron MH, Chen Y, et al. Effects of a group spasticity management program versus usual care in people with multiple sclerosis: a randomized controlled pilot trial. Multiple sclerosis. Conference. 2017 Feb;23(1):88–9. doi: 10.1177/1352458517693959. Exclusion: 10. [CrossRef]
440.
Hugos CL, Chen Z, Chen Y, et al. A multicenter randomized controlled trial of two group education programs for fatigue in multiple sclerosis: Short- and medium-term benefits. Mult Scler. 2019 02;25(2):275–85. doi: 10.1177/1352458517745723. PMID: 29226778. Exclusion: 4. [PubMed: 29226778] [CrossRef]
441.
Hugos CL, Frankel D, Tompkins SA, et al. Community delivery of a comprehensive fall-prevention program in people with multiple sclerosis: A retrospective observational study. Int J MS Care. 2016 Jan–Feb;18(1):42–8. doi: 10.7224/1537-2073.2014-086. PMID: 26917997. Exclusion: 4. [PMC free article: PMC4766950] [PubMed: 26917997] [CrossRef]
442.
Huisinga JM, Filipi ML, Stergiou N. Elliptical exercise improves fatigue ratings and quality of life in patients with multiple sclerosis. J Rehabil Res Dev. 2011;48(7):881–90. PMID: 21938671. Exclusion: 11. [PubMed: 21938671]
443.
Huisinga JM, Filipi ML, Stergiou N. Supervised resistance training results in changes in postural control in patients with multiple sclerosis. Motor Control. 2012 Jan;16(1):50–63. PMID: 22402220. Exclusion: 11. [PubMed: 22402220]
444.
Huisinga JM, Schmid KK, Filipi ML, et al. Persons with multiple sclerosis show altered joint kinetics during walking after participating in elliptical exercise. J Appl Biomech. 2012 Jul;28(3):249–57. PMID: 21975419. Exclusion: 11. [PubMed: 21975419]
445.
Hung Y-C, Spingarn A, Friel KM, et al. Intensive Unimanual Training Leads to Better Reaching and Head Control than Bimanual Training in Children with Unilateral Cerebral Palsy. Phys Occup Ther Pediatr. 2020;40(5):491–505. doi: 10.1080/01942638.2020.1712513. Exclusion: 4. [PubMed: 31942818] [CrossRef]
446.
Hussein ZA, Abd-Elwahab MS, El-Shennawy SAW. Effect of arm cycling on gait of children with hemiplegic cerebral palsy. Egypt J Med Hum Genet. 2014 Jul;15(3):273–9. doi: 10.1016/j.ejmhg.2014.02.008. Exclusion: 14. [CrossRef]
447.
Hussein ZA, Salem IA, Ali MS. Effect of simultaneous proprioceptive-visual feedback on gait of children with spastic diplegic cerebral palsy. J Musculoskelet Neuronal Interact. 2019 12 01;19(4):500–6. PMID: 31789301. Exclusion: 14. [PMC free article: PMC6944808] [PubMed: 31789301]
448.
Hutchinson MJ, MacDonald MJ, Eston R, et al. Peak oxygen uptake measured during a perceptually-regulated exercise test is reliable in community-based manual wheelchair users. J Sports Sci. 2019 Mar;37(6):701–7. doi: 10.1080/02640414.2018.1522941. PMID: 30547732. Exclusion: 4. [PubMed: 30547732] [CrossRef]
449.
Hutchinson MJ, Valentino SE, Totosy de Zepetnek JO, et al. Perceptually regulated training does not influence the differentiated RPE response following 16-weeks of aerobic exercise in adults with spinal cord injury. Appl Physiol Nutr Metab. 2019 Jun 28;28:28. doi: 10.1139/apnm-2019-0062. PMID: 31251892. Exclusion: 6. [PubMed: 31251892] [CrossRef]
450.
Hutzler Y, Lamela Rodriguez B, Mendoza Laiz N, et al. The effects of an exercise training program on hand and wrist strength, and function, and activities of daily living, in adults with severe cerebral palsy. Res Dev Disabil. 2013 Dec;34(12):4343–54. doi: 10.1016/j.ridd.2013.09.015. PMID: 24145046. Exclusion: 11. [PubMed: 24145046] [CrossRef]
451.
Hwang J, Shin Y, Park JH, et al. Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia. NeuroRehabilitation. 2018;42(4):481–9. doi: 10.3233/NRE-172226. PMID: 29660947. Exclusion: 3. [PubMed: 29660947] [CrossRef]
452.
Hwang S, Kim HR, Han ZA, et al. Improved gait speed after robot-assisted gait training in patients with motor incomplete spinal cord injury: a preliminary study. Ann Rehabil Med. 2017 Feb;41(1):34–41. doi: 10.5535/arm.2017.41.1.34. PMID: 28289633. Exclusion: 11. [PMC free article: PMC5344824] [PubMed: 28289633] [CrossRef]
453.
Hwang YS, Kwon JY. Effects of modified constraint-induced movement therapy in real-world arm use in young children with unilateral cerebral palsy: A single-blind randomized trial. Neuropediatrics. 2020 Mar 06;06:06. doi: 10.1055/s-0040-1702220. PMID: 32143221. Exclusion: 4. [PubMed: 32143221] [CrossRef]
454.
Hyungkyu K, Jinhwa J, Jaeho Y. Effects of hippotherapy on the sitting balance of children with cerebral palsy: a randomized control trial. J Phys Ther Sci. 2012;24(9):833–6. doi: 10.1589/jpts.24.833. Exclusion: 6. [CrossRef]
455.
Ibitoye MO, Hamzaid NA, Hasnan N, et al. Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: a systematic review. PLoS One. 2016;11(2) doi: 10.1371/journal.pone.0149024. PMID: 26859296. Exclusion: 6. [PMC free article: PMC4747522] [PubMed: 26859296] [CrossRef]
456.
Ibrahim MM, Eid MA, Moawd SA. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children. Egypt J Med Hum Genet. 2014 Apr;15(2):173–9. doi: 10.1016/j.ejmhg.2014.02.007. Exclusion: 14. [CrossRef]
457.
Ishihara M, Higuchi Y, Yonetsu R, et al. Plantarflexor training affects propulsive force generation during gait in children with spastic hemiplegic cerebral palsy: a pilot study. J Phys Ther Sci. 2015 May;27(5):1283–6. doi: 10.1589/jpts.27.1283. PMID: 26157201. Exclusion: 7. [PMC free article: PMC4483379] [PubMed: 26157201] [CrossRef]
458.
Iturricastillo A, Yanci J, Granados C. Neuromuscular responses and physiological changes during small-sided games in wheelchair basketball. Adapt Phys Act Q. 2018 Jan 1;35(1):20–35. doi: 10.1123/apaq.2016-0139. PMID: 29256634. Exclusion: 11. [PubMed: 29256634] [CrossRef]
459.
Jackel N, Tallner A, Virsevci O, et al. Effects of internet-based exercise (e-training) on fatigue and other patient reported behavioural outcomes (PRO) in patients with relapsing-remitting multiple sclerosis (RRMS). Mult Scler J Exp Transl Clin. 2015 Oct;21(S11):616. doi: 10.1177/1352458515602642. Exclusion: 7. [CrossRef]
460.
Jackson K, Bigelow KE, Cooper C, et al. Effectiveness of group kickboxing as a means to improve gait and balance in individuals with multiple sclerosis. Int J MS Care. 2011 Winter;13(4):201. Exclusion: 7.
461.
Jackson K, Edginton-Bigelow K, Bowsheir C, et al. Feasibility and effects of a group kickboxing program for individuals with multiple sclerosis: a pilot report. J Bodywork Mov Ther. 2012 Jan;16(1):7–13. doi: 10.1016/j.jbmt.2010.09.002. PMID: 22196421. Exclusion: 11. [PubMed: 22196421] [CrossRef]
462.
Jackson KJ, Merriman HL, Vanderburgh PM, et al. Acute effects of whole-body vibration on lower extremity muscle performance in persons with multiple sclerosis. J Neurol Phys Ther. 2008 Dec;32(4):171–6. doi: 10.1097/NPT.0b013e31818ee760. PMID: 19265758. Exclusion: 11. [PubMed: 19265758] [CrossRef]
463.
Jacobs PL. Effects of resistance and endurance training in persons with paraplegia. Med Sci Sports Exerc. 2009 May;41(5):992–7. doi: 10.1249/MSS.0b013e318191757f. PMID: 19346989. Exclusion: 11. [PubMed: 19346989] [CrossRef]
464.
James S, Ziviani J, Ware RS, et al. Randomized controlled trial of web-based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev Med Child Neurol. 2015 Jun;57(6):530–8. doi: 10.1111/dmcn.12705. PMID: 25955443. Exclusion: 4. [PubMed: 25955443] [CrossRef]
465.
Jang CH, Joo MC, Noh SE, et al. Effects of hippotherapy on psychosocial aspects in children with cerebral palsy and their caregivers: a pilot study. Ann Rehabil Med. 2016 Apr;40(2):230–6. doi: 10.5535/arm.2016.40.2.230. PMID: 27152272. Exclusion: 11. [PMC free article: PMC4855116] [PubMed: 27152272] [CrossRef]
466.
Jansen O, Grasmuecke D, Meindl RC, et al. Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: proof of concept; the results in 21 patients. World Neurosurg. 2018 Feb;110:73–8. doi: 10.1016/j.wneu.2017.10.080. PMID: 29081392. Exclusion: 8. [PubMed: 29081392] [CrossRef]
467.
Jansen O, Schildhauer TA, Meindl RC, et al. Functional outcome of neurologic-controlled HAL-exoskeletal neurorehabilitation in chronic spinal cord injury: a pilot with one year treatment and variable treatment frequency. Global Spine J. 2017 Dec;7(8):735–43. doi: 10.1177/2192568217713754. PMID: 29238636. Exclusion: 11. [PMC free article: PMC5722001] [PubMed: 29238636] [CrossRef]
468.
Jaume-i-Capo A, Martinez-Bueso P, Moya-Alcover B, et al. Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):419–27. doi: 10.1109/TNSRE.2013.2279155. PMID: 24122561. Exclusion: 11. [PubMed: 24122561] [CrossRef]
469.
Jayaraman A, Thompson CK, Rymer WZ, et al. Short-term maximal-intensity resistance training increases volitional function and strength in chronic incomplete spinal cord injury: a pilot study. J Neurol Phys Ther. 2013 Sep;37(3):112–7. doi: 10.1097/NPT.0b013e31828390a1. PMID: 23673372. Exclusion: 11. [PubMed: 23673372] [CrossRef]
470.
Jayaraman P, Puckree T. The effects of a 12-week program of static upper extremity weight bearing exercises on weight bearing in children with hemiplegic type of cerebral palsy. S Afr J Physiother. 2010;66(2):22–9. Exclusion: 11.
471.
Jayaraman P, Puckree T. The effect of upper extremity weight bearing on upper extremity function in children with hemiplegic type of cerebral palsy. S Afr J Physiother. 2010;66(1):15–20. doi: 10.4102/sajp.v66i1.58. Exclusion: 11. [CrossRef]
472.
Jelsma J, Pronk M, Ferguson G, et al. The effect of the Nintendo Wii Fit on balance control and gross motor function of children with spastic hemiplegic cerebral palsy. Dev Neurorehabil. 2013;16(1):27–37. doi: 10.3109/17518423.2012.711781. PMID: 23030836. Exclusion: 11. [PubMed: 23030836] [CrossRef]
473.
Jeng SC, Yeh KK, Liu WY, et al. A physical fitness follow-up in children with cerebral palsy receiving 12-week individualized exercise training. Res Dev Disabil. 2013 Nov;34(11):4017–24. doi: 10.1016/j.ridd.2013.08.032. PMID: 24036390. Exclusion: 11. [PubMed: 24036390] [CrossRef]
474.
Jeong JH, Yoo WG. Effects of air stacking on pulmonary function and peak cough flow in patients with cervical spinal cord injury. J Phys Ther Sci. 2015 Jun;27(6):1951–2. doi: 10.1589/jpts.27.1951. PMID: 26180355. Exclusion: 11. [PMC free article: PMC4500018] [PubMed: 26180355] [CrossRef]
475.
Ji YH, Sun BD, Zhang J, et al. Therapeutic effect of scalp-acupuncture combined with exercise therapy on spastic cerebral palsy of the child. Zhongguo zhenjiu. 2008 Oct;28(10):723–6. PMID: 18972727. Exclusion: 13. [PubMed: 18972727]
476.
Jimenez-Morales RM, Herrera-Jimenez LF, Macias-Delgado Y, et al. Cognitive training combined with aerobic exercises in multiple sclerosis patients: a pilot study. Rev Neurol. 2017 Jun 1;64(11):489–95. PMID: 28555454. Exclusion: 13. [PubMed: 28555454]
477.
Jo HJ, Perez MA. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain. 2020 May 01;143(5):1368–82. doi: 10.1093/brain/awaa052. PMID: 32355959. Exclusion: 6. [PMC free article: PMC7534104] [PubMed: 32355959] [CrossRef]
478.
Johnston TE, Betz RR, Lauer RT. Impact of cycling on hip subluxation in children with spinal cord injury. J Pediatr Orthop. 2009 Jun;29(4):402–5. doi: 10.1097/BPO.0b013e3181a5ec3b. PMID: 19461385. Exclusion: 4. [PubMed: 19461385] [CrossRef]
479.
Johnston TE, Marino RJ, Oleson CV, et al. Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord Injury: a pilot study. Arch Phys Med Rehabil. 2016 Sep;97(9):1413–22. doi: 10.1016/j.apmr.2015.11.014. PMID: 26705884. Exclusion: 11. [PubMed: 26705884] [CrossRef]
480.
Johnston TE, Modlesky CM, Betz RR, et al. Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil. 2011 Dec;92(12):1937–43. doi: 10.1016/j.apmr.2011.06.031. PMID: 22133240. Exclusion: 4. [PubMed: 22133240] [CrossRef]
481.
Johnston TE, Smith BT, Mulcahey MJ, et al. A randomized controlled trial on the effects of cycling with and without electrical stimulation on cardiorespiratory and vascular health in children with spinal cord injury. Arch Phys Med Rehabil. 2009 Aug;90(8):1379–88. doi: 10.1016/j.apmr.2009.02.018. PMID: 19651272. Exclusion: 4. [PubMed: 19651272] [CrossRef]
482.
Jolk C, Alcantara R, Bernhardt L, et al. Effects of different physical activities on the walking capacity for people with MS. Mult Scler J Exp Transl Clin. 2012 Oct;18(S4):482–3. doi: 10.1177/1352458512459021. Exclusion: 7. [CrossRef]
483.
Jolk C, Alcantara R, Bernhardt L, et al. Effects of 24 weeks progressive resistance training in comparison to core and stability training performed in groups on muscle performance, balance and spasticity in people with multiple sclerosis. Mult Scler J Exp Transl Clin. 2012 Oct;18(4 SUPPL. 1):250–1. doi: 10.1177/1352458512459019. Exclusion: 7. [CrossRef]
484.
Jonsdottir J, Bertoni R, Lawo M, et al. Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlled pilot study. Mult Scler Relat Disord. 2018 Jan;19:25–9. doi: 10.1016/j.msard.2017.10.010. PMID: 29112939. Exclusion: 11. [PubMed: 29112939] [CrossRef]
485.
Jorgensen ML, Dalgas U, Kjolhede T, et al. Serum brain-derived neurotrophic factor is not a mediator of neuroplasticity induced by resistance training in persons with multiple sclerosis. Mult Scler. 2018;Conference: 23rd annual RIMS conference. 2018. Netherlands 24(6):874. doi: 10.1016/j.exger.2017.03.019. PMID: 28392271. Exclusion: 10. [CrossRef]
486.
Jorissen W, Vanmierlo T, Wens I, et al. Twelve weeks of medium-intensity exercise therapy affects the lipoprotein profile of multiple sclerosis patients. Int J Mol Sci. 2018 Jan 8;19(1) doi: 10.3390/ijms19010193. PMID: 29316715. Exclusion: 8. [PMC free article: PMC5796142] [PubMed: 29316715] [CrossRef]
487.
Juckes FM, Marceniuk G, Seary C, et al. A cohort study of functional electrical stimulation in people with multiple sclerosis demonstrating improvements in quality of life and cost-effectiveness. Clin Rehabil. 2019 Jul;33(7):1163–70. doi: 10.1177/0269215519837326. PMID: 30971113. Exclusion: 4. [PubMed: 30971113] [CrossRef]
488.
Jung JW, Her JG, Ko J. Effect of strength training of ankle plantarflexors on selective voluntary motor control, gait parameters, and gross motor function of children with cerebral palsy. J Phys Ther Sci. 2013 Oct;25(10):1259–63. doi: 10.1589/jpts.25.1259. PMID: 24259771. Exclusion: 11. [PMC free article: PMC3820204] [PubMed: 24259771] [CrossRef]
489.
Kahraman T, Ozdogar AT, Yigit P, et al. Feasibility of a 6-Month yoga program to improve the physical and psychosocial status of persons with multiple sclerosis and their family members. Explore (NY). 2018 Jan – Feb;14(1):36–43. doi: 10.1016/j.explore.2017.07.006. PMID: 29174060. Exclusion: 11. [PubMed: 29174060] [CrossRef]
490.
Kahraman T, Savci S, Coskuner-Poyraz E, et al. Determinants of physical activity in minimally impaired people with multiple sclerosis. Clin Neurol Neurosurg. 2015;138:20–4. doi: 10.1016/j.clineuro.2015.07.018. PMID: 26264722. Exclusion: 4. [PubMed: 26264722] [CrossRef]
491.
Kakade NY, Kanase SB. Effect of core stability and functional mobility exercises on muscle strength after lumbar spinal cord injury. Indian J Public Health Res Dev. 2020;11(3):996–1001. Exclusion: 8.
492.
Kalron A, Frid L, Berkowitz S, et al. Changes in gait and balance in people with multiple sclerosis attending a 12-week pilates exercise program. Multiple sclerosis. Conference: 32nd congress of the european committee for treatment and research in multiple sclerosis, ECTRIMS. 2016 Sep;22(S3):396. Exclusion: 10.
493.
Kannan M, Hildebrand A, Hugos CL, et al. Evaluation of a web-based fall prevention program among people with multiple sclerosis. Mult Scler Relat Disord. 2019 Jun;31:151–6. doi: 10.1016/j.msard.2019.04.015. PMID: 31004969. Exclusion: 4. [PMC free article: PMC6948349] [PubMed: 31004969] [CrossRef]
494.
Karami F, Afrasiabifar A, Doulatabad SN. Comparing the effectiveness of vestibular rehabilitation and frenkel exercise on fatigue reduction in patients with multiple sclerosis: a randomized controlled trial. Iran Red Crescent Med J. 2018;20(12) doi: 10.5812/ircmj.68913. Exclusion: 6. [CrossRef]
495.
Karbandi S, Gorji MA, Mazloum SR, et al. Effectiveness of group versus individual yoga exercises on fatigue of patients with multiple sclerosis. N Am J Med Sci. 2015 Jun;7(6):266–70. doi: 10.4103/1947-2714.159332. PMID: 26199923. Exclusion: 6. [PMC free article: PMC4488993] [PubMed: 26199923] [CrossRef]
496.
Karelis AD, Carvalho LP, Castillo MJ, et al. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017 Jan 19;49(1):84–7. doi: 10.2340/16501977-2173. PMID: 27973679. Exclusion: 11. [PubMed: 27973679] [CrossRef]
497.
Kargarfard M, Etemadifar M, Baker P, et al. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. Arch Phys Med Rehabil. 2012 Oct;93(10):1701–8. doi: 10.1016/j.apmr.2012.05.006. PMID: 22609300. Exclusion: 11. [PubMed: 22609300] [CrossRef]
498.
Karpatkin H, Cohen ET, Rzetelny A, et al. Effects of intermittent versus continuous walking on distance walked and fatigue in persons with multiple sclerosis: a randomized crossover trial. J Neurol Phys Ther. 2015 Jul;39(3):172–8. doi: 10.1097/NPT.0000000000000091. PMID: 26050076. Exclusion: 11. [PubMed: 26050076] [CrossRef]
499.
Karpatkin HI, Cohen ET, Klein S, et al. The effect of maximal strength training on strength, walking, and balance in people with multiple sclerosis: a pilot study. Mult Scler Int. 2016;2016:5235971. doi: 10.1155/2016/5235971. PMID: 28116161. Exclusion: 11. [PMC free article: PMC5220488] [PubMed: 28116161] [CrossRef]
500.
Kassee C, Hunt C, Holmes MWR, et al. Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. J Pediatr Rehabil Med. 2017 May 17;10(2):145–54. doi: 10.3233/PRM-170439. PMID: 28582885. Exclusion: 4. [PubMed: 28582885] [CrossRef]
501.
Kasser SL, Jacobs JV, Ford M, et al. Effects of balance-specific exercises on balance, physical activity and quality of life in adults with multiple sclerosis: a pilot investigation. Disabil Rehabil. 2015;37(24):2238–49. doi: 10.3109/09638288.2015.1019008. PMID: 25738911. Exclusion: 11. [PubMed: 25738911] [CrossRef]
502.
Katusic A, Alimovic S, Mejaski-Bosnjak V. The effect of vibration therapy on spasticity and motor function in children with cerebral palsy: a randomized controlled trial. NeuroRehabilitation. 2013;32(1):1–8. doi: 10.3233/NRE-130817. PMID: 23422453. Exclusion: 4. [PubMed: 23422453] [CrossRef]
503.
Katz-Leurer M, Rotem H, Keren O, et al. The effects of a ‘home-based’ task-oriented exercise programme on motor and balance performance in children with spastic cerebral palsy and severe traumatic brain injury. Clin Rehabil. 2009 Aug;23(8):714–24. doi: 10.1177/0269215509335293. PMID: 19506005. Exclusion: 3. [PubMed: 19506005] [CrossRef]
504.
Keles MN, Elbasan B, Apaydin U, et al. Effects of inspiratory muscle training in children with cerebral palsy: a randomized controlled trial. Braz J Phys Ther. 2018 Nov;22(6):493–501. doi: 10.1016/j.bjpt.2018.03.010. PMID: 29636305. Exclusion: 4. [PMC free article: PMC6235748] [PubMed: 29636305] [CrossRef]
505.
Kemp BJ, Bateham AL, Mulroy SJ, et al. Effects of reduction in shoulder pain on quality of life and community activities among people living long-term with SCI paraplegia: a randomized control trial. J Spinal Cord Med. 2011;34(3):278–84. doi: 10.1179/107902611X12972448729486. PMID: 21756566. Exclusion: 4. [PMC free article: PMC3127364] [PubMed: 21756566] [CrossRef]
506.
Kenyon LKPDPP, Westman MPD, Hefferan APD, et al. A home-based body weight supported treadmill training program for children with cerebral palsy: a case series. Physiother Theory Pract. 2017 Jul;33(7):576–85. doi: 10.1080/09593985.2017.1325956. PMID: 28557625. Exclusion: 11. [PubMed: 28557625] [CrossRef]
507.
Kersten S, Mahli M, Drosselmeyer J, et al. A pilot study of an exercise-based patient education program in people with multiple sclerosis. Mult Scler Int. 2014;2014:306878. doi: 10.1155/2014/306878. PMID: 25587449. Exclusion: 11. [PMC free article: PMC4283388] [PubMed: 25587449] [CrossRef]
508.
Keser I, Kirdi N, Meric A, et al. Comparing routine neurorehabilitation program with trunk exercises based on Bobath concept in multiple sclerosis: pilot study. J Rehabil Res Dev. 2013;50(1):133–40. PMID: 23516089. Exclusion: 11. [PubMed: 23516089]
509.
Keytsman C, Hansen D, Wens I, et al. Impact of high-intensity concurrent training on cardiovascular risk factors in persons with multiple sclerosis - pilot study. Disabil Rehabil. 2017 Oct 27;41(4):430–5. doi: 10.1080/09638288.2017.1395086. PMID: 29076386. Exclusion: 11. [PubMed: 29076386] [CrossRef]
510.
Keytsman C, Van Noten P, Spaas J, et al. Periodized home-based training: a new strategy to improve high intensity exercise therapy adherence in mildly affected patients with multiple sclerosis. Mult Scler Relat Disord. 2019;28:91–7. doi: 10.1016/j.msard.2018.12.018. PMID: 30576848. Exclusion: 7. [PubMed: 30576848] [CrossRef]
511.
Khan AS, Patrick SK, Roy FD, et al. Training-specific neural plasticity in spinal reflexes after incomplete spinal cord injury. Neural Plast. 2016;2016:6718763. doi: 10.1155/2016/6718763. PMID: 27725887. Exclusion: 11. [PMC free article: PMC5048024] [PubMed: 27725887] [CrossRef]
512.
Khanal D. Effectiveness of pelvic proprioceptive neuromuscular facilitation technique on facilitation of trunk movement in hemiparetic stroke patients. 4th Euro-Global Physiotherapy Congress 2017. December 07–08, 2017. Rome, Italy. J Phys Ther Sports Med. 2017. Exclusion: 10.
513.
Khichadiya PM, Kanase SB. Effect of specific transverse abdominal muscle strengthening and conventional therapy for trunk control in paraplegic subjects. Indian J Physiother Occup Ther. 2017;11(2):184–9. doi: 10.5958/0973-5674.2017.00058.2. Exclusion: 6. [CrossRef]
514.
Khurana M, Walia S, Noohu MM. Study on the effectiveness of virtual reality game-based training on balance and functional performance in individuals with paraplegia. Top Spinal Cord Inj Rehabil. 2017;23(3):263–70. doi: 10.1310/sci16-00003. PMID: 29339902. Exclusion: 14. [PMC free article: PMC5562034] [PubMed: 29339902] [CrossRef]
515.
Khurana S, Singh P, Razdan S. Effect of diaphragmatic breathing techniques on perceived exertion and cardiovascular variables during resistance exercises performed by tetraplegic rugby athletes. Arch Phys Med Rehabil. 2016;Conference:. 2016 american congress of rehabilitation medicine annual conference, ACRM 2016. United states. Conference start: 20161030. Conference end: 20161104 97(12):e34. Exclusion: 10.
516.
Kierkegaard M, Lundberg IE, Olsson T, et al. High-intensity resistance training in multiple sclerosis - An exploratory study of effects on immune markers in blood and cerebrospinal fluid, and on mood, fatigue, health-related quality of life, muscle strength, walking and cognition. J Neurol Sci. 2016 Mar 15;362:251–7. doi: 10.1016/j.jns.2016.01.063. PMID: 26944158. Exclusion: 11. [PubMed: 26944158] [CrossRef]
517.
Kim CY, Lee JS, Kim HD, et al. Short-term effects of respiratory muscle training combined with the abdominal drawing-in maneuver on the decreased pulmonary function of individuals with chronic spinal cord injury: a pilot randomized controlled trial. J Spinal Cord Med. 2017 Jan;40(1):17–25. doi: 10.1080/10790268.2016.1198576. PMID: 27463071. Exclusion: 4. [PMC free article: PMC5376135] [PubMed: 27463071] [CrossRef]
518.
Kim DA, Lee JA, Hwang PW, et al. The effect of comprehensive hand repetitive intensive strength training (CHRIST) using motion analysis in children with cerebral palsy. Ann Rehabil Med. 2012 Feb;36(1):39–46. doi: 10.5535/arm.2012.36.1.39. PMID: 22506234. Exclusion: 11. [PMC free article: PMC3309323] [PubMed: 22506234] [CrossRef]
519.
Kim DI, Lee H, Lee BS, et al. Effects of a 6-Week indoor hand-bike exercise program on health and fitness levels in people with spinal cord injury: a randomized controlled trial study. Arch Phys Med Rehabil. 2015 Nov;96(11):2033–40.e1. doi: 10.1016/j.apmr.2015.07.010. PMID: 26254953. Exclusion: 11. [PubMed: 26254953] [CrossRef]
520.
Kim MR, Lee BH, Park DS. Effects of combined Adeli suit and neurodevelopmental treatment in children with spastic cerebral palsy with gross motor function classification system levels I and II. Hong Kong Physiother J. 2016 Jun;34:10–8. doi: 10.1016/j.hkpj.2015.09.036. PMID: 30931022. Exclusion: 11. [PMC free article: PMC6385137] [PubMed: 30931022] [CrossRef]
521.
Kimoto M, Yonetsu R, Okada K, et al. Effect of home-based training focused on increasing maximum step length in walking function of children with cerebral palsy. Physical Therapy Reviews. 2019;24(6):358–65. doi: 10.1080/10833196.2019.1664083. Exclusion: 4. [CrossRef]
522.
Kinnett-Hopkins D, Motl R. Results of a feasibility study of a patient informed, racially tailored home-based exercise program for black persons with multiple sclerosis. Contemp Clin Trials. 2018 Oct 17;17:17. doi: 10.1016/j.cct.2018.10.009. PMID: 30342254. Exclusion: 11. [PubMed: 30342254] [CrossRef]
523.
Kjolhede T, Dalgas U, Gade AB, et al. Progressive resistance training improves muscle strength and function, but does not affect circulating cytokines for people with multiple sclerosis treated with interferon-beta. Mult Scler J Exp Transl Clin. Apr 10 21(4):526. Exclusion: 10.
524.
Kjolhede T, Siemonsen S, Wenzel D, et al. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Mult Scler. 2018 Sep;24(10):1356–65. doi: 10.1177/1352458517722645. PMID: 28752800. Exclusion: 11. [PubMed: 28752800] [CrossRef]
525.
Kjolhede T, Vissing K, de Place L, et al. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up. Mult Scler. 2015 Apr;21(5):599–611. doi: 10.1177/1352458514549402. PMID: 25257612. Exclusion: 11. [PubMed: 25257612] [CrossRef]
526.
Kjolhede T, Vissing K, Stenager E, et al. Long-term progressive resistance training improves functional capacity for people with mild-moderate multiple sclerosis: preliminary data. Mult Scler J Exp Transl Clin. 2013 Oct;19(11 SUPPL. 1):556–7. doi: 10.1177/1352458513502429. Exclusion: 7. [CrossRef]
527.
Klaren RE, Hubbard EA, Motl RW. Efficacy of a behavioral intervention for reducing sedentary behavior in persons with multiple sclerosis: a pilot examination. Am J Prev Med. 2014 Nov;47(5):613–6. doi: 10.1016/j.amepre.2014.05.036. PMID: 25070271. Exclusion: 4. [PubMed: 25070271] [CrossRef]
528.
Klingels K, Feys H, Molenaers G, et al. Randomized trial of modified constraint-induced movement therapy with and without an intensive therapy program in children with unilateral cerebral palsy. Neurorehabil Neural Repair. 2013 Nov–Dec;27(9):799–807. doi: 10.1177/1545968313496322. PMID: 23901061. Exclusion: 4. [PubMed: 23901061] [CrossRef]
529.
Knight S, Fetters L. Clinical bottom line. Intensive motor skills training program combining group and individual sessions for children with cerebral palsy. Pediatr Phys Ther. 2010;22(2):160. doi: 10.1097/PEP.0b013e3181dced27. PMID: 20473098. Exclusion: 11. [PubMed: 20473098] [CrossRef]
530.
Knights S, Graham N, Switzer L, et al. An innovative cycling exergame to promote cardiovascular fitness in youth with cerebral palsy. Dev Neurorehabil. 2016;19(2):135–40. doi: 10.3109/17518423.2014.923056. PMID: 24950349. Exclusion: 11. [PubMed: 24950349] [CrossRef]
531.
Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014 Jun 1;111(11):2264–75. doi: 10.1152/jn.00871.2013. PMID: 24598526. Exclusion: 11. [PubMed: 24598526] [CrossRef]
532.
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015 Apr 1;113(7):2447–60. doi: 10.1152/jn.00872.2014. PMID: 25609110. Exclusion: 11. [PMC free article: PMC4416619] [PubMed: 25609110] [CrossRef]
533.
Ko M-S, Doo J-H, Kim J-S, et al. Effect of whole body vibration training on gait function and activities of daily living in children with cerebral palsy. Int J Ther Rehabil. 2015;22(7):321–8. doi: 10.12968/ijtr.2015.22.7.321. Exclusion: 4. [CrossRef]
534.
Ko Y, Kim H, Chio E, et al. Do virtual reality sports games improve sports specific skills in unilateral cerebral palsy patients? Dev Med Child Neurol. 2013 Oct;55:12–3. doi: 10.1111/dmcn.12258. Exclusion: 7. [CrossRef]
535.
Kobetic R, To CS, Schnellenberger JR, et al. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62. PMID: 19675995. Exclusion: 10. [PubMed: 19675995]
536.
Kooijmans H, Post MWM, Stam HJ, et al. Effectiveness of a self-management intervention to promote an active lifestyle in persons with long-term spinal cord injury: the HABITS randomized clinical trial. Neurorehabil Neural Repair. 2017 Dec;31(12):991–1004. doi: 10.1177/1545968317736819. PMID: 29256337. Exclusion: 4. [PubMed: 29256337] [CrossRef]
537.
Koontz AM, Garfunkel CE, Crytzer TM, et al. Feasibility, acceptability, and preliminary efficacy of a handcycling high-intensity interval training program for individuals with spinal cord injury. Spinal Cord. 2020 Sep 09;09:09. doi: 10.1038/s41393-020-00548-7. PMID: 32908194. Exclusion: 4. [PMC free article: PMC7854955] [PubMed: 32908194] [CrossRef]
538.
Koopman AD, Eken MM, van Bezeij T, et al. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med. 2013 Jan;45(1):92–8. doi: 10.2340/16501977-1072. PMID: 23096222. Exclusion: 4. [PubMed: 23096222] [CrossRef]
539.
Kordi MR, Anooshe L, Khodadade S, et al. Comparing the effect of three methods of combined training on serum levels of Ghrelin, pro and anti-inflammatory cytokines in multiple sclerosis (MS) patients. Journal of Zanjan University of Medical Sciences and Health Services. 2013;22(91):39–51. Exclusion: 13.
540.
Kott K, Lesher K, DeLeo G. Combining a virtual reality system with treadmill training for children with cerebral palsy. J Cyber Ther Rehabil. 2009;2(1):35–42. doi: 10.1186/1471-2431-13-168. PMID: 24112817 Exclusion: 11. [CrossRef]
541.
Kowalczewski J, Chong SL, Galea M, et al. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair. 2011 Jun;25(5):412–22. doi: 10.1177/1545968310394869. PMID: 21372246. Exclusion: 11. [PubMed: 21372246] [CrossRef]
542.
Kramer A, Dettmers C, Gruber M. Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to home-based balance training. Arch Phys Med Rehabil. 2014 Oct;95(10):1803–9. doi: 10.1016/j.apmr.2014.04.020. PMID: 24823959. Exclusion: 4. [PubMed: 24823959] [CrossRef]
543.
Kratz AL, Atalla M, Whibley D, et al. Calling Out MS Fatigue: Feasibility and Preliminary Effects of a Pilot Randomized Telephone-Delivered Exercise Intervention for Multiple Sclerosis Fatigue. J Neurol Phys Ther. 2020 Jan;44(1):23–31. doi: 10.1097/NPT.0000000000000296. PMID: 31738192. Exclusion: 11. [PubMed: 31738192] [CrossRef]
544.
Kratz AL, Ehde DM, Bombardier CH. Affective mediators of a physical activity intervention for depression in multiple sclerosis. Rehabil Psychol. 2014 Feb;59(1):57–67. doi: 10.1037/a0035287. PMID: 24611925. Exclusion: 4. [PubMed: 24611925] [CrossRef]
545.
Kratz AL, Molton IR, Jensen MP, et al. Further evaluation of the motivational model of pain self-management: coping with chronic pain in multiple sclerosis. Ann Behav Med. 2011 Jun;41(3):391–400. doi: 10.1007/s12160-010-9249-6. PMID: 21213092. Exclusion: 4. [PMC free article: PMC3371774] [PubMed: 21213092] [CrossRef]
546.
Krause A, Schonau E, Duran I, et al. High frequency whole body vibration improves motor control in subjects with spastic cerebral palsy. Dev Med Child Neurol. 2016 Oct;58:44. doi: 10.1111/dmcn.94_13241. Exclusion: 6. [CrossRef]
547.
Krebs HI, Fasoli SE, Dipietro L, et al. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabil Neural Repair. 2012 Sep;26(7):855–60. doi: 10.1177/1545968311433427. PMID: 22331211. Exclusion: 11. [PMC free article: PMC4688005] [PubMed: 22331211] [CrossRef]
548.
Kressler J, Burns PA, Betancourt L, et al. Circuit training and protein supplementation in persons with chronic tetraplegia. Med Sci Sports Exerc. 2014 Jul;46(7):1277–84. doi: 10.1249/MSS.0000000000000250. PMID: 24389521. Exclusion: 11. [PubMed: 24389521] [CrossRef]
549.
Kressler J, Jacobs K, Burns P, et al. Effects of circuit resistance training and timely protein supplementation on exercise-induced fat oxidation in tetraplegic adults. Top Spinal Cord Inj Rehabil. 2014;20(2):113–22. doi: 10.1310/sci2002-113. PMID: 25477733. Exclusion: 11. [PMC free article: PMC4252170] [PubMed: 25477733] [CrossRef]
550.
Kruse A, Schranz C, Svehlik M, et al. The effect of functional home-based strength training programs on the mechano-morphological properties of the plantar flexor muscle-tendon unit in children with spastic cerebral palsy. Pediatr Exerc Sci. 2019 Feb 1;31(1):67–76. doi: 10.1123/pes.2018-0106. PMID: 30424684. Exclusion: 4. [PubMed: 30424684] [CrossRef]
551.
Kruse A, Schranz C, Tilp M, et al. Effects of progressive resistance or high-intensity strength training on muscle function and achilles tendon mechanical properties in children with cerebral palsy. Gait Posture. 2017;Conference: 26th annual meeting of the european society for movement analysis in adults and children, ESMAC. 2017. Norway 57(Supplement 1):6. Exclusion: 10.
552.
Kubsik A, Klimkiewicz P, Klimkiewicz R, et al. The influence of high-tone power therapy on the functional status of patients with multiple sclerosis. Pol Merkuriusz Lek. 2014 Jul;37(217):24–9. PMID: 25154195. Exclusion: 13. [PubMed: 25154195]
553.
Kucuk F, Kara B, Poyraz EC, et al. Improvements in cognition, quality of life, and physical performance with clinical pilates in multiple sclerosis: a randomized controlled trial. J Phys Ther Sci. 2016 Mar;28(3):761–8. doi: 10.1589/jpts.28.761. PMID: 27134355. Exclusion: 11. [PMC free article: PMC4842436] [PubMed: 27134355] [CrossRef]
554.
Kuhn D, Leichtfried V, Schobersberger W. Four weeks of functional electrical stimulated cycling after spinal cord injury: a clinical cohort study. Int J Rehabil Res. 2014 Sep;37(3):243–50. doi: 10.1097/MRR.0000000000000062. PMID: 24802976. Exclusion: 3. [PubMed: 24802976] [CrossRef]
555.
Kumaresan A, Rabha D. Effects of quadriceps femoris muscle strengthening exercises on gait parameters in spastic diplegia with children with cerebral palsy. Biomedicine (India). 2017;37(4):501–5. Exclusion: 14.
556.
Kumari R, Verma M, Gupta A. To determine effectiveness of closed-kinetic chain exercise on motor control and function as compared to open-kinetic chain exercise in children with spastic diplegic CP. Indian J Physiother Occup Ther. 2014;8(2):33–7. Exclusion: 6.
557.
Kurz MJ, Stuberg W, DeJong SL. Body weight supported treadmill training improves the regularity of the stepping kinematics in children with cerebral palsy. Dev Neurorehabil. 2011;14(2):87–93. doi: 10.3109/17518423.2011.552459. PMID: 21410400. Exclusion: 11. [PubMed: 21410400] [CrossRef]
558.
Kusumoto Y, Nitta O, Takaki K. Impact of loaded sit-to-stand exercises at different speeds on the physiological cost of walking in children with spastic diplegia: a single-blind randomized clinical trial. Res Dev Disabil. 2016 Oct;57:85–91. doi: 10.1016/j.ridd.2016.06.006. PMID: 27394691. Exclusion: 11. [PubMed: 27394691] [CrossRef]
559.
Kwon HY, Kim BJ. Effects of task-specific movement patterns during resistance exercise on the respiratory functions and thickness of abdominal muscles of children with cerebral palsy: randomized placebo-controlled double-blinded clinical trial. J Phys Ther Sci. 2018 Aug;30(8):1073–80. doi: 10.1589/jpts.30.1073. PMID: 30154603. Exclusion: 11. [PMC free article: PMC6110216] [PubMed: 30154603] [CrossRef]
560.
Kwon JY, Chang WH, Chang HJ, et al. Changes in diffusion tensor tractographic findings associated with constraint-induced movement therapy in young children with cerebral palsy. Clin Neurophysiol. 2014 Dec;125(12):2397–403. doi: 10.1016/j.clinph.2014.02.025. PMID: 24746686. Exclusion: 4. [PubMed: 24746686] [CrossRef]
561.
Labaf S, Shamsoddini A, Taghi Hollisaz M, et al. Effects of neurodevelopmental therapy on gross motor function in children with cerebral palsy. Iran J Child Neurol. 2015;9(2):36–41. PMID: 26221161. Exclusion: 4. [PMC free article: PMC4515339] [PubMed: 26221161]
562.
Labruyere R, van Hedel HJ. Instrument validity and reliability of a choice response time test for subjects with incomplete spinal cord injury: relationship with function. Arch Phys Med Rehabil. 2011 Sep;92(9):1443–9. doi: 10.1016/j.apmr.2011.04.006. PMID: 21878215. Exclusion: 4. [PubMed: 21878215] [CrossRef]
563.
Labruyere R, van Hedel HJ. Curve walking is not better than straight walking in estimating ambulation-related domains after incomplete spinal cord injury. Arch Phys Med Rehabil. 2012 May;93(5):796–801. doi: 10.1016/j.apmr.2011.11.009. PMID: 22386212. Exclusion: 4. [PubMed: 22386212] [CrossRef]
564.
Labruyere R, van Hedel HJ. Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance. J Neuroengineering Rehabil. 2014 Jan 9;11:4. doi: 10.1186/1743-0003-11-4. PMID: 24401143. Exclusion: 11. [PMC free article: PMC3905290] [PubMed: 24401143] [CrossRef]
565.
Lahelle AF, Oberg GK, Normann B. A group-based, individualized physiotherapy intervention for people with multiple sclerosis-a qualitative study. Physiother Res Int. 2018 Jul 23;23 doi: 10.1002/pri.1734. PMID: 30039598. Exclusion: 3. [PubMed: 30039598] [CrossRef]
566.
Lahelle Af Pt MP, Oberg Gk Pt P, Normann B Pt P. Physiotherapy assessment of individuals with multiple sclerosis prior to a group intervention - a qualitative observational and interview study. Physiother Theory Pract. 2018 Jul 9:1–11. doi: 10.1080/09593985.2018.1488022. PMID: 29985730. Exclusion: 4. [PubMed: 29985730] [CrossRef]
567.
Lai B, Cederberg K, Vanderbom KA, et al. Characteristics of adults with neurologic disability recruited for exercise trials: a secondary analysis. Adapt Phys Act Q. 2018;35(4):476–97. doi: 10.1123/apaq.2017-0109. Exclusion: 12. [PubMed: 30382753] [CrossRef]
568.
Lai B, Rimmer J, Barstow B, et al. Teleexercise for persons with spinal cord injury: a mixed-methods feasibility case series. JMIR Rehabil Assist Technol. 2016 Jul 14;3(2) doi: 10.2196/rehab.5524. PMID: 28582252. Exclusion: 11. [PMC free article: PMC5454561] [PubMed: 28582252] [CrossRef]
569.
Lai B, Young HJ, Bickel CS, et al. Current trends in exercise intervention research, technology, and behavioral change strategies for people with disabilities: a scoping review. Am J Phys Med Rehabil. 2017 Oct;96(10):748–61. doi: 10.1097/PHM.0000000000000743. PMID: 28398967. Exclusion: 12. [PubMed: 28398967] [CrossRef]
570.
Lai BH, Wu JB, Gao ZW, et al. Strategy by stages for preventing respiratory complications of acute cervical spinal cord injury. Zhongguo Gu Shang. 2015 Aug;28(8):690–4. PMID: 26502516. Exclusion: 13. [PubMed: 26502516]
571.
Lajeunesse V, Vincent C, Routhier F, et al. Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 2016 Oct;11(7):535–47. doi: 10.3109/17483107.2015.1080766. PMID: 26340538. Exclusion: 12. [PubMed: 26340538] [CrossRef]
572.
Lakomy-Gawryszewska AA, Józefowicz K, Raniszewska A, et al. The impact of hippotherapy on the quality of trunk stabilisation, evaluated by EMG biofeedback, in children with infantile cerebral palsy. Polish Annals of Medicine. 2017;24(1):9–12. doi: 10.1016/j.poamed.2016.06.001. Exclusion: 8. [CrossRef]
573.
Lam T, Pauhl K, Ferguson A, et al. A new training paradigm using robot-applied resistance to enhance skilled walking in people with spinal cord injury. Physiotherapy. 2015;101(1). Exclusion: 10.
574.
Lam T, Pauhl K, Ferguson A, et al. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: pilot study. J Rehabil Res Dev. 2015;52(1):113–29. doi: 10.1682/JRRD.2014.03.0090. PMID: 26230667. Exclusion: 11. [PubMed: 26230667] [CrossRef]
575.
Lamberti N, Straudi S, Donadi M, et al. Effectiveness of blood flow-restricted slow walking on mobility in severe multiple sclerosis: A pilot randomized trial. Scand J Med Sci Sports. 2020 Jul 09;09:09. doi: 10.1111/sms.13764. PMID: 32645227. Exclusion: 11. [PubMed: 32645227] [CrossRef]
576.
Lan C, Chen SY, Lai JS, et al. Tai Chi Chuan in medicine and health promotion. Evid Based Complement Alternat Med. 2013;2013 doi: 10.1155/2013/502131. Exclusion: 10. [PMC free article: PMC3789446] [PubMed: 24159346] [CrossRef]
577.
Langeskov-Christensen M, Heine M, Kwakkel G, et al. Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis. Sports Med. 2015 Jun;45(6):905–23. doi: 10.1007/s40279-015-0307-x. PMID: 25739555. Exclusion: 12. [PubMed: 25739555] [CrossRef]
578.
Larson RD, McCully KK, Larson DJ, et al. Bilateral differences in lower-limb performance in individuals with multiple sclerosis. J Rehabil Res Dev. 2013;50(2):215–22. PMID: 23761002. Exclusion: 5. [PubMed: 23761002]
579.
Larson RD, McCully KK, Larson DJ, et al. Lower-limb performance disparities: implications for exercise prescription in multiple sclerosis. J Rehabil Res Dev. 2014;51(10):1537–44. doi: 10.1682/JRRD.2013.09.0191. PMID: 25855905. Exclusion: 4. [PubMed: 25855905] [CrossRef]
580.
Latimer-Cheung AE, Arbour-Nicitopoulos KP, Brawley LR, et al. Developing physical activity interventions for adults with spinal cord injury. Part 2: motivational counseling and peer-mediated interventions for people intending to be active. Rehabil Psychol. 2013 Aug;58(3):307–15. doi: 10.1037/a0032816. PMID: 23978086. Exclusion: 4. [PubMed: 23978086] [CrossRef]
581.
Lau SCL, Fong M, Lenze E, et al. Psychometric evaluation of the center for epidemiologic studies depression scale (CES-D) for patients after stroke. Arch Phys Med Rehabil. 2019 Oct;100(10):26. doi: 10.1016/j.apmr.2019.08.060. Exclusion: 9. [CrossRef]
582.
Lauer RT, Johnston TE, Smith BT, et al. Lower extremity muscle activity during cycling in adolescents with and without cerebral palsy. Clin Biomech. 2008 May;23(4):442–9. doi: 10.1016/j.clinbiomech.2007.11.004. PMID: 18082920. Exclusion: 4. [PMC free article: PMC2387214] [PubMed: 18082920] [CrossRef]
583.
Lauer RT, Smith BT, Mulcahey MJ, et al. Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury. Spinal Cord. 2011 Aug;49(8):917–23. doi: 10.1038/sc.2011.19. PMID: 21423253. Exclusion: 4. [PubMed: 21423253] [CrossRef]
584.
Lauglo R, Vik T, Lamvik T, et al. High-intensity interval training to improve fitness in children with cerebral palsy. BMJ Open Sport Exerc Med. 2016;2(1) doi: 10.1136/bmjsem-2016-000111. PMID: 27900177. Exclusion: 11. [PMC free article: PMC5117070] [PubMed: 27900177] [CrossRef]
585.
Lauruschkus K, Hallstrom I, Westbom L, et al. Participation in physical activities for children with cerebral palsy: feasibility and effectiveness of physical activity on prescription. Arch Physiother. 2017;7:13. doi: 10.1186/s40945-017-0041-9. PMID: 29340207. Exclusion: 4. [PMC free article: PMC5759903] [PubMed: 29340207] [CrossRef]
586.
Lawrence H, Hills S, Kline N, et al. Effectiveness of exercise on functional mobility in adults with cerebral palsy: a systematic review. Physiother Can. 2016;68(4):398–407. doi: 10.3138/ptc.2015-38LHC. PMID: 27904240. Exclusion: 12. [PMC free article: PMC5125497] [PubMed: 27904240] [CrossRef]
587.
Lazzari RD, Politti F, Belina SF, et al. Effect of transcranial direct current stimulation combined with virtual reality training on balance in children with cerebral palsy: a randomized, controlled, double-blind, clinical trial. J Mot Behav. 2017 May–Jun;49(3):329–36. doi: 10.1080/00222895.2016.1204266. PMID: 27644454. Exclusion: 4. [PubMed: 27644454] [CrossRef]
588.
Learmonth Y, Miller LJ, Paul L, et al. Excercise therapy for those moderately affected by multiple sclerosis: results of a 12-week community-based excercise programme. Mult Scler J Exp Transl Clin. 2011 Oct;17(10 SUPPL. 1):S477–S8. doi: 10.1177/1352458511422301. PMID: 21984532 Exclusion: 7. [CrossRef]
589.
Learmonth YC, Marshall-McKenna R, Paul L, et al. A qualitative exploration of the impact of a 12-week group exercise class for those moderately affected with multiple sclerosis. Disabil Rehabil. 2013 Jan;35(1):81–8. doi: 10.3109/09638288.2012.688922. PMID: 22656959. Exclusion: 6. [PubMed: 22656959] [CrossRef]
590.
Learmonth YC, Paul L, Miller L, et al. The effects of a 12-week leisure centre-based, group exercise intervention for people moderately affected with multiple sclerosis: a randomized controlled pilot study. Clin Rehabil. 2012 Jul;26(7):579–93. doi: 10.1177/0269215511423946. PMID: 21984532. Exclusion: 11. [PubMed: 21984532] [CrossRef]
591.
Leavitt VM, Cirnigliaro C, Cohen A, et al. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings. Neurocase. 2014;20(6):695–7. doi: 10.1080/13554794.2013.841951. PMID: 24090098. Exclusion: 6. [PubMed: 24090098] [CrossRef]
592.
Lee BH. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study. J Phys Ther Sci. 2016 Apr;28(4):1387–91. doi: 10.1589/jpts.28.1387. PMID: 27190489. Exclusion: 7. [PMC free article: PMC4868249] [PubMed: 27190489] [CrossRef]
593.
Lee DR, Kim YH, Kim DA, et al. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study--three-month follow-up. NeuroRehabilitation. 2014;35(1):131–6. doi: 10.3233/NRE-131036. PMID: 24419014. Exclusion: 7. [PubMed: 24419014] [CrossRef]
594.
Lee JH, Sung IY, Yoo JY. Therapeutic effects of strengthening exercise on gait function of cerebral palsy. Disabil Rehabil. 2008;30(19):1439–44. PMID: 19230216. Exclusion: 11. [PubMed: 19230216]
595.
Lee Y, Chen K, Ren Y, et al. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis. Mult Scler Relat Disord. 2017 Jan;11:65–70. doi: 10.1016/j.msard.2016.12.006. PMID: 28104260. Exclusion: 11. [PubMed: 28104260] [CrossRef]
596.
Lee YH, Lee JH, Kim SH, et al. Hemodynamic adaptations to regular exercise in people with spinal cord injury. Ann Rehabil Med. 2017 Feb;41(1):25–33. doi: 10.5535/arm.2017.41.1.25. PMID: 28289632. Exclusion: 4. [PMC free article: PMC5344823] [PubMed: 28289632] [CrossRef]
597.
Lee YH, Oh KJ, Kong ID, et al. Effect of regular exercise on cardiopulmonary fitness in males with spinal cord injury. Ann Rehabil Med. 2015 Feb;39(1):91–9. doi: 10.5535/arm.2015.39.1.91. PMID: 25750877. Exclusion: 4. [PMC free article: PMC4351500] [PubMed: 25750877] [CrossRef]
598.
Lee YS, Kim WB, Park JW. The effect of exercise using a sliding rehabilitation machine on the gait function of children with cerebral palsy. J Phys Ther Sci. 2014 Nov;26(11):1667–9. doi: 10.1589/jpts.26.1667. PMID: 25435673. Exclusion: 11. [PMC free article: PMC4242928] [PubMed: 25435673] [CrossRef]
599.
Leech KA, Hornby TG. High-intensity locomotor exercise increases brain-derived neurotrophic factor in individuals with incomplete spinal cord injury. J Neurotrauma. 2017 Mar 15;34(6):1240–8. doi: 10.1089/neu.2016.4532. PMID: 27526567. Exclusion: 4. [PMC free article: PMC5359683] [PubMed: 27526567] [CrossRef]
600.
Leech KA, Kinnaird CR, Holleran CL, et al. Effects of locomotor exercise intensity on gait performance in individuals with incomplete spinal cord injury. Phys Ther. 2016 Dec;96(12):1919–29. doi: 10.2522/ptj.20150646. PMID: 27313241. Exclusion: 11. [PMC free article: PMC5131185] [PubMed: 27313241] [CrossRef]
601.
Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. J Neuroengineering Rehabil. 2017 Jan 5;14(1):1. doi: 10.1186/s12984-016-0214-x. PMID: 28057016. Exclusion: 12. [PMC free article: PMC5217646] [PubMed: 28057016] [CrossRef]
602.
Legg Ditterline BE, Aslan SC, Randall DC, et al. Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury. Arch Phys Med Rehabil. 2018;99(3):423–32. doi: 10.1016/j.apmr.2017.06.033. Exclusion: 4. [PMC free article: PMC5807237] [PubMed: 28802811] [CrossRef]
603.
Lenze EJ, Host HH, Hildebrand MW, et al. Enhanced medical rehabilitation increases therapy intensity and engagement and improves functional outcomes in postacute rehabilitation of older adults: a randomized-controlled trial. J Am Med Dir Assoc. 2012 Oct;13(8):708–12. doi: 10.1016/j.jamda.2012.06.014. PMID: 22863663. Exclusion: 3. [PMC free article: PMC3601780] [PubMed: 22863663] [CrossRef]
604.
Lerma-Castaño PR, Rodríguez-Laiseca YA, Falla JD, et al. Effects of hippotherapy on gross motor function in children with spastic cerebral palsy: quasi-experimental study. Revista Mexicana de Pediatria. 2017 Jul–Aug;84(4):143–8. doi: 10.3109/01942638.2015.1129386. Exclusion: 13. [CrossRef]
605.
Leving MT, Vegter RJ, Hartog J, et al. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion. PLoS One. 2015;10(5) doi: 10.1371/journal.pone.0127311. PMID: 25992626. Exclusion: 3. [PMC free article: PMC4439159] [PubMed: 25992626] [CrossRef]
606.
Lewis J. A progressive running program for an adolescent with cerebral palsy. Pediatr Phys Ther. 2017 07;29(3):E12–E6. doi: 10.1097/PEP.0000000000000429. PMID: 28654506. Exclusion: 7. [PubMed: 28654506] [CrossRef]
607.
Li C, Khoo S, Adnan A. Effects of aquatic exercise on physical function and fitness among people with spinal cord injury: a systematic review. Medicine (Baltimore). 2017 Mar;96(11) doi: 10.1097/MD.0000000000006328. PMID: 28296754. Exclusion: 12. [PMC free article: PMC5369909] [PubMed: 28296754] [CrossRef]
608.
Li J, Polston KFL, Eraslan M, et al. A high-protein diet or combination exercise training to improve metabolic health in individuals with long-standing spinal cord injury: a pilot randomized study. Physiol Rep. 2018 Aug 28;6(16) doi: 10.14814/phy2.13813. PMID: 30156033. Exclusion: 11. [PMC free article: PMC6113133] [PubMed: 30156033] [CrossRef]
609.
Li W, Lam-Damji S, Chau T, et al. The development of a home-based virtual reality therapy system to promote upper extremity movement for children with hemiplegic cerebral palsy. Technol Disabil. 2009;21(3):107–13. doi: 10.3233/TAD-2009-0277. Exclusion: 11. [CrossRef]
610.
Lin C-Y, Chang Y-M. Increase in physical activities in kindergarten children with cerebral palsy by employing MaKey-MaKey-based task systems. Res Dev Disabil. 2014 Sep;35(9):1963–9. doi: 10.1016/j.ridd.2014.04.028. Exclusion: 4. [PubMed: 24864049] [CrossRef]
611.
Lin KC, Wang TN, Wu CY, et al. Effects of home-based constraint-induced therapy versus dose-matched control intervention on functional outcomes and caregiver well-being in children with cerebral palsy. Res Dev Disabil. 2011 Sep–Oct;32(5):1483–91. doi: 10.1016/j.ridd.2011.01.023. PMID: 21429706. Exclusion: 4. [PubMed: 21429706] [CrossRef]
612.
Lins C, Castro A, Medina GIS, et al. Alternative scapular stabilization exercises to target strength, endurance and function of shoulders in tetraplegia: a prospective non-controlled intervention study. J Spinal Cord Med. 2019 Nov 16;42(1):65–76. doi: 10.1080/10790268.2017.1398943. PMID: 29141513. Exclusion: 4. [PMC free article: PMC6340282] [PubMed: 29141513] [CrossRef]
613.
Litchke L, Lloyd L, Schmidt E, et al. Comparison of two concurrent respiratory resistance devices on pulmonary function and time trial performance of wheel chair athletes. Ther Recreation J. 2010;44(1):51–62. Exclusion: 4.
614.
Litchke LG, Lloyd LK, Schmidt EA, et al. Effects of concurrent respiratory resistance training on health-related quality of life in wheelchair rugby athletes: a pilot study. Top Spinal Cord Inj Rehabil. 2012;18(3):264–72. doi: 10.1310/sci1803-264. PMID: 23459144. Exclusion: 4. [PMC free article: PMC3584774] [PubMed: 23459144] [CrossRef]
615.
Litchke LG, Russian CJ, Lloyd LK, et al. Effects of respiratory resistance training with a concurrent flow device on wheelchair athletes. J Spinal Cord Med. 2008;31(1):65–71. doi: 10.1080/10790268.2008.11753983. PMID: 18533414. Exclusion: 9. [PMC free article: PMC2435026] [PubMed: 18533414] [CrossRef]
616.
Liu L, Chen K, Yang C, et al. Home- and lab-based robotic passive and active movement training of ankle impairments in cerebral palsy. Dev Med Child Neurol. 2013;55(25). Exclusion: 10.
617.
Lopes S, Magalhaes P, Pereira A, et al. Games used with serious purposes: a systematic review of interventions in patients with cerebral palsy. Front Psychol. 2018 Sep 19;9(1712) doi: 10.3389/fpsyg.2018.01712. PMID: 30283377. Exclusion: 12. [PMC free article: PMC6156132] [PubMed: 30283377] [CrossRef]
618.
Lorentzen J, Kirk H, Fernandez-Lago H, et al. Randomized controlled clinical trial of the effect of gait training on muscle function and gait kinematics in adults with cerebral palsy. Dev Med Child Neurol. 2016;58:44. doi: 10.1111/dmcn.93_13241. Exclusion: 10. [CrossRef]
619.
Lorentzen J, Kirk H, Fernandez-Lago H, et al. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy. Disabil Rehabil. 2017 May;39(10):987–93. doi: 10.1080/09638288.2016.1174745. PMID: 27237772. Exclusion: 4. [PubMed: 27237772] [CrossRef]
620.
Lorentzen J, Kirk H, Lago Fernandez H, et al. Randomized controlled clinical trial of the effect of gait training in adults with cerebral palsy on ankle joint stiffness and kinematics. Dev Med Child Neurol. 2015;57:98. doi: 10.1111/dmcn.39_12886. Exclusion: 10. [CrossRef]
621.
Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil. 2012 Sep;93(9):1541–52. doi: 10.1016/j.apmr.2012.01.027. PMID: 22920451. Exclusion: 7. [PubMed: 22920451] [CrossRef]
622.
Lotfian M, Kharazi MR, Mirbagheri A, et al. Therapeutic effects of an anti-gravity treadmill (AlterG) training on gait and lower limbs kinematics and kinetics in children with cerebral palsy. IEEE Int. 2017 Jul;2017:170–4. doi: 10.1109/ICORR.2017.8009241. PMID: 28813813. Exclusion: 11. [PubMed: 28813813] [CrossRef]
623.
Lotter JK, Henderson CE, Plawecki A, et al. Task-specific versus impairment-based training on locomotor performance in Individuals with chronic spinal cord injury: A randomized crossover study. Neurorehabil Neural Repair. 2020 Jun 01 doi: 10.1177/1545968320927384. PMID: 32476619. Exclusion: 11. [PMC free article: PMC7329565] [PubMed: 32476619] [CrossRef]
624.
Louie J, Baquie K, Offerman J, et al. Self-management and multiple sclerosis: the impact of a community-based exercise and education program. Mult Scler J Exp Transl Clin. Oct 30;21(14):11–2. Exclusion: 10.
625.
Louie J, Baquie KA, Offerman J, et al. Maximising abilities, negotiating and generating exercise options (manage) program: a pilot randomised controlled trial in persons with multiple sclerosis. Physiotherapy. 2015;101(1). Exclusion: 10.
626.
Low DA, da Nobrega AC, Mathias CJ. Exercise-induced hypotension in autonomic disorders. Auton Neurosci. 2012 Nov 2;171(1–2):66–78. doi: 10.1016/j.autneu.2012.07.008. PMID: 23040841. Exclusion: 10. [PubMed: 23040841] [CrossRef]
627.
Lu AL, Zhang XJ, Xu MF. Cohort study of hyperbaric oxygention (HBO) in controlling hypermyotonia caused by spinal cord injury. Zhongguo Gu Shang. 2012 Sep;25(9):743–6. PMID: 23256362. Exclusion: 13. [PubMed: 23256362]
628.
Lu X, Battistuzzo CR, Zoghi M, et al. Effects of training on upper limb function after cervical spinal cord injury: a systematic review. Clin Rehabil. 2015 Jan;29(1):3–13. doi: 10.1177/0269215514536411. PMID: 25575932. Exclusion: 12. [PubMed: 25575932] [CrossRef]
629.
Lucio A, D’Ancona C A, Perissinotto MC, et al. Pelvic floor muscle training with and without electrical stimulation in the treatment of lower urinary tract symptoms in women with multiple sclerosis. J Wound Ostomy Continence Nurs. 2016 Jul–Aug;43(4):414–9. doi: 10.1097/WON.0000000000000223. PMID: 27014935. Exclusion: 4. [PubMed: 27014935] [CrossRef]
630.
Lucio AC, Campos RM, Perissinotto MC, et al. Pelvic floor muscle training in the treatment of lower urinary tract dysfunction in women with multiple sclerosis. Neurourol Urodyn. 2010 Nov;29(8):1410–3. doi: 10.1002/nau.20941. PMID: 20976816. Exclusion: 4. [PubMed: 20976816] [CrossRef]
631.
Lucio AC, D’Ancona CA, Lopes MH, et al. The effect of pelvic floor muscle training alone or in combination with electrostimulation in the treatment of sexual dysfunction in women with multiple sclerosis. Mult Scler. 2014 Nov;20(13):1761–8. doi: 10.1177/1352458514531520. PMID: 24876156. Exclusion: 4. [PubMed: 24876156] [CrossRef]
632.
Lucio AC, Perissinoto MC, Natalin RA, et al. A comparative study of pelvic floor muscle training in women with multiple sclerosis: its impact on lower urinary tract symptoms and quality of life. Clinics. 2011;66(9):1563–8. doi: 10.1590/s1807-59322011000900010. PMID: 22179160. Exclusion: 4. [PMC free article: PMC3164405] [PubMed: 22179160] [CrossRef]
633.
Luu K, Hall PA. Hatha yoga and executive function: a systematic review. J Altern Complement Med. 2016 Feb;22(2):125–33. doi: 10.1089/acm.2014.0091. PMID: 26398441. Exclusion: 6. [PubMed: 26398441] [CrossRef]
634.
Lyp M, Stanislawska I, Witek B, et al. Robot-assisted body-weight-supported treadmill training in gait impairment in multiple sclerosis patients: a pilot study. Adv Exp Med Biol. 2018 Feb 13;1070:111–5. doi: 10.1007/5584_2018_158. PMID: 29435956. Exclusion: 11. [PubMed: 29435956] [CrossRef]
635.
M Piovesana A, Ross S, Lloyd O, et al. Randomized controlled trial of a web-based multi-modal therapy program for executive functioning in children and adolescents with unilateral cerebral palsy. Disabil Rehabil. 2017 Oct;39(20):2021–8. doi: 10.1080/09638288.2016.1213899. PMID: 27665941. Exclusion: 6. [PubMed: 27665941] [CrossRef]
636.
Ma DN, Zhang XQ, Ying J, et al. Efficacy and safety of 9 nonoperative regimens for the treatment of spinal cord injury: a network meta-analysis. Medicine (Baltimore). 2017 Nov;96(47):e8679. doi: 10.1097/MD.0000000000008679. PMID: 29381946. Exclusion: 12. [PMC free article: PMC5708945] [PubMed: 29381946] [CrossRef]
637.
Ma JK, West CR, Martin Ginis KA. The effects of a patient and provider co-developed, behavioral physical activity intervention on physical activity, psychosocial predictors, and fitness in individuals with spinal cord injury: a randomized controlled trial. Sports Med. 2019 Jul;49(7):1117–31. doi: 10.1007/s40279-019-01118-5. PMID: 31119717. Exclusion: 4. [PubMed: 31119717] [CrossRef]
638.
Maas JC, Dallmeijer AJ, Huijing PA, et al. Splint: the efficacy of orthotic management in rest to prevent equinus in children with cerebral palsy, a randomised controlled trial. BMC Pediatr. 2012 Mar 26;12:38. doi: 10.1186/1471-2431-12-38. PMID: 22448907. Exclusion: 4. [PMC free article: PMC3328267] [PubMed: 22448907] [CrossRef]
639.
Macias-Merlo L, Bagur-Calafat C, Girabent-Farres M, et al. Effects of the standing program with hip abduction on hip acetabular development in children with spastic diplegia cerebral palsy. Disabil Rehabil. 2016;38(11):1075–81. doi: 10.3109/09638288.2015.1100221. PMID: 26517269. Exclusion: 6. [PubMed: 26517269] [CrossRef]
640.
MacIntosh A, Switzer L, Hwang S, et al. Ability-based balancing using the gross motor function measure in exergaming for youth with cerebral palsy. Games Health J. 2017 Dec;6(6):379–85. doi: 10.1089/g4h.2017.0053. PMID: 29016199. Exclusion: 11. [PubMed: 29016199] [CrossRef]
641.
Mackow A, Malachowska-Sobieska M, Demczuk-Wlodarczyk E, et al. Influence of neurophysiological hippotherapy on the transference of the centre of gravity among children with cerebral palsy. Ortop Traumatol Rehabil. 2014 Nov–Dec;16(6):581–93. doi: 10.5604/15093492.1135048. PMID: 25694373. Exclusion: 4. [PubMed: 25694373] [CrossRef]
642.
Madhusmita M, Ebnezar J, Srinivasan TM, et al. Efficacy of yoga as an add-on to physiotherapy in the management of patients with paraplegia: randomised controlled trial. J Clin Diagn Res. 2019;13(3):KC01–KC6. Exclusion: 14.
643.
Madhusmita M, Srinivasan TM, Ebnezar J, et al. Effect of integrated yoga as an add-on to physiotherapy on walking index, esr, pain, and spasticity among subjects with traumatic spinal cord injury: a randomized control study. J Stem Cells. 2018;13(1):58–66. Exclusion: 14.
644.
Magalhães R, Martins EW, Marocolo M, et al. Profile of the cardiac repolarization in cervical spinal cord injury subjects performing physical exercise. Acta Scientiarum - Health Sciences. 2017;39(2):141–8. doi: 10.4025/actascihealthsci.v39i2.33468. Exclusion: 4. [CrossRef]
645.
Magia F, Bhise A, Prabhakar M, et al. Effect of pranayama (yogic breathing) on lung function in traumatic thoracic spinal cord injury patients: an interventional study. Physiotherapy. 2015;101. Exclusion: 10.
646.
Magnani S, Olla S, Pau M, et al. Effects of six months training on physical capacity and metaboreflex activity in patients with multiple sclerosis. Front Physiol. 2016;7:531. doi: 10.3389/fphys.2016.00531. PMID: 27895592. Exclusion: 11. [PMC free article: PMC5108173] [PubMed: 27895592] [CrossRef]
647.
Maher CA, Williams MT, Olds T, et al. An internet-based physical activity intervention for adolescents with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010 May;52(5):448–55. doi: 10.1111/j.1469-8749.2009.03609.x. PMID: 20132138. Exclusion: 4. [PubMed: 20132138] [CrossRef]
648.
Maira B, Sholpan B. Effectiveness of the combined use of robotic kinesiotherapy and botulinum therapy in the complex rehabilitation of children with cerebral palsy. Asian J Pharm Clin Res. 2018;11(9):360–4. doi: 10.22159/ajpcr.2018.v11i9.26541. Exclusion: 4. [CrossRef]
649.
Mak C, Whittingham K, Boyd R, et al. Miyoga-a randomized controlled trial of a novel mindfulness yoga program to enhance attention for child-parent dyads with unilateral and bilateral cerebral palsy. Developmental medicine and child neurology. Conference: 71st annual meeting of the american academy for cerebral palsy and developmental medicine, AACPDM. 2017;59:20–1. Exclusion: 10.
650.
Mak C, Whittingham K, Cunnington R, et al. MiYoga: cognitive effects of a mindfulness yoga program targeting attention for children with cerebral palsy: a randomised controlled trial. Conference: 9th biennial conference of the australasian academy of cerebral palsy and developmental medicine, ausacpdm. 2018. New zealand 60. Dev Med Child Neurol. 2018 Mar;60(Supplement 1):14–5. doi: 10.1111/dmcn.13665. Exclusion: 10. [CrossRef]
651.
Mak C, Whittingham K, Cunnington R, et al. MiYoga: a randomised controlled trial of a mindfulness movement programme based on hatha yoga principles for children with cerebral palsy: a study protocol. BMJ Open. 2017 Jul 10;7(7):e015191. doi: 10.1136/bmjopen-2016-015191. PMID: 28698326. Exclusion: 4. [PMC free article: PMC5541628] [PubMed: 28698326] [CrossRef]
652.
Mak C, Whittingham K, Cunnington R, et al. Effect of mindfulness yoga programme MiYoga on attention, behaviour, and physical outcomes in cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2018 Sep;60(9):922–32. doi: 10.1111/dmcn.13923. PMID: 29869333. Exclusion: 4. [PubMed: 29869333] [CrossRef]
653.
Mak C, Whittingham K, Cunnington R, et al. Six-month follow-up of a mindfulness yoga program, MiYoga, on attention, executive function, behaviour and physical outcomes in cerebral palsy. Disabil Rehabil. 2020 Jun 26:1–7. doi: 10.1080/09638288.2020.1783582. PMID: 32589851. Exclusion: 4. [PubMed: 32589851] [CrossRef]
654.
Mak CK, Whittingham K, Boyd RN. Experiences of children and parents in MiYoga, an embodied mindfulness yoga program for cerebral palsy: a mixed method study. Complement Ther Clin Pract. 2019 Feb;34:208–16. doi: 10.1016/j.ctcp.2018.12.006. PMID: 30712729. Exclusion: 4. [PubMed: 30712729] [CrossRef]
655.
Mak CK, Whittingham K, Cunnington R, et al. MiYoga: a randomized controlled trial of an embodied mindfulness yoga program to enhance attention for child-parent dyads with unilateral and bilateral cerebral palsy. Developmental medicine and child neurology. Conference: 29th annual meeting of the european academy of childhood disability, EACD. 2017;59:26–7. Exclusion: 10.
656.
Makhov AS, Medvedev IN. The effectiveness of static exercises in the rehabilitation of cerebral palsy. Res J Pharm Biol Chem Sci. 2018;9(6):603–8. doi: 10.1097/PEP.0b013e3180302111. PMID: 17304099 Exclusion: 6. [CrossRef]
657.
Malin SK, Cotugna N, Fang CS. Effect of creatine supplementation on muscle capacity in individuals with multiple sclerosis. J Diet Suppl. 2008;5(1):20–32. doi: 10.1080/19390210802328974. PMID: 22433042. Exclusion: 4. [PubMed: 22433042] [CrossRef]
658.
Manago MM, Glick S, Hebert JR, et al. Strength training to improve gait in people with multiple sclerosis: a critical review of exercise parameters and intervention approaches. Int J MS Care. 2019 Mar–Apr;21(2):47–56. doi: 10.7224/1537-2073.2017-079. PMID: 31049034. Exclusion: 12. [PMC free article: PMC6489435] [PubMed: 31049034] [CrossRef]
659.
Manca A, Cabboi MP, Dragone D, et al. Resistance training for muscle weakness in multiple sclerosis: direct versus contralateral approach in individuals with ankle dorsiflexors’ disparity in strength. Arch Phys Med Rehabil. 2017 Jul;98(7):1348–56.e1. doi: 10.1016/j.apmr.2017.02.019. PMID: 28342828. Exclusion: 4. [PubMed: 28342828] [CrossRef]
660.
Manca A, Dvir Z, Deriu F. Meta-analytic and scoping study on strength training in people with multiple sclerosis. J Strength Cond Res. 2019 Mar;33(3):874–89. doi: 10.1519/JSC.0000000000002381. PMID: 30192317. Exclusion: 12. [PubMed: 30192317] [CrossRef]
661.
Manca A, Dvir Z, Dragone D, et al. Time course of strength adaptations following high-intensity resistance training in individuals with multiple sclerosis. Eur J Appl Physiol. 2017 Apr;117(4):731–43. doi: 10.1007/s00421-017-3534-z. PMID: 28251398. Exclusion: 4. [PubMed: 28251398] [CrossRef]
662.
Manella KJ, Roach KE, Field-Fote EC. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury. J Neurophysiol. 2013 Jun;109(11):2666–79. doi: 10.1152/jn.01039.2011. PMID: 23468393. Exclusion: 11. [PubMed: 23468393] [CrossRef]
663.
Manfredini F, Straudi S, Lamberti N, et al. Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity. Diagnostics. 2020 Oct 17;10(10):17. doi: 10.3390/diagnostics10100834. PMID: 33080806. Exclusion: 6. [PMC free article: PMC7602995] [PubMed: 33080806] [CrossRef]
664.
Manning KY, Menon RS, Gorter JW, et al. Neuroplastic sensorimotor resting state network reorganization in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. J Child Neurol. 2016 Feb;31(2):220–6. doi: 10.1177/0883073815588995. PMID: 26078420. Exclusion: 11. [PubMed: 26078420] [CrossRef]
665.
Mansour WT, Atya AM, Aboumousa AM. Improving gait and balance in multiple sclerosis using partial body weight supported treadmill training. Egypt J Neurol Psychiatr Neurosurg. 2013;50(3):271–6. Exclusion: 14.
666.
Marck CH, De Livera AM, Brown CR, et al. Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: three year follow-up. PLoS One. 2018;13(5):e0197759. doi: 10.1371/journal.pone.0197759. PMID: 29791509. Exclusion: 4. [PMC free article: PMC5965868] [PubMed: 29791509] [CrossRef]
667.
Marcucci A, Edouard P, Loustalet E, et al. Efficiency of flexible derotator in walking cerebral palsy children. Ann Phys Rehabil Med. 2011 Sep;54(6):337–47. doi: 10.1016/j.rehab.2011.07.960. PMID: 21868301. Exclusion: 4. [PubMed: 21868301] [CrossRef]
668.
Marinho-Buzelli AR, Bonnyman AM, Verrier MC. The effects of aquatic therapy on mobility of individuals with neurological diseases: a systematic review. Clin Rehabil. 2015 Aug;29(8):741–51. doi: 10.1177/0269215514556297. PMID: 25394397. Exclusion: 12. [PubMed: 25394397] [CrossRef]
669.
Marques Catelli A, Ferreira Gattino LA, da Campo LA, et al. Cycle ergometer in the improvement of gross motor function of children with cerebral palsy: a systematic review with meta-analysis. Fisioterapia e Pesquisa. 2019;26(1):101–9. doi: 10.1590/1809-2950/18011026012019. Exclusion: 12. [CrossRef]
670.
Marryam M, Umar M, ul Ain SQ. Effectiveness of task specific training in improving functional independence after spinal cord injury. Rawal Medical Journal. 2018;43(2):245–7. Exclusion: 14.
671.
Marsh AP, Applegate WB, Guralnik JM, et al. Hospitalizations during a physical activity intervention in older adults at risk of mobility disability: analyses from the lifestyle interventions and independence for elders randomized clinical trial. J Am Geriatr Soc. 2016 May;64(5):933–43. doi: 10.1111/jgs.14114. PMID: 27225353. Exclusion: 3. [PMC free article: PMC4887151] [PubMed: 27225353] [CrossRef]
672.
Martakis K, Stark C, Rehberg M, et al. One-minute walk test in children with cerebral palsy GMFCS Level 1 and 2: reference values to identify therapeutic effects after rehabilitation. Dev Neurorehabil. 2019 Jun 10:1–9. doi: 10.1080/17518423.2019.1625981. PMID: 31177878. Exclusion: 4. [PubMed: 31177878] [CrossRef]
673.
Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018 Apr;56(4):308–21. doi: 10.1038/s41393-017-0017-3. PMID: 29070812. Exclusion: 12. [PubMed: 29070812] [CrossRef]
674.
Martinez SA, Nguyen ND, Bailey E, et al. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One. 2018 Aug 9;13(8):e0202130. doi: 10.1371/journal.pone.0202130. PMID: 30092092. Exclusion: 11. [PMC free article: PMC6084979] [PubMed: 30092092] [CrossRef]
675.
Martini DN, Zeeboer E, Hildebrand A, et al. ADSTEP: preliminary investigation of a multicomponent walking aid program in people with multiple sclerosis. Arch Phys Med Rehabil. 2018 Oct;99(10):2050–8. doi: 10.1016/j.apmr.2018.05.023. PMID: 29958906. Exclusion: 4. [PMC free article: PMC6948105] [PubMed: 29958906] [CrossRef]
676.
Martins E, Cordovil R, Oliveira R, et al. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2016 Apr;58(4):348–60. doi: 10.1111/dmcn.12988. PMID: 26613800. Exclusion: 12. [PubMed: 26613800] [CrossRef]
677.
Marvi-Esfahani M, Karimi MT, Etemadifar M, et al. Comparison of energy consumption in different clinical forms multiple sclerosis with normal subjects (cohort study). Mult Scler Relat Disord. 2016 Mar;6:97–101. doi: 10.1016/j.msard.2016.02.007. PMID: 27063632. Exclusion: 4. [PubMed: 27063632] [CrossRef]
678.
Mat Rosly M, Mat Rosly H, Davis Oam GM, et al. Exergaming for individuals with neurological disability: a systematic review. Disabil Rehabil. 2017 04;39(8):727–35. doi: 10.3109/09638288.2016.1161086. PMID: 27108475. Exclusion: 12. [PubMed: 27108475] [CrossRef]
679.
Mathes S, Wahl P. Reply to: Could superimposed electromyostimulation be an effective training to improve aerobic and anaerobic capacity? Methodological considerations for its development. Eur J Appl Physiol. 2017 Jul;117(7):1517–8. doi: 10.1007/s00421-017-3626-9. PMID: 28477075. Exclusion: 10. [PubMed: 28477075] [CrossRef]
680.
Mathevon L, Bonan I, Barnais JL, et al. Adjunct therapies to improve outcomes after botulinum toxin injection in children: a systematic review. Ann Phys Rehabil Med. 2019 Jul 29;62(4):283–90. doi: 10.1016/j.rehab.2018.06.010. PMID: 30063979. Exclusion: 12. [PubMed: 30063979] [CrossRef]
681.
Matos-Souza JR, de Rossi G, Costa ESAA, et al. Impact of adapted sports activities on the progression of carotid atherosclerosis in subjects with spinal cord injury. Arch Phys Med Rehabil. 2016 Jun;97(6):1034–7. doi: 10.1016/j.apmr.2015.11.002. PMID: 26625710. Exclusion: 4. [PubMed: 26625710] [CrossRef]
682.
Mattern-Baxter K. Effects of a group-based treadmill program on children with neurodevelopmental impairment who are not yet ambulating. Pediatr Phys Ther. 2016;28(3):312–9. doi: 10.1097/PEP.0000000000000250. PMID: 27008580. Exclusion: 11. [PubMed: 27008580] [CrossRef]
683.
Mattern-Baxter K, McNeil S, Mansoor JK. Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasi-randomized controlled trial. Arch Phys Med Rehabil. 2013 Nov;94(11):2061–7. doi: 10.1016/j.apmr.2013.05.012. PMID: 23747646. Exclusion: 4. [PubMed: 23747646] [CrossRef]
684.
Mattioli F, Bellomi F, Stampatori C, et al. Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis. Mult Scler. 2016 Feb;22(2):222–30. doi: 10.1177/1352458515587597. PMID: 26014600. Exclusion: 4. [PubMed: 26014600] [CrossRef]
685.
Maurer M. Telerehabilitation in multiple sclerosis. Mult Scler J Exp Transl Clin. START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;23(11 SUPPL. 1):41. Exclusion: 10.
686.
Maurer M, Kallmann B, Hofmann WE, et al. A 6-month, multicenter, randomized, controlled study to evaluate the effect of physical training on fatigue in patients with relapsing-remitting multiple sclerosis treated with Fingolimod (Gilenya)-first results of the PACE study. Mult Scler J Exp Transl Clin. 2011 Oct;21(11 SUPPL. 1):405. doi: 10.1177/1352458515602642. PMID: 29479457. Exclusion: 10. [CrossRef]
687.
Maurer M, Schuh K, Seibert S, et al. A randomized study to evaluate the effect of exercise on fatigue in people with relapsing-remitting multiple sclerosis treated with fingolimod. Mult Scler J Exp Transl Clin. 2018 Jan–Mar;4(1) doi: 10.1177/2055217318756688. PMID: 29479457. Exclusion: 4. [PMC free article: PMC5818099] [PubMed: 29479457] [CrossRef]
688.
Mayo NE, Mate KK, Reid R, et al. Participation in and outcomes from a 12-month tailored exercise programme for people with multiple sclerosis (MSTEP©): a randomized trial. Clin Rehabil. 2020 May 21 doi: 10.1177/0269215520923089. PMID: 32438828. Exclusion: 4. [PubMed: 32438828] [CrossRef]
689.
Mayson TA, Harris SR. Functional electrical stimulation cycling in youth with spinal cord injury: a review of intervention studies. J Spinal Cord Med. 2014 May;37(3):266–77. doi: 10.1179/2045772313Y.0000000183. PMID: 24621033. Exclusion: 9. [PMC free article: PMC4064576] [PubMed: 24621033] [CrossRef]
690.
Mazzoleni S, Battini E, Rustici A, et al. An integrated gait rehabilitation training based on functional electrical stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. IEEE Int. 2017 Jul;2017:289–93. doi: 10.1109/ICORR.2017.8009261. PMID: 28813833. Exclusion: 11. [PubMed: 28813833] [CrossRef]
691.
Mazzoleni S, Boldrini E, Laschi C, et al. Changes on EMG activation in healthy subjects and incomplete SCI patients following a robot-assisted locomotor training. IEEE Int. 2011;2011:5975467. doi: 10.1109/ICORR.2011.5975467. PMID: 22275665. Exclusion: 5. [PubMed: 22275665] [CrossRef]
692.
McAuley E, Wojcicki TR, Learmonth YC, et al. Effects of a DVD-delivered exercise intervention on physical function in older adults with multiple sclerosis: a pilot randomized controlled trial. Mult Scler J Exp Transl Clin. 2015 Jan–Dec;1:2055217315584838. doi: 10.1177/2055217315584838. PMID: 28607692. Exclusion: 4. [PMC free article: PMC5433324] [PubMed: 28607692] [CrossRef]
693.
McClurg D, Lowe-Strong A, Ashe RG. The benefits of pelvic floor muscle training in people with multiple sclerosis and lower urinary tract dysfunction. Journal of the Association of Chartered Physiotherapists in Women’s Health. 2008(103):21–8. Exclusion: 4.
694.
McCullagh R, Fitzgerald AP, Murphy RP, et al. Long-term benefits of exercising on quality of life and fatigue in multiple sclerosis patients with mild disability: a pilot study. Clin Rehabil. 2008 Mar;22(3):206–14. doi: 10.1177/0269215507082283. PMID: 18285430. Exclusion: 11. [PubMed: 18285430] [CrossRef]
695.
McDaniel J, Lombardo LM, Foglyano KM, et al. Setting the pace: insights and advancements gained while preparing for an FES bike race. J Neuroengineering Rehabil. 2017 Nov 17;14(1):118. doi: 10.1186/s12984-017-0326-y. PMID: 29149885. Exclusion: 10. [PMC free article: PMC5693533] [PubMed: 29149885] [CrossRef]
696.
McGibbon CA, Sexton A, Jayaraman A, et al. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. J Neuroengineering Rehabil. 2018 Dec 12;15(1):117. doi: 10.1186/s12984-018-0468-6. PMID: 30541585. Exclusion: 11. [PMC free article: PMC6291941] [PubMed: 30541585] [CrossRef]
697.
McGibbon NH, Benda W, Duncan BR, et al. Immediate and long-term effects of hippotherapy on symmetry of adductor muscle activity and functional ability in children with spastic cerebral palsy. Arch Phys Med Rehabil. 2009 Jun;90(6):966–74. doi: 10.1016/j.apmr.2009.01.011. PMID: 19480872. Exclusion: 8. [PubMed: 19480872] [CrossRef]
698.
McLeod JC, Diana H, Hicks AL. Sprint interval training versus moderate-intensity continuous training during inpatient rehabilitation after spinal cord injury: a randomized trial. Spinal Cord. 2019 Aug 28;28:28. doi: 10.1038/s41393-019-0345-6. PMID: 31462757. Exclusion: 3. [PubMed: 31462757] [CrossRef]
699.
McLoughlin JV, Lord SR, Barr CJ, et al. Dorsiflexion assist orthosis reduces the physiological cost and mitigates deterioration in strength and balance associated with walking in people with multiple sclerosis. Arch Phys Med Rehabil. 2015 Feb;96(2):226–32.e1. doi: 10.1016/j.apmr.2014.09.005. PMID: 25264109. Exclusion: 4. [PubMed: 25264109] [CrossRef]
700.
McNee AE, Gough M, Morrissey MC, et al. Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy. Dev Med Child Neurol. 2009 Jun;51(6):429–35. doi: 10.1111/j.1469-8749.2008.03230.x. PMID: 19170722. Exclusion: 11. [PubMed: 19170722] [CrossRef]
701.
McPhee PG, Wong-Pack M, Obeid J, et al. Differences in cardiovascular health in ambulatory persons with cerebral palsy. J Rehabil Med. 2018 Oct 9;09:09. doi: 10.2340/16501977-2491. PMID: 30299522. Exclusion: 6. [PubMed: 30299522] [CrossRef]
702.
Medina-Perez C, de Souza-Teixeira F, Fernandez-Gonzalo R, et al. Effects of a resistance training program and subsequent detraining on muscle strength and muscle power in multiple sclerosis patients. NeuroRehabilitation. 2014;34(3):523–30. doi: 10.3233/NRE-141062. PMID: 24463236. Exclusion: 4. [PubMed: 24463236] [CrossRef]
703.
Medina-Perez C, de Souza-Teixeira F, Fernandez-Gonzalo R, et al. Effects of high-speed power training on muscle strength and power in patients with multiple sclerosis. J Rehabil Res Dev. 2016;53(3):359–68. doi: 10.1682/JRRD.2014.08.0186. PMID: 27270470. Exclusion: 11. [PubMed: 27270470] [CrossRef]
704.
Mehrholz J, Harvey LA, Thomas S, et al. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017 Aug;55(8):722–9. doi: 10.1038/sc.2017.31. PMID: 28398300. Exclusion: 12. [PubMed: 28398300] [CrossRef]
705.
Mehrvar K, Ghorbanian B, Mahmoudpoor A. The effect of pilates training and massage therapy on plasma serum levels of IL-17 and IFNbeta as pro- inflammatory cytokines in patients with multiple sclerosis (MS). Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):951–2. Exclusion: 10.
706.
Mei-Ying Poon D. Effects of transcutaneous electrical nerve stimulation and body-weight-supported treadmill training on motor functions in children with spastic cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2008;68(11):7296. Exclusion: 9.
707.
Meiner Z, Fisher I, Karussis D, et al. Robot-assisted gait training by using the lokomat system in patients with multiple sclerosis: a pilot randomized trial. PM and R. 2011 Nov;3(10 SUPPL. 1):265. doi: 10.1016/j.pmrj.2011.08.297. Exclusion: 10. [CrossRef]
708.
Melo FCM, de Lima KKF, Silveira A, et al. Physical training and upper limb strength of people with paraplegia: a systematic review. J Sport Rehabil. 2018 Mar 1;28(3):288–93. doi: 10.1123/jsr.2017-0062. PMID: 29364066. Exclusion: 12. [PubMed: 29364066] [CrossRef]
709.
Methajarunon P, Eitivipart C, Diver CJ, et al. Systematic review of published studies on aquatic exercise for balance in patients with multiple sclerosis, Parkinson’s disease, and hemiplegia. Hong Kong Physiother J. 2016 Dec;35:12–20. doi: 10.1016/j.hkpj.2016.03.002. PMID: 30931029. Exclusion: 12. [PMC free article: PMC6385144] [PubMed: 30931029] [CrossRef]
710.
Meyer C, Weissland T, Watelain E, et al. Physiological responses in handcycling. Preliminary study. Ann Phys Rehabil Med. 2009 May;52(4):311–8. doi: 10.1016/j.rehab.2009.04.001. PMID: 19467942. Exclusion: 7. [PubMed: 19467942] [CrossRef]
711.
Meyer-Heim A, Ammann-Reiffer C, Schmartz A, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009 Aug;94(8):615–20. doi: 10.1136/adc.2008.145458. PMID: 19208675. Exclusion: 8. [PubMed: 19208675] [CrossRef]
712.
Meyns P, Bras C, Harlaar J, et al. Does video game-based balance-training improve gait stability in children with cerebral palsy? Gait Posture. 2018;65:105–6. doi: 10.1016/j.gaitpost.2018.06.078. Exclusion: 11. [CrossRef]
713.
Meyns P, Harlaar J, Van De Pol L, et al. Can virtual reality games improve scores on clinical balance scales in children with cerebral palsy: preliminary results of a randomized controlled clinical trial. Gait Posture. 2017 Sep;57 Conference: 26th annual meeting of the european society for movement analysis in adults and children, ESMAC. 2017. Norway 204. doi: 10.1016/j.gaitpost.2017.06.390. Exclusion: 10. [CrossRef]
714.
Meyns P, Van de Walle P, Hoogkamer W, et al. Coordinating arms and legs on a hybrid rehabilitation tricycle: the metabolic benefit of asymmetrical compared to symmetrical arm movements. Eur J Appl Physiol. 2014 Apr;114(4):743–50. doi: 10.1007/s00421-013-2814-5. PMID: 24384984. Exclusion: 3. [PubMed: 24384984] [CrossRef]
715.
Mignardot JB, Le Goff CG, van den Brand R, et al. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399):19. doi: 10.1126/scitranslmed.aah3621. PMID: 28724575. Exclusion: 10. [PubMed: 28724575] [CrossRef]
716.
Mikuľáková W, Klímová E, Kendrová L, et al. Effect of rehabilitation on fatigue level in patients with multiple sclerosis. Med Sci Monit. 2018;24:5761–70. doi: 10.12659/MSM.909183. PMID: 30120829. Exclusion: 6. [PMC free article: PMC6110142] [PubMed: 30120829] [CrossRef]
717.
Millar PJ, Rakobowchuk M, Adams MM, et al. Effects of short-term training on heart rate dynamics in individuals with spinal cord injury. Auton Neurosci. 2009 Oct 5;150(1–2):116–21. doi: 10.1016/j.autneu.2009.03.012. PMID: 19406691. Exclusion: 11. [PubMed: 19406691] [CrossRef]
718.
Miller E. [Cryostimulation factor supporting rehabilitation patients with multiple sclerosis and fatigue syndrome]. Wiad Lek. 2010;63(2):41–5. PMID: 20941916. Exclusion: 13. [PubMed: 20941916]
719.
Miller L, McFadyen A, Lord AC, et al. Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Arch Phys Med Rehabil. 2017 Jul;98(7):1435–52. doi: 10.1016/j.apmr.2016.12.007. PMID: 28088382. Exclusion: 12. [PubMed: 28088382] [CrossRef]
720.
Millett R. Group exercise proves its worth in multiple sclerosis. Frontline (20454910). 2012;18(16):13. Exclusion: 10.
721.
Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol. 2015 May;126(5):997–1006. doi: 10.1016/j.clinph.2014.09.010. PMID: 25449559. Exclusion: 6. [PMC free article: PMC4369462] [PubMed: 25449559] [CrossRef]
722.
Moghadasi A, Ghasemi G, Sadeghi-Demneh E, et al. The effect of total body resistance exercise on mobility, proprioception and muscle strength of the knee in people with multiple sclerosis. J Sport Rehabil. 2019 Apr 27:1–8. doi: 10.1123/jsr.2018-0303. PMID: 30676232. Exclusion: 11. [PubMed: 30676232] [CrossRef]
723.
Mohamed AS, Kamal HM, Elsied AO, et al. Universal exercise unit versus functional resisted training effect on muscle strength in spastic diaplegia. Indian J Public Health Res Dev. 2020;11(4):1139–44. Exclusion: 4.
724.
Mohamed El-Shamy S. Effect of whole-body vibration on muscle strength and balance in diplegic cerebral palsy. Am J Phys Med Rehabil. 2014 Feb;93(2):114–21. doi: 10.1097/PHM.0b013e3182a541a4. PMID: 24434887. Exclusion: 14. [PubMed: 24434887] [CrossRef]
725.
Mohammadi G, Naghibzade A, Rezaee Namjoo F, et al. The effects of massage and aqua training on Interleukin-6 levels of multiple sclerosis patients. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2016;175(10):408–12. Exclusion: 6.
726.
Mokhtarzade M, Ranjbar R, Majdinasab N, et al. Effect of aerobic interval training on serum IL-10, TNFalpha, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine. 2017 Aug;57(2):262–71. doi: 10.1007/s12020-017-1337-y. PMID: 28616851. Exclusion: 6. [PubMed: 28616851] [CrossRef]
727.
Moore PD, Gorgey AS, Wade RC, et al. Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: a case series. World J Clin Cases. 2016 Jul 16;4(7):172–6. doi: 10.12998/wjcc.v4.i7.172. PMID: 27458592. Exclusion: 7. [PMC free article: PMC4945587] [PubMed: 27458592] [CrossRef]
728.
Moradi M, Sahraian MA, Aghsaie A, et al. Effects of eight-week resistance training program in men with multiple sclerosis. Asian J Sports Med. 2015 Jun;6(2) doi: 10.5812/asjsm.6(2)2015.22838. PMID: 26448834. Exclusion: 11. [PMC free article: PMC4592758] [PubMed: 26448834] [CrossRef]
729.
Moraes AG, Copetti F, Angelo VR, et al. The effects of hippotherapy on postural balance and functional ability in children with cerebral palsy. J Phys Ther Sci. 2016 Aug;28(8):2220–6. doi: 10.1589/jpts.28.2220. PMID: 27630401. Exclusion: 11. [PMC free article: PMC5011565] [PubMed: 27630401] [CrossRef]
730.
Moraes AG, Copetti FP, Angelo VB, et al. Hippotherapy on postural balance in the sitting position of children with cerebral palsy - Longitudinal study. Physiother Theory Pract. 2018 Jun 11:1–8. doi: 10.1080/09593985.2018.1484534. PMID: 29889590. Exclusion: 11. [PubMed: 29889590] [CrossRef]
731.
Moreau NG, Bodkin AW, Bjornson K, et al. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: systematic review and meta-analysis. Phys Ther. 2016 Dec;96(12):1938–54. doi: 10.2522/ptj.20150401. PMID: 27313240. Exclusion: 12. [PMC free article: PMC5131187] [PubMed: 27313240] [CrossRef]
732.
Moreau NG, Holthaus K, Marlow N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil Neural Repair. 2013 May;27(4):325–34. doi: 10.1177/1545968312469834. PMID: 23292847. Exclusion: 11. [PubMed: 23292847] [CrossRef]
733.
Moreau NG, Marlow N, Holthaus K. Muscle architectural plasticity of the quadriceps in response to high velocity vs. traditional strength training in cerebral palsy: a randomized clinical. Pediatr Phys Ther. 2012 Spring;24(1):91. Exclusion: 10.
734.
Morgan D, Holbrook E, Stevens SL, et al. Impact of underwater treadmill training on walking performance in youth with cerebral palsy. Dev Med Child Neurol. 2012 Sep;54:43–4. doi: 10.1111/j.1469-8749.2012.04388.x. Exclusion: 10. [CrossRef]
735.
Morrison SA, Lorenz D, Eskay CP, et al. Longitudinal recovery and reduced costs after 120 sessions of locomotor training for motor incomplete spinal cord injury. Arch Phys Med Rehabil. 2018 Mar;99(3):555–62. doi: 10.1016/j.apmr.2017.10.003. PMID: 29107040. Exclusion: 8. [PubMed: 29107040] [CrossRef]
736.
Mosalanejad F, Afrasiabifar A, Zoladl M. Investigating the combined effect of pelvic floor muscle exercise and mindfulness on sexual function in women with multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2018 Oct;32(10):1340–7. doi: 10.1177/0269215518777877. PMID: 29843529. Exclusion: 4. [PubMed: 29843529] [CrossRef]
737.
Motl RW, Backus D, Neal WN, et al. Rationale and design of the STEP for MS Trial: comparative effectiveness of Supervised versus telerehabilitation exercise programs for multiple sclerosis. Contemp Clin Trials. 2019 Jun;81:110–22. doi: 10.1016/j.cct.2019.04.013. PMID: 31022481. Exclusion: 10. [PubMed: 31022481] [CrossRef]
738.
Motl RW, McAuley E, Snook EM, et al. Does the relationship between physical activity and quality of life differ based on generic versus disease-targeted instruments? Ann Behav Med. 2008 Aug;36(1):93–9. doi: 10.1007/s12160-008-9049-4. PMID: 18719976. Exclusion: 4. [PMC free article: PMC2893359] [PubMed: 18719976] [CrossRef]
739.
Motl RW, Sandroff BM. Randomized controlled trial of physical activity intervention effects on fatigue and depression in multiple sclerosis: Secondary analysis of data from persons with elevated symptom status. Contemp Clin Trials Commun. 2020 Mar;17:100521. doi: 10.1016/j.conctc.2020.100521. PMID: 32211556. Exclusion: 4. [PMC free article: PMC7083759] [PubMed: 32211556] [CrossRef]
740.
Mueller G, Hopman MT, Perret C. Comparison of respiratory muscle training methods in individuals with motor complete tetraplegia. Top Spinal Cord Inj Rehabil. 2012;18(2):118–21. doi: 10.1310/sci1802-118. PMID: 23459602. Exclusion: 4. [PMC free article: PMC3584765] [PubMed: 23459602] [CrossRef]
741.
Mulroy S, Haubert LL, Eberly V, et al. Effectiveness of two intervention programs to prevent shoulder pain after spinal cord injury. Arch Phys Med Rehabil. 2017;Conference:. 2017 american congress of rehabilitation medicine annual conference, ACRM 2017. United states 98(12):e174. Exclusion: 10.
742.
Mulroy SJ, Thompson L, Kemp B, et al. Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: a randomized controlled trial. Phys Ther. 2011 Mar;91(3):305–24. doi: 10.2522/ptj.20100182. PMID: 21292803. Exclusion: 4. [PubMed: 21292803] [CrossRef]
743.
Munoz-Lasa S, Ferriero G, Valero R, et al. Effect of therapeutic horseback riding on balance and gait of people with multiple sclerosis. G Ital Med Lav Ergon. 2011 Oct–Dec;33(4):462–7. PMID: 22452106. Exclusion: 11. [PubMed: 22452106]
744.
Munoz-Lasa S, Lopez de Silanes C, Atin-Arratibel MA, et al. Effects of hippotherapy in multiple sclerosis: pilot study on quality of life, spasticity, gait, pelvic floor, depression and fatigue. Med Clin (Barc). 2018 Jan 18;152(2):55–8. doi: 10.1016/j.medcli.2018.02.015. PMID: 29680460. Exclusion: 11. [PubMed: 29680460] [CrossRef]
745.
Mutluay FK, Tekeoǧlu A, Saip S, et al. Group exercise training approach to multiple sclerosis rehabilitation. Nobel Medicus. 2008;4(3):20–6. Exclusion: 4.
746.
Mutoh T, Mutoh T, Takada M, et al. Application of a tri-axial accelerometry-based portable motion recorder for the quantitative assessment of hippotherapy in children and adolescents with cerebral palsy. J Phys Ther Sci. 2016 Oct;28(10):2970–4. doi: 10.1589/jpts.28.2970. PMID: 27821971. Exclusion: 11. [PMC free article: PMC5088162] [PubMed: 27821971] [CrossRef]
747.
Mutoh T, Mutoh T, Tsubone H, et al. Impact of serial gait analyses on long-term outcome of hippotherapy in children and adolescents with cerebral palsy. Complement Ther Clin Pract. 2018 Feb;30:19–23. doi: 10.1016/j.ctcp.2017.11.003. PMID: 29389473. Exclusion: 8. [PubMed: 29389473] [CrossRef]
748.
Myers J, Gopalan R, Shahoumian T, et al. Effects of customized risk reduction program on cardiovascular risk in males with spinal cord injury. J Rehabil Res Dev. 2012;49(9):1355–64. PMID: 23408217. Exclusion: 11. [PubMed: 23408217]
749.
Najafi P, Moghadasi M. The effect of yoga training on enhancement of Adrenocorticotropic hormone (ACTH) and cortisol levels in female patients with multiple sclerosis. Complement Ther Clin Pract. 2017 Feb;26:21–5. doi: 10.1016/j.ctcp.2016.11.006. PMID: 28107844. Exclusion: 11. [PubMed: 28107844] [CrossRef]
750.
Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroengineering Rehabil. 2017 Mar 23;14(1):24. doi: 10.1186/s12984-017-0232-3. PMID: 28330471. Exclusion: 12. [PMC free article: PMC5363005] [PubMed: 28330471] [CrossRef]
751.
Nardone R, Orioli A, Golaszewski S, et al. Passive cycling in neurorehabilitation after spinal cord injury: a review. J Spinal Cord Med. 2017 01;40(1):8–16. doi: 10.1080/10790268.2016.1248524. PMID: 27841091. Exclusion: 12. [PMC free article: PMC5376131] [PubMed: 27841091] [CrossRef]
752.
Narimani A, Kalantari M, Dalvand H, et al. Effect of mirror therapy on dexterity and hand grasp in children aged 9–14 years with hemiplegic cerebral palsy. Iran J Child Neurol. 2019;13(4):135–42. PMID: 31645873. Exclusion: 4. [PMC free article: PMC6789091] [PubMed: 31645873]
753.
Nasseri NN, Ghezelbash E, Zhai Y, et al. Feasibility of a smartphone app to enhance physical activity in progressive MS: a pilot randomized controlled pilot trial over three months. PeerJ. 2020;6. Exclusion: 4. [PMC free article: PMC7319035] [PubMed: 32612882]
754.
Navarrete-Opazo A, Alcayaga JJ, Sepulveda O, et al. Intermittent hypoxia and locomotor training enhances dynamic but not standing balance in patients with incomplete spinal cord injury. Arch Phys Med Rehabil. 2017 03;98(3):415–24. doi: 10.1016/j.apmr.2016.09.114. PMID: 27702556. Exclusion: 4. [PubMed: 27702556] [CrossRef]
755.
Nedeljkovic U, Dackovic J, Basuroski ID, et al. Influence of rehabilitation on fatigue and physical activity of patients with relapse of multiple sclerosis. Mult Scler J Exp Transl Clin. 2014 Jun;20(7):983–4. doi: 10.1177/1352458514533628. Exclusion: 10. [CrossRef]
756.
Nedeljkovic U, Raspopovic ED, Ilic N, et al. Effectiveness of rehabilitation in multiple sclerosis relapse on fatigue, self-efficacy and physical activity. Acta Neurol Belg. 2016 Sep;116(3):309–15. doi: 10.1007/s13760-015-0563-4. PMID: 26563405. Exclusion: 4. [PubMed: 26563405] [CrossRef]
757.
Neefkes-Zonneveld CR, Bakkum AJ, Bishop NC, et al. Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2015 Jan;96(1):30–42. doi: 10.1016/j.apmr.2014.07.006. PMID: 25064781. Exclusion: 12. [PubMed: 25064781] [CrossRef]
758.
Negahban H, Monjezi S, Mehravar M, et al. Responsiveness of postural performance measures following balance rehabilitation in multiple sclerosis patients. J Bodywork Mov Ther. 2018 Apr;22(2):502–10. doi: 10.1016/j.jbmt.2017.06.008. PMID: 29861258. Exclusion: 8. [PubMed: 29861258] [CrossRef]
759.
Negahban H, Rezaie S, Goharpey S. Massage therapy and exercise therapy in patients with multiple sclerosis: a randomized controlled pilot study. Clin Rehabil. 2013 Dec;27(12):1126–36. doi: 10.1177/0269215513491586. PMID: 23828184. Exclusion: 5. [PubMed: 23828184] [CrossRef]
760.
Negaresh R, Motl RW, Zimmer P, et al. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. Eur J Neurol. 2019 May;26(5):711–21. doi: 10.1111/ene.13929. PMID: 30734989. Exclusion: 12. [PubMed: 30734989] [CrossRef]
761.
Newsome S, Zackowski K, Calabresi P, et al. Evaluating the effects of functional electrical stimulation on ambulation in individuals with secondary progressive multiple sclerosis. Mult Scler J Exp Transl Clin. START: 2012 Oct 10 CONFERENCE END: 2012 Oct 13, 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis Lyon France;18(4 SUPPL. 1):484–5. Exclusion: 10.
762.
Nguyen V. Efficacy of body weight supported treadmill training in a child with cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2018;79(4-B(E)). Exclusion: 7.
763.
Nightingale TE, Bilzon J. Cardiovascular health benefits of exercise in people with spinal cord injury: more complex than a prescribed exercise intervention? Arch Phys Med Rehabil. 2016;97(6):1038. doi: 10.1016/j.apmr.2016.02.020. PMID: 27233990. Exclusion: 7. [PubMed: 27233990] [CrossRef]
764.
Nightingale TE, Rouse PC, Walhin JP, et al. Home-based exercise enhances health-related quality of life in persons with spinal cord injury: a randomized controlled trial. Arch Phys Med Rehabil. 2018 Oct;99(10):1998–2006.e1. doi: 10.1016/j.apmr.2018.05.008. PMID: 29902472. Exclusion: 4. [PubMed: 29902472] [CrossRef]
765.
Nightingale TE, Walhin J-P, Thompson D, et al. Impact of exercise on cardiometabolic component risks in spinal cord--injured humans. Med Sci Sports Exerc. 2017;49(12):2469–77. doi: 10.1249/MSS.0000000000001390. Exclusion: 4. [PMC free article: PMC5704648] [PubMed: 28753161] [CrossRef]
766.
Nikityuk IE, Moshonkina TR, Shcherbakova NA, et al. Effects of locomotor training and functional electrical stimulation on postural function in children with severe cerebral palsy. Fiziol Cheloveka. 2016 May–Jun;42(3):37–46. doi: 10.17116/kurort2016523-27. PMID: 29446895. Exclusion: 6. [PubMed: 29446895] [CrossRef]
767.
Nilsagard YE, von Koch LK, Nilsson M, et al. Balance exercise program reduced falls in people with multiple sclerosis: a single-group, pretest-posttest trial. Arch Phys Med Rehabil. 2014 Dec;95(12):2428–34. doi: 10.1016/j.apmr.2014.06.016. PMID: 25004466. Exclusion: 8. [PubMed: 25004466] [CrossRef]
768.
Nimmy A, Shanmugam S, Shilna Rani P. Effectiveness of pelvic proprioceptive neuromuscular facilitation on trunk control in children with spastic diplegia: A randomized controlled trial. Indian J Public Health Res Dev. 2020;11(2):571–6. doi: 10.37506/v11/i2/2020/ijphrd/194867. Exclusion: 4. [CrossRef]
769.
Nithiatthawanon T, Amatachaya P, Thaweewannakij T, et al. Immediate effects of lower limb loading exercise during stepping with and without augmented loading feedback on mobility of ambulatory individuals with spinal cord injury: a single-blinded, randomized, cross-over trial. Spinal Cord. 2020 Jul 06;06:06. doi: 10.1038/s41393-020-0498-3. PMID: 32632173. Exclusion: 4. [PubMed: 32632173] [CrossRef]
770.
Niu X, Varoqui D, Kindig M, et al. The effect of robot-assisted locomotor training on walking speed. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3858–61. doi: 10.1109/EMBC.2012.6346809. PMID: 23366770. Exclusion: 10. [PubMed: 23366770] [CrossRef]
771.
Nooijen CF, de Groot S, Postma K, et al. A more active lifestyle in persons with a recent spinal cord injury benefits physical fitness and health. Spinal Cord. 2012 Apr;50(4):320–3. doi: 10.1038/sc.2011.152. PMID: 22143679. Exclusion: 8. [PubMed: 22143679] [CrossRef]
772.
Nooijen CF, Stam HJ, Schoenmakers I, et al. Working mechanisms of a behavioural intervention promoting physical activity in persons with subacute spinal cord injury. J Rehabil Med. 2016 Jul 18;48(7):583–8. doi: 10.2340/16501977-2110. PMID: 27346837. Exclusion: 4. [PubMed: 27346837] [CrossRef]
773.
Novotna K, Janatova M, Hana K, et al. Biofeedback Based Home Balance Training can Improve Balance but Not Gait in People with Multiple Sclerosis. Mult Scler Int. 2019;2019:2854130. doi: 10.1155/2019/2854130. PMID: 31934450. Exclusion: 4. [PMC free article: PMC6942900] [PubMed: 31934450] [CrossRef]
774.
Novotna K, Sucha L, Kalincik T, et al. Positive impact of regular circuit training on muscle strength, stability, depression and fatigue in multiple sclerosis patients. Mult Scler J Exp Transl Clin. 2015 Apr;21(4):533. doi: 10.1177/1352458515573128. Exclusion: 10. [CrossRef]
775.
Nuara A, Avanzini P, Rizzolatti G, et al. Efficacy of a home-based platform for child-to-child interaction on hand motor function in unilateral cerebral palsy. Dev Med Child Neurol. 2019 Nov;61(11):1314–22. doi: 10.1111/dmcn.14262. PMID: 31115046. Exclusion: 8. [PubMed: 31115046] [CrossRef]
776.
Nurova B, Kurtuncu M, Coban A, et al. Computer assisted cognitive rehabilitation in patients with multiple sclerosis and parenchymal neuro-Behcet’s disease. J Neurol. 2014;261(31). Exclusion: 10.
777.
O’Brien TD, Noyes J, Spencer LH, et al. Systematic review of physical activity and exercise interventions to improve health, fitness and well-being of children and young people who use wheelchairs. BMJ Open Sport Exerc Med. 2016 Nov 15;2(1):e000109. doi: 10.1136/bmjsem-2016-000109. PMID: 27900176. Exclusion: 12. [PMC free article: PMC5125427] [PubMed: 27900176] [CrossRef]
778.
O’Neil ME, Fragala-Pinkham M, Lennon N, et al. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther. 2016 Jan;96(1):37–45. doi: 10.2522/ptj.20140201. PMID: 26089043. Exclusion: 4. [PMC free article: PMC4706594] [PubMed: 26089043] [CrossRef]
779.
Oftedal S, Bell KL, Stevenson RD, et al. Prospective cohort study of relationship between growth and diet, physical activity and time spent sedentary in preschool aged children with cerebral palsy. Dev Med Child Neurol. 2016;58:27–8. doi: 10.1111/dmcn.53_13241. Exclusion: 10. [CrossRef]
780.
Oftedal S, Davies PS, Boyd RN, et al. Body composition, diet, and physical activity: a longitudinal cohort study in preschoolers with cerebral palsy. Am J Clin Nutr. 2017 Feb;105(2):369–78. doi: 10.3945/ajcn.116.137810. PMID: 28077375. Exclusion: 4. [PubMed: 28077375] [CrossRef]
781.
Ogata H, Ogata T, Hoshikawa S, et al. Hypoventilation during passive leg movement in spinal cord-injured humans. Clin Auton Res. 2010 Apr;20(2):101–3. doi: 10.1007/s10286-009-0042-1. PMID: 19924465. Exclusion: 6. [PubMed: 19924465] [CrossRef]
782.
Ogonowska-Slodownik A, Geigle PR, Gorman PH, et al. Aquatic, deep water peak VO2 testing for individuals with spinal cord injury. J Spinal Cord Med. 2019 Sep;42(5):631–8. doi: 10.1080/10790268.2018.1559494. PMID: 30632946. Exclusion: 4. [PMC free article: PMC6758719] [PubMed: 30632946] [CrossRef]
783.
Ogwumike OO, Badaru UM, Adeniyi AF. Effect of task-oriented training on balance and motor function of ambulant children with cerebral palsy. Rehabilitacion. 2019;53(4):276–83. doi: 10.1016/j.rh.2019.07.003. Exclusion: 4. [PubMed: 31813423] [CrossRef]
784.
Olama KA. Endurance exercises versus treadmill training in improving muscle strength and functional activities in hemiparetic cerebral palsy. Egypt J Med Hum Genet. 2011 Nov;12(2):193–9. doi: 10.1016/j.ejmhg.2011.07.002. Exclusion: 14. [CrossRef]
785.
Olama KA, Thabit NS. Effect of vibration versus suspension therapy on balance in children with hemiparetic cerebral palsy. Egypt J Med Hum Genet. 2012;13(2):219–26. doi: 10.1016/j.ejmhg.2011.11.001. Exclusion: 14. [CrossRef]
786.
Oliveira AC, Freitas C, Eras-Garcia R, et al. Cerebral palsy in adult patients: constraint-induced movement therapy is effective to reverse the nonuse of the affected upper limb. Arq Neuropsiquiatr. 2016 Jan;74(1):18–21. doi: 10.1590/0004-282X20150195. PMID: 26690842. Exclusion: 11. [PubMed: 26690842] [CrossRef]
787.
Orban A, Garg B, Sammi MK, et al. Effect of high-intensity exercise on multiple sclerosis function and 31P MRS outcomes. Med Sci Sports Exerc. 2019 Jan 30;30:30. doi: 10.1249/MSS.0000000000001914. PMID: 30707115. Exclusion: 11. [PMC free article: PMC6594188] [PubMed: 31205251] [CrossRef]
788.
Ordonez FJ, Rosety MA, Camacho A, et al. Arm-cranking exercise reduced oxidative damage in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2013 Dec;94(12):2336–41. doi: 10.1016/j.apmr.2013.05.029. PMID: 23811316. Exclusion: 11. [PubMed: 23811316] [CrossRef]
789.
Ozdogar AT, Ertekin O, Kahraman T, et al. Effect of videogame-based physical activity training in persons with multiple sclerosis: a randomised controlled trial. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):674. Exclusion: 10.
790.
Ozgen G, Karapolat H, Akkoc Y, et al. Effect of vestibular rehabilitation on balance, quality of life and depression in patients with multiple sclerosis, Multipl Skleroz Hastalarinda Vestibuler Rehabilitasyonun Denge Bozuklutu, Yasam Kalitesi ve Depresyon Uzerine Etkilerinin Deterlendirilmesi. [Turkish, English]. Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi. 2013;59:229. doi: 10.4274/tftr.24.59.1. Exclusion: 10. [CrossRef]
791.
Ozgen G, Karapolat H, Akkoc Y, et al. Is customized vestibular rehabilitation effective in patients with multiple sclerosis? A randomized controlled trial. Eur J Phys Rehabil Med. 2016 Aug;52(4):466–78. PMID: 27050082. Exclusion: 4. [PubMed: 27050082]
792.
Ozkan F, Zincir H. Opinions and observations of caregivers of children with cerebral palsy about changes seen after reflexology: a qualitative study. Complement Ther Clin Pract. 2018 May;31:242–7. doi: 10.1016/j.ctcp.2018.03.011. PMID: 29705462. Exclusion: 4. [PubMed: 29705462] [CrossRef]
793.
Ozkul C, Guclu-Gunduz A, Irkec C, et al. Effect of combined exercise training on serum brain-derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. J Neuroimmunol. 2018 Mar 15;316:121–9. doi: 10.1016/j.jneuroim.2018.01.002. PMID: 29329698. Exclusion: 6. [PubMed: 29329698] [CrossRef]
794.
Ozturk ED, Lapointe MS, Kim DI, et al. Impact of 6-Month Exercise Training on Neurovascular Function in Spinal Cord Injury. Med Sci Sports Exerc. 2020 Aug 21;21:21. doi: 10.1249/MSS.0000000000002452. PMID: 32826631. Exclusion: 7. [PubMed: 32826631] [CrossRef]
795.
Paleg G, Livingstone R. Outcomes of gait trainer use in home and school settings for children with motor impairments: a systematic review. Clin Rehabil. 2015 Nov;29(11):1077–91. doi: 10.1177/0269215514565947. PMID: 25636993. Exclusion: 12. [PubMed: 25636993] [CrossRef]
796.
Paltiel AD, Ingvarsson E, Lee DK, et al. Demographic and clinical features of inclusion body myositis in North America. Muscle Nerve. 2015 Oct;52(4):527–33. doi: 10.1002/mus.24562. PMID: 25557419. Exclusion: 3. [PMC free article: PMC4869122] [PubMed: 25557419] [CrossRef]
797.
Panisset MG, El-Ansary D, Dunlop SA, et al. Factors influencing thigh muscle volume change with cycling exercises in acute spinal cord injury - a secondary analysis of a randomized controlled trial. J Spinal Cord Med. 2020 Sep 24:1–12. doi: 10.1080/10790268.2020.1815480. PMID: 32970970. Exclusion: 6. [PMC free article: PMC9246176] [PubMed: 32970970] [CrossRef]
798.
Panisset MG, Galea MP, El-Ansary D. Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord. 2016 Feb;54(2):84–92. doi: 10.1038/sc.2015.150. PMID: 26345485. Exclusion: 12. [PubMed: 26345485] [CrossRef]
799.
Panza GS, Guccione AA. Effect of repeated locomotor training on ventilatory measures, perceived exertion and walking endurance in persons with motor incomplete spinal cord injury. Spinal Cord Ser Cases. 2020 10 12;6(1):94. doi: 10.1038/s41394-020-00346-6. PMID: 33046694. Exclusion: 7. [PMC free article: PMC7550559] [PubMed: 33046694] [CrossRef]
800.
Panza GS, Guccione AA, Chin LM, et al. Effects of overground locomotor training on the ventilatory response to volitional treadmill walking in individuals with incomplete spinal cord injury: a pilot study. Spinal Cord Ser Cases. 2017;3:17011. doi: 10.1038/scsandc.2017.11. PMID: 28435743. Exclusion: 11. [PMC free article: PMC5390072] [PubMed: 28435743] [CrossRef]
801.
Paramonova DB, Mugerman BI. The role of therapeutic physical training and massage in the restoration of static and dynamic functions in the children presenting with the atonic-astatic form of infantile cerebral paralysis. Vopr Kurortol Fizioter Lech Fiz Kult. 2012 Sep–Oct(5):37–40. PMID: 23210361. Exclusion: 13. [PubMed: 23210361]
802.
Parent A, Raison M, Pouliot-Laforte A, et al. Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait. Clin Biomech. 2016 May;34:18–21. doi: 10.1016/j.clinbiomech.2016.03.003. PMID: 27038653. Exclusion: 11. [PubMed: 27038653] [CrossRef]
803.
Parra-Moreno M, Rodriguez-Juan JJ, Ruiz-Cardenas JD. Use of commercial video games to improve postural balance in patients with multiple sclerosis: a systematic review and meta-analysis of randomised controlled clinical trials. Neurologia. 2017 doi: 10.1016/j.nrl.2017.12.001. PMID: 29525396. Exclusion: 13. [PubMed: 29525396] [CrossRef]
804.
Pascoe J, Thomason P, Graham HK, et al. Body mass index in ambulatory children with cerebral palsy: a cohort study. J Paediatr Child Health. 2016 Apr;52(4):417–21. doi: 10.1111/jpc.13097. PMID: 27145505. Exclusion: 7. [PubMed: 27145505] [CrossRef]
805.
Patatoukas D, Farmakides A, Aggeli V, et al. Disability-related injuries in athletes with disabilities. Folia Med (Plovdiv). 2011 Jan–Mar;53(1):40–6. PMID: 21644404. Exclusion: 7. [PubMed: 21644404]
806.
Patritti B, Sicari M, Deming L, et al. Enhancing robotic gait training via augmented feedback. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2271–4. doi: 10.1109/IEMBS.2010.5627707. PMID: 21097013. Exclusion: 10. [PubMed: 21097013] [CrossRef]
807.
Patrocinio de Oliveira CE, Moreira OC, Carrion-Yagual ZM, et al. Effects of classic progressive resistance training versus eccentric-enhanced resistance training in people with multiple sclerosis. Arch Phys Med Rehabil. 2018 May;99(5):819–25. doi: 10.1016/j.apmr.2017.10.021. PMID: 29191417. Exclusion: 4. [PubMed: 29191417] [CrossRef]
808.
Patzer D, Vu P, Pardo V, et al. Immediate effect of whole-body vibration on gait in patients with incomplete spinal cord injury. J Spinal Cord Med. START: 2014 Oct 2 CONFERENCE END: 2014 Oct 3, 6th National Canadian Spinal Cord Injury Conference: Bioinformatics Informs SCI Toronto, ON Canada;37(5):624–5. Exclusion: 10.
809.
Paul L, Coulter EH, Miller L, et al. Physiotherapy-led web-based rehabilitation for people with multiple sclerosis. Mult Scler J Exp Transl Clin. 2013 Oct;19(11 SUPPL. 1):555–6. doi: 10.1177/1352458513502429. Exclusion: 10. [CrossRef]
810.
Paul L, Coulter EH, Miller L, et al. Web-based physiotherapy for people moderately affected with multiple sclerosis; quantitative and qualitative data from a randomized, controlled pilot study. Clin Rehabil. 2014 Sep;28(9):924–35. doi: 10.1177/0269215514527995. PMID: 24691218. Exclusion: 4. [PubMed: 24691218] [CrossRef]
811.
Paul L, Rafferty D, Young S, et al. The effect of functional electrical stimulation on the physiological cost of gait in people with multiple sclerosis. Mult Scler. 2008 Aug;14(7):954–61. doi: 10.1177/1352458508090667. PMID: 18573839. Exclusion: 11. [PubMed: 18573839] [CrossRef]
812.
Paul L, Renfrew L, Freeman J, et al. Web-based physiotherapy for people affected by multiple sclerosis: a single blind, randomized controlled feasibility study. Clin Rehabil. 2019 Mar;33(3):473–84. doi: 10.1177/0269215518817080. PMID: 30514108. Exclusion: 4. [PubMed: 30514108] [CrossRef]
813.
Pawik M, Kowalska J, Rymaszewska J. The effectiveness of whole-body cryotherapy and physical exercises on the psychological well-being of patients with multiple sclerosis: a comparative analysis. Adv Clin Exp Med. 2019 Apr 5;5:5. doi: 10.17219/acem/104529. PMID: 30968613. Exclusion: 5. [PubMed: 30968613] [CrossRef]
814.
Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1339–48.e7. doi: 10.1016/j.apmr.2015.02.011. PMID: 25712347. Exclusion: 12. [PubMed: 25712347] [CrossRef]
815.
Pelletier CA. Incorporating physical activity into the rehabilitation process after spinal cord injury. Appl Physiol Nutr Metab. 2014 Apr;39(4):513. doi: 10.1139/apnm-2013-0482. Exclusion: 10. [CrossRef]
816.
Pelletier CA, Totosy de Zepetnek JO, MacDonald MJ, et al. A 16-week randomized controlled trial evaluating the physical activity guidelines for adults with spinal cord injury. Spinal Cord. 2015 May;53(5):363–7. doi: 10.1038/sc.2014.167. PMID: 25266695. Exclusion: 11. [PubMed: 25266695] [CrossRef]
817.
Perrochon A, Borel B, Istrate D, et al. Exercise-based games interventions at home in individuals with a neurological disease: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019 Sep;62(5):366–78. doi: 10.1016/j.rehab.2019.04.004. PMID: 31078706. Exclusion: 4. [PubMed: 31078706] [CrossRef]
818.
Peruzzi A, Cereatti A, Della Croce U, et al. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2016 Jan;5:91–6. doi: 10.1016/j.msard.2015.11.002. PMID: 26856951. Exclusion: 11. [PubMed: 26856951] [CrossRef]
819.
Peruzzi A, Zarbo IR, Cereatti A, et al. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis. Disabil Rehabil. 2017 Jul;39(15):1557–63. doi: 10.1080/09638288.2016.1224935. PMID: 27808596. Exclusion: 11. [PubMed: 27808596] [CrossRef]
820.
Petersen JL. Effects of brief aquatic exercise in multiple sclerosis on mobility and function. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2016;77(5-B(E)). Exclusion: 10.
821.
Peungsuwan P, Parasin P, Siritaratiwat W, et al. Effects of Combined Exercise Training on Functional Performance in Children With Cerebral Palsy: A Randomized-Controlled Study. Pediatr Phys Ther. 2017 01;29(1):39–46. doi: 10.1097/PEP.0000000000000338. PMID: 27984466. Exclusion: 11. [PubMed: 27984466] [CrossRef]
822.
Pfalzer L, Fry D. Effects of a 10-week inspiratory muscle training program on lower-extremity mobility in people with multiple sclerosis: a randomized controlled trial. Int J MS Care. 2011;13(1):32–42. doi: 10.7224/1537-2073-13.1.32. PMID: 24453703. Exclusion: 4. [PMC free article: PMC3882946] [PubMed: 24453703] [CrossRef]
823.
Phadke C, Veira L, Mathur S, et al. Impact of passive leg cycling in persons with spinal cord injury. Arch Phys Med Rehabil. 2017;Conference: 94th annual conference of the american congress of rehabilitation medicine, ACRM. 2017. United states 98(10):e135. Exclusion: 10.
824.
Phadke CP, Vierira L, Mathur S, et al. Impact of passive leg cycling in persons with spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil. 2019;25(1):83–96. doi: 10.1310/sci18-00020. PMID: 30774292. Exclusion: 10. [PMC free article: PMC6368104] [PubMed: 30774292] [CrossRef]
825.
Pham HP, Eidem A, Hansen G, et al. Validity and responsiveness of the trunk impairment scale and trunk control measurement scale in young individuals with cerebral palsy. Phys Occup Ther Pediatr. 2016 Nov;36(4):440–52. doi: 10.3109/01942638.2015.1127867. PMID: 26890372. Exclusion: 8. [PubMed: 26890372] [CrossRef]
826.
Phillips AA, Squair JR, Currie KD, et al. 2015 ParaPan American games: autonomic function, but not physical activity, is associated with vascular-cognitive impairment in spinal cord injury. J Neurotrauma. 2017 Mar 15;34(6):1283–8. doi: 10.1089/neu.2016.4751. PMID: 27998205. Exclusion: 4. [PubMed: 27998205] [CrossRef]
827.
Pickering D, Horrocks LM, Visser KS, et al. ‘Every picture tells a story’: interviews and diaries with children with cerebral palsy about adapted cycling. J Paediatr Child Health. 2013 Dec;49(12):1040–4. doi: 10.1111/jpc.12289. PMID: 23781924. Exclusion: 7. [PubMed: 23781924] [CrossRef]
828.
Piira A, Lannem AM, Gjesdal K, et al. Quality of life and psychological outcomes of body-weight supported locomotor training in spinal cord injured persons with long-standing incomplete lesions. Spinal Cord. 2020 May;58(5):560–9. doi: 10.1038/s41393-019-0401-2. PMID: 31848443. Exclusion: 11. [PubMed: 31848443] [CrossRef]
829.
Piira A, Lannem AM, Sorensen M, et al. Robot-assisted locomotor training did not improve walking function in patients with chronic incomplete spinal cord injury: a randomized clinical trial. J Rehabil Med. 2019 May 13;51(5):385–9. doi: 10.2340/16501977-2547. PMID: 30895326. Exclusion: 11. [PubMed: 30895326] [CrossRef]
830.
Piira A, Lannem AM, Sorensen M, et al. Manually assisted body-weight supported locomotor training does not re-establish walking in non-walking subjects with chronic incomplete spinal cord injury: a randomized clinical trial. J Rehabil Med. 2019 Feb 1;51(2):113–9. doi: 10.2340/16501977-2508. PMID: 30483724. Exclusion: 7. [PubMed: 30483724] [CrossRef]
831.
Pillastrini P, Mugnai R, Bonfiglioli R, et al. Evaluation of an occupational therapy program for patients with spinal cord injury. Spinal Cord. 2008 Jan;46(1):78–81. doi: 10.1038/sj.sc.3102072. PMID: 17453011. Exclusion: 4. [PubMed: 17453011] [CrossRef]
832.
Pilutti LA, Dlugonski D, Sandroff BM, et al. Randomized controlled trial of a behavioral intervention targeting symptoms and physical activity in multiple sclerosis. Mult Scler. 2014 Apr;20(5):594–601. doi: 10.1177/1352458513503391. PMID: 24009162. Exclusion: 4. [PubMed: 24009162] [CrossRef]
833.
Pilutti LA, Dlugonski D, Sandroff BM, et al. Internet-delivered lifestyle physical activity intervention improves body composition in multiple sclerosis: preliminary evidence from a randomized controlled trial. Arch Phys Med Rehabil. 2014 Jul;95(7):1283–8. doi: 10.1016/j.apmr.2014.03.015. PMID: 24699237. Exclusion: 4. [PubMed: 24699237] [CrossRef]
834.
Pilutti LA, Edwards TA. Is Exercise Training Beneficial in Progressive Multiple Sclerosis? Int J MS Care. 2017;19(2):105–12. doi: 10.7224/1537-2073.2016-034. Exclusion: 10. [PMC free article: PMC7313408] [PubMed: 32607069] [CrossRef]
835.
Pilutti LA, Motl RW. Functional Electrical Stimulation Cycling Exercise for People with Multiple Sclerosis. Curr Treat Options Neurol. 2019 Nov 08;21(11):54. doi: 10.1007/s11940-019-0597-7. PMID: 31705304. Exclusion: 12. [PubMed: 31705304] [CrossRef]
836.
Pilutti LA, Paulseth JE, Dove C, et al. Exercise training in progressive multiple sclerosis: a comparison of recumbent stepping and body weight-supported treadmill training. Int J MS Care. 2016 Sep–Oct;18(5):221–9. doi: 10.7224/1537-2073.2015-067. PMID: 27803637. Exclusion: 11. [PMC free article: PMC5087577] [PubMed: 27803637] [CrossRef]
837.
Pilutti LA, Sandroff BM, Klaren RE, et al. Physical fitness assessment across the disability spectrum in persons with multiple sclerosis: a comparison of testing modalities. J Neurol Phys Ther. 2015 Oct;39(4):241–9. doi: 10.1097/NPT.0000000000000099. PMID: 26247510. Exclusion: 4. [PubMed: 26247510] [CrossRef]
838.
Platta ME, Ensari I, Motl RW, et al. Effect of exercise training on fitness in multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2016 Sep;97(9):1564–72. doi: 10.1016/j.apmr.2016.01.023. PMID: 26896750. Exclusion: 12. [PubMed: 26896750] [CrossRef]
839.
Ploughman M, Shears J, Harris C, et al. Effectiveness of a novel community exercise transition program for people with moderate to severe neurological disabilities. NeuroRehabilitation. 2014;35(1):105–12. doi: 10.3233/NRE-141090. PMID: 24990000. Exclusion: 3. [PubMed: 24990000] [CrossRef]
840.
Plow M, Bethoux F, Mai K, et al. A formative evaluation of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis. Health Educ Res. 2014 Oct;29(5):883–96. doi: 10.1093/her/cyu034. PMID: 24989822. Exclusion: 4. [PMC free article: PMC4165989] [PubMed: 24989822] [CrossRef]
841.
Plow M, Bethoux F, McDaniel C, et al. Randomized controlled pilot study of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis. Clin Rehabil. 2014 Feb;28(2):139–48. doi: 10.1177/0269215513494229. PMID: 23864516. Exclusion: 4. [PubMed: 23864516] [CrossRef]
842.
Plow M, Finlayson M. Potential benefits of nintendo wii fit among people with multiple sclerosis: a longitudinal pilot study. Int J MS Care. 2011;13(1):21–30. doi: 10.7224/1537-2073-13.1.21. PMID: 24453702. Exclusion: 8. [PMC free article: PMC3882950] [PubMed: 24453702] [CrossRef]
843.
Plow M, Motl RW, Finlayson M, et al. Intervention Mediators in a Randomized Controlled Trial to Increase Physical Activity and Fatigue Self-management Behaviors Among Adults With Multiple Sclerosis. Ann Behav Med. 2019 Oct 09;09:09. doi: 10.1093/abm/kaz033. PMID: 31595300. Exclusion: 4. [PubMed: 31595300] [CrossRef]
844.
Plow M, Motl RW, Finlayson M, et al. Response heterogeneity in a randomized controlled trial of telerehabilitation interventions among adults with multiple sclerosis. J Telemed Telecare. 2020 Oct 25:1357633X20964693. doi: 10.1177/1357633X20964693. PMID: 33100184. Exclusion: 4. [PubMed: 33100184] [CrossRef]
845.
Plow MA, Mathiowetz V, Lowe DA. Comparing individualized rehabilitation to a group wellness intervention for persons with multiple sclerosis. Am J Health Promot. 2009 Sep–Oct;24(1):23–6. doi: 10.4278/ajhp.071211128. PMID: 19750959. Exclusion: 4. [PubMed: 19750959] [CrossRef]
846.
Plow MA, Mathiowetz V, Resnik L. Multiple sclerosis: impact of physical activity on psychosocial constructs. Am J Health Behav. 2008 Nov–Dec;32(6):614–26. doi: 10.5555/ajhb.2008.32.6.614. PMID: 18442341. Exclusion: 4. [PubMed: 18442341] [CrossRef]
847.
Plummer P. Critical appraisal of evidence for improving gait speed in people with multiple sclerosis: dalfampridine versus gait training. Int J MS Care. 2016 May–Jun;18(3):105–15. doi: 10.7224/1537-2073.2014-114. PMID: 27252597. Exclusion: 12. [PMC free article: PMC4886996] [PubMed: 27252597] [CrossRef]
848.
Poehlau D, Drache M, Gerber-Grothe A, et al. Hippotherapy improves symptoms of multiple sclerosis-results of a randomised controlled multicentre study. Mult Scler J Exp Transl Clin. 2015 START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;21(11 SUPPL. 1):795–6. doi: 10.1177/1352458515604791. Exclusion: 10. [CrossRef]
849.
Poettgen J, Moss-Morris R, Wendebourg JM, et al. Online fatigue management program for patients with multiple sclerosis-a randomized controlled trial. Mult Scler J Exp Transl Clin. START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;23(11 SUPPL. 1):41–2. Exclusion: 10.
850.
Poirot I, Laudy V, Rabilloud M, et al. Rehabilitation of 190 non-ambulatory children with cerebral palsy in structures of care or in liberal sector. Ann Phys Rehabil Med. 2013 Oct;56(7–8):551–60. doi: 10.1016/j.rehab.2013.08.002. PMID: 24120244. Exclusion: 7. [PubMed: 24120244] [CrossRef]
851.
Pool D, Blackmore AM, Bear N, et al. Effects of short-term daily community walk aide use on children with unilateral spastic cerebral palsy. Pediatr Phys Ther. 2014;26(3):308–17. doi: 10.1097/PEP.0000000000000057. PMID: 24979083. Exclusion: 8. [PubMed: 24979083] [CrossRef]
852.
Popovic-Maneski L, Aleksic A, Metani A, et al. Assessment of spasticity by a pendulum test in SCI patients who exercise FES cycling or receive only conventional therapy. IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):181–7. doi: 10.1109/TNSRE.2017.2771466. PMID: 29324409. Exclusion: 5. [PubMed: 29324409] [CrossRef]
853.
Possover M. The LION procedure to the pelvic nerves for recovery of locomotion in 18 spinal cord injured peoples - A case series. Surg Technol Int. 2016 Oct 26;29:19–25. PMID: 27728946. Exclusion: 4. [PubMed: 27728946]
854.
Postma K, Haisma JA, de Groot S, et al. Changes in pulmonary function during the early years after inpatient rehabilitation in persons with spinal cord injury: a prospective cohort study. Arch Phys Med Rehabil. 2013 Aug;94(8):1540–6. doi: 10.1016/j.apmr.2013.02.006. PMID: 23416767. Exclusion: 4. [PubMed: 23416767] [CrossRef]
855.
Pountney T, Williams H, Bryant E. Effectiveness of an intensive six week graded exercise programmes for non ambulant children and young people with cerebral palsy. Physiotherapy. 2011;97(S1):eS1016–7. doi: 10.1016/j.physio.2011.04.002. Exclusion: 10. [CrossRef]
856.
Pourazar M, Mirakhori F, Hemayattalab R, et al. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: a randomized controlled trial. Dev Neurorehabil. 2018;21(8):515–20. doi: 10.1080/17518423.2017.1368730. Exclusion: 6. [PubMed: 28933977] [CrossRef]
857.
Prakash RS, Snook EM, Kramer AF, et al. Correlation of physical activity with perceived cognitive deficits in relapsing-remitting multiple sclerosis. Int J MS Care. 2010;12(1):1–5. Exclusion: 6.
858.
Prakash RS, Snook EM, Motl RW, et al. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 2010 Jun 23;1341:41–51. doi: 10.1016/j.brainres.2009.06.063. PMID: 19560443. Exclusion: 6. [PMC free article: PMC2884046] [PubMed: 19560443] [CrossRef]
859.
Preede L, Saebu M, Perrin PB, et al. One-year trajectories of mental and physical functioning during and after rehabilitation among individuals with disabilities. Health Qual Life Outcomes. 2015 Aug 28;13:135. doi: 10.1186/s12955-015-0328-z. PMID: 26315445. Exclusion: 3. [PMC free article: PMC4552404] [PubMed: 26315445] [CrossRef]
860.
Prenton S, Hollands KL, Kenney LPJ, et al. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: a meta-analysis providing direction for future research. J Rehabil Med. 2018 Feb 13;50(2):129–39. doi: 10.2340/16501977-2289. PMID: 29227525. Exclusion: 11. [PubMed: 29227525] [CrossRef]
861.
Priya MS, Kalpana AP. Effect of strengthening of inspiratory muscles using inspiratory muscle trainer on pulmonary function among patients with spinal cord injury-a quasi-experimental study. Indian J Physiother Occup Ther. 2018;12(1):64–9. doi: 10.5958/0973-5674.2018.00012.6. Exclusion: 14. [CrossRef]
862.
Proctor BJ, Moghaddam N, Vogt W, et al. Telephone psychotherapy in multiple sclerosis: a systematic review and meta-analysis. Rehabil Psychol. 2018 Feb;63(1):16–28. doi: 10.1037/rep0000182. PMID: 29553780. Exclusion: 4. [PubMed: 29553780] [CrossRef]
863.
Prosperini L, Fortuna D, Gianni C, et al. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis. Neurorehabil Neural Repair. 2013 Jul–Aug;27(6):516–25. doi: 10.1177/1545968313478484. PMID: 23478168. Exclusion: 4. [PubMed: 23478168] [CrossRef]
864.
Prosperini L, Leonardi L, De Carli P, et al. Visuo-proprioceptive training reduces risk of falls in patients with multiple sclerosis. Mult Scler. 2010 Apr;16(4):491–9. doi: 10.1177/1352458509359923. PMID: 20150396. Exclusion: 3. [PubMed: 20150396] [CrossRef]
865.
Qiu S, Alzhab S, Picard G, et al. Ventilation limits aerobic capacity after functional electrical stimulation row training in high spinal cord injury. Med Sci Sports Exerc. 2016 Jun;48(6):1111–8. doi: 10.1249/MSS.0000000000000880. PMID: 26784276. Exclusion: 11. [PMC free article: PMC4868671] [PubMed: 26784276] [CrossRef]
866.
Quel de Oliveira C, Refshauge K, Middleton J, et al. Effects of activity-based therapy interventions on mobility, independence, and quality of life for people with spinal cord injuries: a systematic review and meta-analysis. J Neurotrauma. 2017 May 1;34(9):1726–43. doi: 10.1089/neu.2016.4558. PMID: 27809702. Exclusion: 12. [PubMed: 27809702] [CrossRef]
867.
Raab AM, Krebs J, Perret C, et al. Evaluation of a clinical implementation of a respiratory muscle training group during spinal cord injury rehabilitation. Spinal Cord Ser Cases. 2018;4:40. doi: 10.1038/s41394-018-0069-4. PMID: 29736265. Exclusion: 4. [PMC free article: PMC5920082] [PubMed: 29736265] [CrossRef]
868.
Raab AM, Krebs J, Pfister M, et al. Respiratory muscle training in individuals with spinal cord injury: effect of training intensity and -volume on improvements in respiratory muscle strength. Spinal Cord. 2019;57(6):482–9. doi: 10.1038/s41393-019-0249-5. Exclusion: 8. [PubMed: 30700854] [CrossRef]
869.
Rafeeyan Z, Azarbarzin M, Moosa FM, et al. Effect of aquatic exercise on the multiple sclerosis patients’ quality of life. Iran J Nurs Midwifery Res. 2010;15(1):43–7. PMID: 21589749. Exclusion: 11. [PMC free article: PMC3093029] [PubMed: 21589749]
870.
Rahnama N, Namazizadeh M, Etemadifar M, et al. Effects of yoga on depression in women with multiple sclerosis. Journal of isfahan medical school. 2011 Jun;29(136) doi: 10.1016/j.ejmhg.2014.02.007. Exclusion: 13. [CrossRef]
871.
Raithatha R, Carrico C, Powell ES, et al. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study. NeuroRehabilitation. 2016;38(1):15–25. doi: 10.3233/NRE-151291. PMID: 26889794. Exclusion: 11. [PubMed: 26889794] [CrossRef]
872.
Rameckers EA, Duysens J, Speth LA, et al. Effect of addition of botulinum toxin-A to standardized therapy for dynamic manual skills measured with kinematic aiming tasks in children with spastic hemiplegia. J Rehabil Med. 2010 Apr;42(4):332–8. doi: 10.2340/16501977-0521. PMID: 20461335. Exclusion: 5. [PubMed: 20461335] [CrossRef]
873.
Rameckers EA, Janssen-Potten YJ, Essers IM, et al. Efficacy of upper limb strengthening in children with cerebral palsy: a critical review. Res Dev Disabil. 2015 Jan;36C:87–101. doi: 10.1016/j.ridd.2014.09.024. PMID: 25462469. Exclusion: 12. [PubMed: 25462469] [CrossRef]
874.
Rameckers EA, Speth LA, Duysens J, et al. Botulinum toxin-a in children with congenital spastic hemiplegia does not improve upper extremity motor-related function over rehabilitation alone: a randomized controlled trial. Neurorehabil Neural Repair. 2009 Mar–Apr;23(3):218–25. doi: 10.1177/1545968308326629. PMID: 19106252. Exclusion: 5. [PubMed: 19106252] [CrossRef]
875.
Rasooli AH, Birgani PM, Azizi S, et al. Therapeutic effects of an anti-gravity locomotor training (AlterG) on postural balance and cerebellum structure in children with cerebral palsy. IEEE Int. 2017 Jul;2017:101–5. doi: 10.1109/ICORR.2017.8009229. PMID: 28813801. Exclusion: 11. [PubMed: 28813801] [CrossRef]
876.
Ray AD, Udhoji S, Mashtare TL, et al. A combined inspiratory and expiratory muscle training program improves respiratory muscle strength and fatigue in multiple sclerosis. Arch Phys Med Rehabil. 2013 Oct;94(10):1964–70. doi: 10.1016/j.apmr.2013.05.005. PMID: 23714277. Exclusion: 11. [PubMed: 23714277] [CrossRef]
877.
Rayegani SM, Shojaee H, Sedighipour L, et al. The effect of electrical passive cycling on spasticity in war veterans with spinal cord injury. Front Neurol. 2011;2:39. doi: 10.3389/fneur.2011.00039. PMID: 21734906. Exclusion: 4. [PMC free article: PMC3119861] [PubMed: 21734906] [CrossRef]
878.
Reedman S, Boyd RN, Sakzewski L. The efficacy of interventions to increase physical activity participation of children with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2017 Oct;59(10):1011–8. doi: 10.1111/dmcn.13413. PMID: 28318009. Exclusion: 6. [PubMed: 28318009] [CrossRef]
879.
Reedman SE, Boyd RN, Trost SG, et al. Efficacy of participation-focused therapy on performance of physical activity participation goals and habitual phsical activity in children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2019 Dec 11;100(4):676–86. doi: 10.1016/j.apmr.2018.11.012. PMID: 30543803. Exclusion: 4. [PubMed: 30543803] [CrossRef]
880.
Reedman SE, Boyd RN, Trost SG, et al. Efficacy of Participation-Focused Therapy on Performance of Physical Activity Participation Goals and Habitual Physical Activity in Children With Cerebral Palsy: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2019 04;100(4):676–86. doi: 10.1016/j.apmr.2018.11.012. PMID: 30543803. Exclusion: 4. [PubMed: 30543803] [CrossRef]
881.
Reichenfelser W, Hackl H, Hufgard J, et al. Monitoring of spasticity and functional ability in individuals with incomplete spinal cord injury with a functional electrical stimulation cycling system. J Rehabil Med. 2012 May;44(5):444–9. doi: 10.2340/16501977-0979. PMID: 22549654. Exclusion: 8. [PubMed: 22549654] [CrossRef]
882.
Reid S, Hamer P, Alderson J, et al. Neuromuscular adaptations to eccentric strength training in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2010 Apr;52(4):358–63. doi: 10.1111/j.1469-8749.2009.03409.x. PMID: 19737297. Exclusion: 11. [PubMed: 19737297] [CrossRef]
883.
Rejc E, Angeli CA, Bryant N, et al. Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J Neurotrauma. 2017 May 1;34(9):1787–802. doi: 10.1089/neu.2016.4516. PMID: 27566051. Exclusion: 11. [PMC free article: PMC5421606] [PubMed: 27566051] [CrossRef]
884.
Reyes ML, Hernandez M, Holmgren LJ, et al. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J Bone Miner Res. 2011 Aug;26(8):1759–66. doi: 10.1002/jbmr.402. PMID: 21491486. Exclusion: 3. [PubMed: 21491486] [CrossRef]
885.
Rice IM, Rice LA, Motl RW. Promoting physical activity through a manual wheelchair propulsion intervention in persons with multiple sclerosis. Arch Phys Med Rehabil. 2015 Oct;96(10):1850–8. doi: 10.1016/j.apmr.2015.06.011. PMID: 26150167. Exclusion: 11. [PubMed: 26150167] [CrossRef]
886.
Richardson EJ, McKinley EC, Rahman A, et al. Effects of virtual walking on spinal cord injury-related neuropathic pain: a randomized, controlled trial. Rehabil Psychol. 2019 Feb;64(1):13–24. doi: 10.1037/rep0000246. PMID: 30407030. Exclusion: 4. [PubMed: 30407030] [CrossRef]
887.
Richter WM, Kwarciak AM, Guo L, et al. Effects of single-variable biofeedback on wheelchair handrim biomechanics. Arch Phys Med Rehabil. 2011 Apr;92(4):572–7. doi: 10.1016/j.apmr.2010.11.001. PMID: 21440701. Exclusion: 4. [PubMed: 21440701] [CrossRef]
888.
Riener R, Dislaki E, Keller U, et al. Virtual reality aided training of combined arm and leg movements of children with CP. Stud Health Technol Inform. 2013;184:349–55. PMID: 23400183. Exclusion: 7. [PubMed: 23400183]
889.
Rietberg MB, Van Wegen EEH, Eyssen ICJM, et al. Effects of multidisciplinary rehabilitation on chronic fatigue in multiple sclerosis: a randomized controlled trial. PLoS One. 2014;9(9) doi: 10.1371/journal.pone.0107710. PMID: 25232955 Exclusion: 4. [PMC free article: PMC4169408] [PubMed: 25232955] [CrossRef]
890.
Rietberg MB, Veerbeek JM, Gosselink R, et al. Respiratory muscle training for multiple sclerosis. Cochrane Database Syst Rev. 2017 Dec 21;12:CD009424. doi: 10.1002/14651858.CD009424.pub2. PMID: 29267988. Exclusion: 4. [PMC free article: PMC6486138] [PubMed: 29267988] [CrossRef]
891.
Rigby BR, Gloeckner AR, Sessums S, et al. Changes in cardiorespiratory responses and kinematics with hippotherapy in youth with and without cerebral palsy. Res Q Exerc Sport. 2017 Mar;88(1):26–35. doi: 10.1080/02701367.2016.1266458. PMID: 28075704. Exclusion: 11. [PubMed: 28075704] [CrossRef]
892.
Rigby BR, Grandjean PW. The efficacy of equine-assisted activities and therapies on improving physical function. J Altern Complement Med. 2016 Jan;22(1):9–24. doi: 10.1089/acm.2015.0171. PMID: 26654868. Exclusion: 12. [PubMed: 26654868] [CrossRef]
893.
Rigot S, Worobey L, Boninger ML. Gait training in acute spinal cord injury rehabilitation-utilization and outcomes among nonambulatory individuals: findings from the SCIRehab project. Arch Phys Med Rehabil. 2018 Aug;99(8):1591–8. doi: 10.1016/j.apmr.2018.01.031. PMID: 29510092. Exclusion: 4. [PubMed: 29510092] [CrossRef]
894.
Riksfjord SM, Braendvik SM, Roksund OD, et al. Ventilatory efficiency and aerobic capacity in people with multiple sclerosis: a randomized study. SAGE Open Med. 2017;5:2050312117743672. doi: 10.1177/2050312117743672. PMID: 29276588. Exclusion: 11. [PMC free article: PMC5734440] [PubMed: 29276588] [CrossRef]
895.
Rimmer JH, Herman C, Wingo B, et al. Methodological and clinical implications of a three-in-one Russian doll design for tracking health trajectories and improving health and function through innovative exercise treatments in adults with disability. BMC Med Res Methodol. 2018 Mar 14;18(1):28. doi: 10.1186/s12874-018-0480-3. PMID: 29540164. Exclusion: 10. [PMC free article: PMC5853027] [PubMed: 29540164] [CrossRef]
896.
Rimmer JH, Thirumalai M, Young HJ, et al. Rationale and design of the tele-exercise and multiple sclerosis (TEAMS) study: a comparative effectiveness trial between a clinic- and home-based telerehabilitation intervention for adults with multiple sclerosis (MS) living in the deep south. Contemp Clin Trials. 2018 Aug;71:186–93. doi: 10.1016/j.cct.2018.05.016. PMID: 29859267. Exclusion: 4. [PubMed: 29859267] [CrossRef]
897.
Rimmer JH, Wang E, Pellegrini CA, et al. Telehealth weight management intervention for adults with physical disabilities: a randomized controlled trial. Am J Phys Med Rehabil. 2013 Dec;92(12):1084–94. doi: 10.1097/PHM.0b013e31829e780e. PMID: 24257266. Exclusion: 3. [PubMed: 24257266] [CrossRef]
898.
Rintala A, Hakala S, Paltamaa J, et al. Effectiveness of technology-based distance physical rehabilitation interventions on physical activity and walking in multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. Disabil Rehabil. 2018 Feb;40(4):373–87. doi: 10.1080/09638288.2016.1260649. PMID: 27973919. Exclusion: 4. [PubMed: 27973919] [CrossRef]
899.
Rios DC, Gilbertson T, McCoy SW, et al. NeuroGame Therapy to improve wrist control in children with cerebral palsy: a case series. Dev Neurorehabil. 2013 Dec;16(6):398–409. doi: 10.3109/17518423.2013.766818. PMID: 23617243. Exclusion: 11. [PubMed: 23617243] [CrossRef]
900.
Riquelme I, Zamorano A, Montoya P. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy. Front Hum Neurosci. 2013;7:276. doi: 10.3389/fnhum.2013.00276. PMID: 23805086. Exclusion: 4. [PMC free article: PMC3690353] [PubMed: 23805086] [CrossRef]
901.
Ritzmann R, Stark C, Krause A. Vibration therapy in patients with cerebral palsy: a systematic review. Neuropsychiatr. 2018;14:1607–25. doi: 10.2147/NDT.S152543. PMID: 29950843. Exclusion: 8. [PMC free article: PMC6018484] [PubMed: 29950843] [CrossRef]
902.
Robert M, Ballaz L, Hart R, et al. Exercise intensity levels in children with cerebral palsy while playing with an active video game console. Phys Ther. 2013 Aug;93(8):1084–91. doi: 10.2522/ptj.20120204. PMID: 23580626. Exclusion: 11. [PMC free article: PMC3732231] [PubMed: 23580626] [CrossRef]
903.
Robertson EK. The bottom line. On ‘Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial’. Phys Ther. 2009 Oct;89(10):1014–5. doi: 10.2522/ptj.20080340. Exclusion: 10. [PubMed: 19643834] [CrossRef]
904.
Robinson AG, Dennett AM, Snowdon DA. Treadmill training may be an effective form of task-specific training for improving mobility in people with Parkinson’s disease and multiple sclerosis: a systematic review and meta-analysis. Physiotherapy. 2019 06;105(2):174–86. doi: 10.1016/j.physio.2018.11.007. PMID: 30876717. Exclusion: 12. [PubMed: 30876717] [CrossRef]
905.
Robinson J, Dixon J, Macsween A, et al. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: a randomized controlled trial. BMC Sports Sci Med Rehabil. 2015;7:8. doi: 10.1186/s13102-015-0001-1. PMID: 25969739. Exclusion: 4. [PMC free article: PMC4427959] [PubMed: 25969739] [CrossRef]
906.
Rocca MA, Filippi M, Deiva K. Promoting physical activity to control multiple sclerosis from childhood. Neurology. 2015 Nov 10;85(19):1644–5. doi: 10.1212/WNL.0000000000001941. PMID: 26268902. Exclusion: 2. [PubMed: 26268902] [CrossRef]
907.
Rocchi MA, Robichaud Lapointe T, Gainforth HL, et al. Delivering a tele-health intervention promoting motivation and leisure-time physical activity among adults with spinal cord injury: An implementation evaluation. Sport Exerc Perform Psychol. 2020 Mar:No Pagination Specified. doi: 10.1037/spy0000207. PMID: 2020-17702-001. Exclusion: 11. [CrossRef]
908.
Rodrigues TA, Fischer DA, Cyrillo FN, et al. Effectiveness of virtual reality using Wii gaming in the treatment of cerebral palsy. Neurorehabil Neural Repair. START: 2012 May 16 CONFERENCE END: 2012 May 19, 7th World Congress for NeuroRehabilitation, WCNR 2012 Melbourne, VIC Australia;26(6):NP8. Exclusion: 10.
909.
Roeh A, Kirchner SK, Malchow B, et al. Depression in somatic disorders: is there a beneficial effect of exercise? Front Psychiatr. 2019;10:141. doi: 10.3389/fpsyt.2019.00141. PMID: 30949079. Exclusion: 12. [PMC free article: PMC6435577] [PubMed: 30949079] [CrossRef]
910.
Roels EH, Aertgeerts B, Ramaekers D, et al. Hospital- and community-based interventions enhancing (re)employment for people with spinal cord injury: a systematic review. Spinal Cord. 2016 Jan;54(1):2–7. doi: 10.1038/sc.2015.133. PMID: 26305872. Exclusion: 4. [PubMed: 26305872] [CrossRef]
911.
Rooney S, Moffat F, Wood L, et al. Effectiveness of fatigue management interventions in reducing severity and impact of fatigue in people with progressive multiple sclerosis: a systematic review. Int J MS Care. 2019 Jan–Feb;21(1):35–46. doi: 10.7224/1537-2073.2018-019. PMID: 30833871. Exclusion: 12. [PMC free article: PMC6390824] [PubMed: 30833871] [CrossRef]
912.
Roostaei M, Baharlouei H, Azadi H, et al. Effects of aquatic intervention on gross motor skills in children with cerebral palsy: a systematic review. Phys Occup Ther Pediatr. 2017 Oct 20;37(5):496–515. doi: 10.1080/01942638.2016.1247938. PMID: 27967298. Exclusion: 12. [PubMed: 27967298] [CrossRef]
913.
Rosenbaum P. A randomized controlled trial of the impact of therapeutic horse riding on the quality of life, health, and function of children with cerebral palsy. Dev Med Child Neurol. 2009 Feb;51(2):88. doi: 10.1111/j.1469-8749.2008.03259.x. Exclusion: 10. [PubMed: 19191844] [CrossRef]
914.
Rosety-Rodriguez M, Camacho A, Rosety I, et al. Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2014 Feb;95(2):297–302. doi: 10.1016/j.apmr.2013.08.246. PMID: 24060491. Exclusion: 11. [PubMed: 24060491] [CrossRef]
915.
Rosety-Rodriguez M, Rosety I, Fornieles G, et al. A short-term arm-crank exercise program improved testosterone deficiency in adults with chronic spinal cord injury. Int Braz J Urol. 2014 May–Jun;40(3):367–72. doi: 10.1590/S1677-5538.IBJU.2014.03.10. PMID: 25010302. Exclusion: 11. [PubMed: 25010302] [CrossRef]
916.
Ross SA, Yount M, Ankarstad S, et al. Effects of participation in sports programs on walking ability and endurance over time in children with cerebral palsy. Am J Phys Med Rehabil. 2017 Dec;96(12):843–51. doi: 10.1097/PHM.0000000000000767. PMID: 28644242. Exclusion: 8. [PubMed: 28644242] [CrossRef]
917.
Rostami HR, Arastoo AA, Nejad SJ, et al. Effects of modified constraint-induced movement therapy in virtual environment on upper-limb function in children with spastic hemiparetic cerebral palsy: a randomised controlled trial. NeuroRehabilitation. 2012;31(4):357–65. doi: 10.3233/NRE-2012-00804. PMID: 23232158. Exclusion: 11. [PubMed: 23232158] [CrossRef]
918.
Roth EJ, Stenson KW, Powley S, et al. Expiratory muscle training in spinal cord injury: a randomized controlled trial. Arch Phys Med Rehabil. 2010 Jun;91(6):857–61. doi: 10.1016/j.apmr.2010.02.012. PMID: 20510974. Exclusion: 4. [PubMed: 20510974] [CrossRef]
919.
Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: a randomized controlled pilot study. J Musculoskelet Neuronal Interact. 2010 Mar;10(1):77–83. PMID: 20190383. Exclusion: 11. [PubMed: 20190383]
920.
Ruiz J, Labas MP, Triche EW, et al. Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study. J Neurol Phys Ther. 2013 Dec;37(4):187–93. doi: 10.1097/NPT.0000000000000018. PMID: 24189336. Exclusion: 11. [PubMed: 24189336] [CrossRef]
921.
Rupp R, Schliesmann D, Plewa H, et al. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study.[Erratum appears in PLoS One. 2015;10(4):e0126999; PMID: 25894511]. PLoS One. 2015;10(3):e0119167. doi: 10.1371/journal.pone.0119167. PMID: 25803577. Exclusion: 8. [PMC free article: PMC4372343] [PubMed: 25803577] [CrossRef]
922.
Ryan JM, Cassidy EE, Noorduyn SG, et al. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017 Jun 11;6:CD011660. doi: 10.1002/14651858.CD011660.pub2. PMID: 28602046. Exclusion: 12. [PMC free article: PMC6481791] [PubMed: 28602046] [CrossRef]
923.
Ryan JM, Fortune J, Stennett A, et al. Safety, feasibility, acceptability and effects of a behaviour-change intervention to change physical activity behaviour among people with multiple sclerosis: results from the iStep-MS randomised controlled trial. Mult Scler. 2019 Oct 31:1352458519886231. doi: 10.1177/1352458519886231. PMID: 31668138. Exclusion: 4. [PubMed: 31668138] [CrossRef]
924.
Ryan JM, Lavelle G, Theis N, et al. Progressive resistance training for adolescents with cerebral palsy: the STAR randomized controlled trial. Dev Med Child Neurol. 2020 Jun 26 doi: 10.1111/dmcn.14601. PMID: 32588919. Exclusion: 4. [PubMed: 32588919] [CrossRef]
925.
Ryan TE, Brizendine JT, Backus D, et al. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil. 2013 Nov;94(11):2166–73. doi: 10.1016/j.apmr.2013.06.016. PMID: 23816921. Exclusion: 11. [PubMed: 23816921] [CrossRef]
926.
Ryu K, Ali A, Kwon M, et al. Effects of assisted aquatic movement and horseback riding therapies on emotion and brain activation in patients with cerebral palsy. J Phys Ther Sci. 2016;28(12):3283–7. PMID: 28174435. Exclusion: 4. [PMC free article: PMC5276744] [PubMed: 28174435]
927.
Sa-Caputo DC, Costa-Cavalcanti R, Carvalho-Lima RP, et al. Systematic review of whole body vibration exercises in the treatment of cerebral palsy: brief report. Dev Neurorehabil. 2016 Oct;19(5):327–33. doi: 10.3109/17518423.2014.994713. PMID: 25826535. Exclusion: 12. [PubMed: 25826535] [CrossRef]
928.
Sabapathy NM, Minahan CL, Turner GT, et al. Comparing endurance- and resistance-exercise training in people with multiple sclerosis: a randomized pilot study. Clin Rehabil. 2011 Jan;25(1):14–24. doi: 10.1177/0269215510375908. PMID: 20713434. Exclusion: 11. [PubMed: 20713434] [CrossRef]
929.
Sadeghi Bahmani D, Farnia V, Shakeri J, et al. The comparison of the effect of yoga and aquatic exercises on depression and fatigue in patients with multiple sclerosis. Pharmacopsychiatry. Conference: 29th symposium of the AGNP. Germany. Conference start. 2015;25(6). Exclusion: 10.
930.
Sadeghi Bahmani D, Kesselring J, Papadimitriou M, et al. In patients with multiple sclerosis, both objective and subjective sleep, depression, fatigue, and paresthesia improved after 3 weeks of regular exercise. Front Psychiatr. 2019;10:265. doi: 10.3389/fpsyt.2019.00265. PMID: 31130879. Exclusion: 8. [PMC free article: PMC6510171] [PubMed: 31130879] [CrossRef]
931.
Sadeghi Bahmani D, Razazian N, Alikhani M, et al. Regular exercise program impacts positively on sleep disturbances, depression and fatigue in female patients with multiple sclerosis. J Sleep Res. 2018 Sep;Conference: 24th congress of the european sleep research society, ESRS. 2018. Switzerland 27(Supplement 1):309. doi: 10.1111/jsr.12751. PMID: 30203880. Exclusion: 10. [CrossRef]
932.
Sadeghi Bahmani D, Razazian N, Motl RW, et al. Physical activity interventions can improve emotion regulation and dimensions of empathy in persons with multiple sclerosis: An exploratory study. Mult Scler Relat Disord. 2020 Jan;37:101380. doi: 10.1016/j.msard.2019.101380. PMID: 32173007. Exclusion: 6. [PubMed: 32173007] [CrossRef]
933.
Sadeghi M, Ghasemi G, Karimi M. Effect of 12-week- rebound therapy exercise on static stability of patients with spinal cord injury. J Sport Rehabil. 2018 Feb 6:1–16. doi: 10.1123/jsr.2017-0303. PMID: 29405819. Exclusion: 11. [PubMed: 29405819] [CrossRef]
934.
Sadeghi M, Sawatzky B. Effects of vibration on spasticity in individuals with spinal cord injury: a scoping systematic review. Am J Phys Med Rehabil. 2014 Nov;93(11):995–1007. doi: 10.1097/PHM.0000000000000098. PMID: 24743464. Exclusion: 9. [PubMed: 24743464] [CrossRef]
935.
Sadowska-Krepa E, Zwierzchowska A, Glowacz M, et al. Blood metabolic response to a long-term wheelchair rugby training. Spinal Cord. 2016 May;54(5):371–5. doi: 10.1038/sc.2015.178. PMID: 26481699. Exclusion: 4. [PubMed: 26481699] [CrossRef]
936.
Sah A, Balaji G, Agrahara S. Effects of task-oriented activities based on neurodevelopmental therapy principles on trunk control, balance, and gross motor function in children with spastic diplegic cerebral palsy: a single-blinded randomized clinical trial. J Pediatr Neurosci. 2019;14(3):120–6. doi: 10.4103/jpn.JPN_35_19. Exclusion: 14. [PMC free article: PMC6798271] [PubMed: 31649770] [CrossRef]
937.
Sajan JE, John JA, Grace P, et al. Wii-based interactive video games as a supplement to conventional therapy for rehabilitation of children with cerebral palsy: a pilot, randomized controlled trial. Dev Neurorehabil. 2017 Aug;20(6):361–7. doi: 10.1080/17518423.2016.1252970. PMID: 27846366. Exclusion: 11. [PubMed: 27846366] [CrossRef]
938.
Sakzewski L. Bimanual therapy and constraint-induced movement therapy are equally effective in improving hand function in children with congenital hemiplegia. J Physiother. 2012;58(1):59. doi: 10.1016/S1836-9553(12)70075-9. PMID: 22341385. Exclusion: 4. [PubMed: 22341385] [CrossRef]
939.
Sakzewski L, Provan K, Ziviani J, et al. Comparison of dosage of intensive upper limb therapy for children with unilateral cerebral palsy: how big should the therapy pill be? Res Dev Disabil. 2015 Feb;37:9–16. doi: 10.1016/j.ridd.2014.10.050. PMID: 25460215. Exclusion: 4. [PubMed: 25460215] [CrossRef]
940.
Sakzewski L, Ziviani J, Boyd RN. Best responders after intensive upper-limb training for children with unilateral cerebral palsy. Arch Phys Med Rehabil. 2011 Apr;92(4):578–84. doi: 10.1016/j.apmr.2010.12.003. PMID: 21440702. Exclusion: 6. [PubMed: 21440702] [CrossRef]
941.
Salbach NM, Howe JA, Brunton K, et al. Partnering to increase access to community exercise programs for people with stroke, acquired brain injury, and multiple sclerosis. J Phys Act Health. 2014 May;11(4):838–45. doi: 10.1123/jpah.2012-0183. PMID: 23676952. Exclusion: 3. [PubMed: 23676952] [CrossRef]
942.
Salem Y, Godwin EM. Effects of task-oriented training on mobility function in children with cerebral palsy. NeuroRehabilitation. 2009;24(4):307–13. doi: 10.3233/NRE-2009-0483. PMID: 19597267. Exclusion: 11. [PubMed: 19597267] [CrossRef]
943.
Salem Y, Scott AH, Karpatkin H, et al. Community-based group aquatic programme for individuals with multiple sclerosis: a pilot study. Disabil Rehabil. 2011;33(9):720–8. doi: 10.3109/09638288.2010.507855. PMID: 20726740. Exclusion: 11. [PubMed: 20726740] [CrossRef]
944.
Salvador AF, Schubert KR, Cruz RS, et al. Bilateral muscle strength symmetry and performance are improved following walk training with restricted blood flow in an elite paralympic sprint runner: case study. Phys Ther Sport. 2016 Jul;20:1–6. doi: 10.1016/j.ptsp.2015.10.004. PMID: 27325532. Exclusion: 7. [PubMed: 27325532] [CrossRef]
945.
Sanchez-Lastra MA, Martinez-Aldao D, Molina AJ, et al. Pilates for people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2019 Jan 03;28:199–212. doi: 10.1016/j.msard.2019.01.006. PMID: 30623859. Exclusion: 12. [PubMed: 30623859] [CrossRef]
946.
Sandroff BM. Exercise and cognition in multiple sclerosis: the importance of acute exercise for developing better interventions. Neurosci Biobehav Rev. 2015 Dec;59:173–83. doi: 10.1016/j.neubiorev.2015.10.012. PMID: 26584548. Exclusion: 4. [PubMed: 26584548] [CrossRef]
947.
Sandroff BM, Baird JF, Silveira SL, et al. Response heterogeneity in fitness, mobility and cognition with exercise-training in MS. Acta Neurol Scand. 2019 Feb;139(2):183–91. doi: 10.1111/ane.13041. PMID: 30372515. Exclusion: 8. [PMC free article: PMC7903487] [PubMed: 30372515] [CrossRef]
948.
Sandroff BM, Balto JM, Klaren RE, et al. Systematically developed pilot randomized controlled trial of exercise and cognition in persons with multiple sclerosis. Neurocase. 2016 10;22(5):443–50. doi: 10.1080/13554794.2016.1237658. PMID: 27671243. Exclusion: 4. [PubMed: 27671243] [CrossRef]
949.
Sandroff BM, Hillman CH, Benedict RH, et al. Acute effects of walking, cycling, and yoga exercise on cognition in persons with relapsing-remitting multiple sclerosis without impaired cognitive processing speed. J Clin Exp Neuropsychol. 2015;37(2):209–19. doi: 10.1080/13803395.2014.1001723. PMID: 25658772. Exclusion: 4. [PubMed: 25658772] [CrossRef]
950.
Sandroff BM, Hillman CH, Benedict RH, et al. Acute effects of varying intensities of treadmill walking exercise on inhibitory control in persons with multiple sclerosis: a pilot investigation. Physiol Behav. 2016 Feb 01;154:20–7. doi: 10.1016/j.physbeh.2015.11.008. PMID: 26569451. Exclusion: 4. [PubMed: 26569451] [CrossRef]
951.
Sandroff BM, Klaren RE, Pilutti LA, et al. Randomized controlled trial of physical activity, cognition, and walking in multiple sclerosis. J Neurol. 2014 Feb;261(2):363–72. doi: 10.1007/s00415-013-7204-8. PMID: 24323244. Exclusion: 4. [PubMed: 24323244] [CrossRef]
952.
Sandroff BM, Motl RW, Scudder MR, et al. Systematic,evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychol Rev. 2016 Sep;26(3):271–94. doi: 10.1007/s11065-016-9324-2. PMID: 27447980. Exclusion: 4. [PubMed: 27447980] [CrossRef]
953.
Sangelaji B, Estebsari F, Nabavi SM, et al. The effect of exercise therapy on cognitive functions in multiple sclerosis patients: a pilot study. Med J Islam Repub Iran. 2015;29:205. PMID: 26157723. Exclusion: 11. [PMC free article: PMC4476225] [PubMed: 26157723]
954.
Sangelaji B, Smith CM, Paul L, et al. The effectiveness of behaviour change interventions to increase physical activity participation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil. 2016 Jun;30(6):559–76. doi: 10.1177/0269215515595274. PMID: 26198892. Exclusion: 12. [PubMed: 26198892] [CrossRef]
955.
Santhosh Kanna BS, Balabaskar K. A study on efficacy of respiratory exercises coupled with neuro developmental treatment on pulmonary function of children with spastic quadriplegic cerebral palsy. Biomed Pharmacol J. 2019;12(3):1519–24. doi: 10.13005/bpj/1782. Exclusion: 14. [CrossRef]
956.
Saquetto M, Carvalho V, Silva C, et al. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015 Jun;15(2):137–44. PMID: 26032205. Exclusion: 12. [PMC free article: PMC5133716] [PubMed: 26032205]
957.
Sattelmayer M, Chevalley O, Steuri R, et al. Over-ground walking or robot-assisted gait training in people with .multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression. BMC Neurol. 2019 May 08;19(1):93. doi: 10.1186/s12883-019-1321-7. PMID: 31068151. Exclusion: 12. [PMC free article: PMC6506946] [PubMed: 31068151] [CrossRef]
958.
Saxton JM, Carter A, Daley A, et al. Pragmatic exercise for people with MS: a randomized controlled trial. Mult Scler J Exp Transl Clin. 2013 May;19(10):1402. doi: 10.1177/1352458513498690. Exclusion: 10. [CrossRef]
959.
Sayenko DG, Alekhina MI, Masani K, et al. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010 Dec;48(12):886–93. doi: 10.1038/sc.2010.41. PMID: 20404833. Exclusion: 11. [PubMed: 20404833] [CrossRef]
960.
Schasfoort F, Dallmeijer A, Pangalila R, et al. Value of botulinum toxin injections preceding a comprehensive rehabilitation period for children with spastic cerebral palsy: a cost-effectiveness study. J Rehabil Med. 2018 Jan 10;50(1):22–9. doi: 10.2340/16501977-2267. PMID: 28949368. Exclusion: 4. [PubMed: 28949368] [CrossRef]
961.
Schindelholz M, Stoller O, Hunt KJ. A software module for cardiovascular rehabilitation in robotics-assisted treadmill exercise. Biomed Signal Process Control. 2014;10(1):296–307. doi: 10.1016/j.bspc.2012.12.006. Exclusion: 3. [CrossRef]
962.
Schmidt S, Wonneberger M. Long-term endurance exercise improves aerobic capacity in patients with relapsing-remitting multiple sclerosis: impact of baseline fatigue. J Neurol Sci. 2014 Jan 15;336(1–2):29–35. doi: 10.1016/j.jns.2013.09.035. PMID: 24139841. Exclusion: 4. [PubMed: 24139841] [CrossRef]
963.
Schneiberg S, McKinley PA, Sveistrup H, et al. The effectiveness of task-oriented intervention and trunk restraint on upper limb movement quality in children with cerebral palsy. Dev Med Child Neurol. 2010 Nov;52(11):e245–53. doi: 10.1111/j.1469-8749.2010.03768.x. PMID: 20813019. Exclusion: 11. [PubMed: 20813019] [CrossRef]
964.
Schranz C, Kruse A, Belohlavek T, et al. Does home-based progressive resistance or high-intensity circuit training improve strength, function, activity or participation in children with Cerebral Palsy? Arch Phys Med Rehabil. 2018 Dec;99(12):2457–64. doi: 10.1016/j.apmr.2018.06.010. PMID: 30473019. Exclusion: 4. [PubMed: 30473019] [CrossRef]
965.
Schranz C, Kruse A, Belohlavek T, et al. High intensity circuit training and progressive resistance training improve intervention-specific functional performance in children with cerebral palsy. Dev Med Child Neurol. 2018;Conference: 30th annual meeting of the european academy of childhood disability, EACD. 2018. Georgia 60(Supplement 2):54. Exclusion: 10.
966.
Schranz C, Kruse A, Belohlavek T, et al. High intensity circuit training and progressive resistance training improve functional performance but not the gait profile score. Gait Posture. 2017;Conference: 26th annual meeting of the european society for movement analysis in adults and children, ESMAC. 2017. Norway 57(Supplement 1):364–5. Exclusion: 10.
967.
Schreiber R, Souza CM, Paim LR, et al. Impact of regular physical activity on adipocytokines and cardiovascular characteristics in spinal cord-injured subjects. Arch Phys Med Rehabil. 2018 Aug;99(8):1561–7.e1. doi: 10.1016/j.apmr.2018.02.010. PMID: 29548578. Exclusion: 4. [PubMed: 29548578] [CrossRef]
968.
Schroeder AS, Von Kries R, Riedel C, et al. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2014 12;56(12):1172–9. doi: 10.1111/dmcn.12564. PMID: 25154424. Exclusion: 8. [PubMed: 25154424] [CrossRef]
969.
Schwartz I, Sajin A, Moreh E, et al. Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler. 2012 Jun;18(6):881–90. doi: 10.1177/1352458511431075. PMID: 22146609. Exclusion: 11. [PubMed: 22146609] [CrossRef]
970.
Scott W, Geigle P, Chen K, et al. Relationship among physical activity scale for individuals with disability (PASID), body mass index (BMI), and maximum oxygen consumption (V0MAX) in persons with motor incomplete spinal cord injury. Top Spinal Cord Inj Rehabil. START: 2013 May 6 CONFERENCE END: 2013 May 8, 40th Anniversary Annual Scientific Meeting of the American Spinal Injury Association, ASIA 2013 Chicago, IL United States;19(1):7. Exclusion: 10.
971.
Sebastiao E, McAuley E, Shigematsu R, et al. Home-based, square-stepping exercise program among older adults with multiple sclerosis: results of a feasibility randomized controlled study. Contemp Clin Trials. 2018 Oct;73:136–44. doi: 10.1016/j.cct.2018.09.008. PMID: 30243811. Exclusion: 4. [PubMed: 30243811] [CrossRef]
972.
Sebastiao E, McAuley E, Shigematsu R, et al. Feasibility study design and methods for a home-based, square-stepping exercise program among older adults with multiple sclerosis: The SSE-MS project. Contemp Clin Trials Commun. 2017 Sep;7:200–7. doi: 10.1016/j.conctc.2017.07.012. PMID: 29696187. Exclusion: 10. [PMC free article: PMC5898480] [PubMed: 29696187] [CrossRef]
973.
Seco J, Rodriguez-Perez V, Lopez-Rodriguez AF, et al. Effects of vibration therapy on hormone response and stress in severely disabled patients: a double-blind randomized placebo-controlled clinical trial. Rehabil Nurs. 2015 May–Jun;40(3):166–78. doi: 10.1002/rnj.116. PMID: 23922258. Exclusion: 11. [PubMed: 23922258] [CrossRef]
974.
Seebacher B, Kuisma R, Glynn A, et al. The effect of rhythmic-cued motor imagery on walking, fatigue and quality of life in people with multiple sclerosis: a randomised controlled trial. Mult Scler. 2017 Feb;23(2):286–96. doi: 10.1177/1352458516644058. PMID: 27055804. Exclusion: 4. [PubMed: 27055804] [CrossRef]
975.
Sexton A, McGibbon CA, Jayaraman A, et al. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. J Neuroeng Rehabil. 2018;15(1) doi: 10.1186/s12984-018-0468-6. Exclusion: 11. [PMC free article: PMC6291941] [PubMed: 30541585] [CrossRef]
976.
Shaffer RF, Picard G, Taylor JA. Relationship of spinal cord injury level and duration to peak aerobic capacity with arms-only and hybrid functional electrical stimulation rowing. Am J Phys Med Rehabil. 2018 Jul;97(7):488–91. doi: 10.1097/PHM.0000000000000903. PMID: 29406401. Exclusion: 4. [PMC free article: PMC6008171] [PubMed: 29406401] [CrossRef]
977.
Shahrbanian S. Virtual reality training or physical activity? Which one is more effective in reducing pain among persons with multiple sclerosis? A randomized controlled trial. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):959–60. Exclusion: 10.
978.
Sharan D, Ajeesh PS, Rameshkumar R, et al. Virtual reality based therapy for post operative rehabilitation of children with cerebral palsy. Work. 2012;41 Suppl 1:3612–5. doi: 10.3233/WOR-2012-0667-3612. PMID: 22317271. Exclusion: 7. [PubMed: 22317271] [CrossRef]
979.
Sharif H, Gammage K, Chun S, et al. Effects of FES-ambulation training on locomotor function and health-related quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2014;20(1):58–69. doi: 10.1310/sci2001-58. PMID: 24574823. Exclusion: 11. [PMC free article: PMC3919695] [PubMed: 24574823] [CrossRef]
980.
Shehata H, Elmazny A, Shalaby N. Effects of high frequency repetitive transcranial magnetic stimulation on gait and balance in patients with relapsing remitting multiple sclerosis. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):58. Exclusion: 10.
981.
Shehata HS, Shalaby NM, Elmazny A. Effects of high frequency repetitive transcranial magnetic stimulation on gait and balance in patients with chronic multiple sclerosis. Multiple sclerosis. Conference: 32nd congress of the european committee for treatment and research in multiple sclerosis, ECTRIMS. 2016;22(389). Exclusion: 10.
982.
Shem K, Karasik D, Carufel P, et al. Seated Tai Chi to alleviate pain and improve quality of life in individuals with spinal cord disorder. J Spinal Cord Med. 2016 May;39(3):353–8. doi: 10.1080/10790268.2016.1148895. PMID: 26914968. Exclusion: 11. [PMC free article: PMC5073764] [PubMed: 26914968] [CrossRef]
983.
Sherief A, Abo Gazya AA, Abd El Gafaar MA. Integrated effect of treadmill training combined with dynamic ankle foot orthosis on balance in children with hemiplegic cerebral palsy. Egypt J Med Hum Genet. 2015;16(2):173–9. Exclusion: 4.
984.
Sherrington C, Pamphlett PI, Jacka JA, et al. Group exercise can improve participants’ mobility in an outpatient rehabilitation setting: a randomized controlled trial. Clin Rehabil. 2008 Jun;22(6):493–502. doi: 10.1177/0269215508087994. PMID: 18511529. Exclusion: 3. [PubMed: 18511529] [CrossRef]
985.
Shimizu Y, Kadone H, Kubota S, et al. Voluntary ambulation by upper limb-triggered HAL in patients with complete quadri/paraplegia due to chronic spinal cord injury. Front Neurosci. 2017;11:649. doi: 10.3389/fnins.2017.00649. PMID: 29209163. Exclusion: 11. [PMC free article: PMC5702458] [PubMed: 29209163] [CrossRef]
986.
Shojaei MH, Alavinia SM, Craven BC. Management of obesity after spinal cord injury: a systematic review. J Spinal Cord Med. 2017 Nov;40(6):783–94. doi: 10.1080/10790268.2017.1370207. PMID: 28929907. Exclusion: 12. [PMC free article: PMC5778942] [PubMed: 28929907] [CrossRef]
987.
Shuai L, Yu GH, Feng Z, et al. Application of a paraplegic gait orthosis in thoracolumbar spinal cord injury. Nerual Regen. 2016 Dec;11(12):1997–2003. doi: 10.4103/1673-5374.197144. PMID: 28197198. Exclusion: 4. [PMC free article: PMC5270440] [PubMed: 28197198] [CrossRef]
988.
Shurtleff TL, Engsberg JR. Changes in trunk and head stability in children with cerebral palsy after hippotherapy: a pilot study. Phys Occup Ther Pediatr. 2010 May;30(2):150–63. doi: 10.3109/01942630903517223. PMID: 20367519. Exclusion: 5. [PubMed: 20367519] [CrossRef]
989.
Siemonsen S, Stellmann JP, Kjolhede T, et al. Resistance training increases cortical thickness in RRMS-results of a pilot RCT. Mult Scler J Exp Transl Clin. START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;23(11 SUPPL. 1):504. Exclusion: 10.
990.
Silkwood-Sherer DJ, McGibbon NH. Can hippotherapy make a difference in the quality of life of children with cerebral palsy? A pragmatic study. Physiother Theory Pract. 2020 May 14:1–11. doi: 10.1080/09593985.2020.1759167. PMID: 32406798. Exclusion: 11. [PubMed: 32406798] [CrossRef]
991.
Silva Ferreira AP, de Souza Pegorare ABG, Miotto Junior A, et al. A controlled clinical trial on the effects of exercise on lower uirnary tract symptoms in women with multiple sclerosis. Am J Phys Med Rehabil. 2019 Sep;98(9):777–82. doi: 10.1097/PHM.0000000000001189. PMID: 30932917. Exclusion: 4. [PubMed: 30932917] [CrossRef]
992.
Silverman EP, Miller S, Zhang Y, et al. Effects of expiratory muscle strength training on maximal respiratory pressure and swallow-related quality of life in individuals with multiple sclerosis. Mult Scler J Exp Transl Clin. 2017 Apr–Jun;3(2):2055217317710829. doi: 10.1177/2055217317710829. PMID: 28607760. Exclusion: 4. [PMC free article: PMC5453406] [PubMed: 28607760] [CrossRef]
993.
Simis M, Uygur-Kucukseymen E, Pacheco-Barrios K, et al. Beta-band oscillations as a biomarker of gait recovery in spinal cord injury patients: A quantitative electroencephalography analysis. Clin Neurophysiol. 2020 May 22;131(8):1806–14. doi: 10.1016/j.clinph.2020.04.166. PMID: 32540720. Exclusion: 6. [PubMed: 32540720] [CrossRef]
994.
Slaman J, Roebroeck M, Van Der Slot WM, et al. Effectiveness of a lifestyle program among adolescents and young adults with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2014 Sep;56(S5):65–6. doi: 10.1111/dmcn.12540. Exclusion: 10. [CrossRef]
995.
Slaman J, Roebroek M, Stam H, et al. Effectiveness of a lifestyle program on daily physical activity and fitness in adolescents and young adults with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013;55(S2):30–1. doi: 10.1111/dmcn.12259. Exclusion: 10. [CrossRef]
996.
Slaman J, van den Berg-Emons R, Tan SS, et al. Cost-utility of a lifestyle intervention in adolescents and young adults with spastic cerebral palsy. J Rehabil Med. 2015 Apr;47(4):338–45. doi: 10.2340/16501977-1929. PMID: 25678311. Exclusion: 6. [PubMed: 25678311] [CrossRef]
997.
Smith M, Barker R, Williams G, et al. The effect of exercise on high-level mobility in individuals with neurodegenerative disease: a systematic literature review. Physiotherapy. 2019 May 02;02:02. doi: 10.1016/j.physio.2019.04.003. PMID: 31477333. Exclusion: 12. [PubMed: 31477333] [CrossRef]
998.
Soleyman-Jahi S, Yousefian A, Maheronnaghsh R, et al. Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review. Eur Spine J. 2018 Aug;27(8):1798–814. doi: 10.1007/s00586-017-5114-7. PMID: 28497215. Exclusion: 3. [PubMed: 28497215] [CrossRef]
999.
Solinsky R, Mercier H, Picard G, et al. Cardiometabolic effects of high-intensity hybrid functional electrical stimulation exercise after Spinal Cord Injury. Pm R. 2020 Oct 07;07:07. doi: 10.1002/pmrj.12507. PMID: 33027550. Exclusion: 8. [PMC free article: PMC9284583] [PubMed: 33027550] [CrossRef]
1000.
Solinsky R, Vivodtzev I, Hamner JW, et al. The effect of heart rate variability on blood pressure is augmented in spinal cord injury and is unaltered by exercise training. Clin Auton Res. 2020 Mar 12;12:12. doi: 10.1007/s10286-020-00677-2. PMID: 32166421. Exclusion: 11. [PMC free article: PMC9270103] [PubMed: 32166421] [CrossRef]
1001.
Sorsdahl AB, Moe-Nilssen R, Kaale HK, et al. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy. BMC Pediatr. 2010 Apr 27;10:26. doi: 10.1186/1471-2431-10-26. PMID: 20423507. Exclusion: 8. [PMC free article: PMC2878295] [PubMed: 20423507] [CrossRef]
1002.
Sosnoff JJ, Moon Y, Wajda DA, et al. Fall risk and incidence reduction in high risk individuals with multiple sclerosis: a pilot randomized control trial. Clin Rehabil. 2015 Oct;29(10):952–60. doi: 10.1177/0269215514564899. PMID: 25540170. Exclusion: 4. [PubMed: 25540170] [CrossRef]
1003.
Sosnoff JJ, Sandroff BM, Pula JH, et al. Falls and physical activity in persons with multiple sclerosis. Mult Scler Int. 2012;2012:315620. doi: 10.1155/2012/315620. PMID: 22966459. Exclusion: 4. [PMC free article: PMC3432547] [PubMed: 22966459] [CrossRef]
1004.
Sosnoff JJ, Sung J. Reducing falls and improving mobility in multiple sclerosis. Expert Rev Neurother. 2015 Jun;15(6):655–66. doi: 10.1586/14737175.2015.1046377. PMID: 25973774. Exclusion: 12. [PubMed: 25973774] [CrossRef]
1005.
Souto DO, Cruz TKF, Coutinho K, et al. Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy. NeuroRehabilitation. 2020;46(1):53–63. doi: 10.3233/NRE-192931. Exclusion: 4. [PubMed: 32039870] [CrossRef]
1006.
Spencer T, Aldous S, Williams G, et al. Systematic review of high-level mobility training in people with a neurological impairment. Brain Inj. 2018;32(4):403–15. doi: 10.1080/02699052.2018.1429656. PMID: 29393688. Exclusion: 12. [PubMed: 29393688] [CrossRef]
1007.
Spina E, Carotenuto A, Aceto MG, et al. The effects of mechanical focal vibration on walking impairment in multiple sclerosis patients: a randomized, double-blinded vs placebo study. Restor Neurol Neurosci. 2016 Sep 21;34(5):869–76. doi: 10.3233/RNN-160665. PMID: 27567760. Exclusion: 11. [PubMed: 27567760] [CrossRef]
1008.
Stampacchia G, Olivieri M, Rustici A, et al. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Spinal Cord. 2020 Apr 06;06:06. doi: 10.1038/s41393-020-0454-2. PMID: 32251368. Exclusion: 8. [PubMed: 32251368] [CrossRef]
1009.
Stark C, Herkenrath P, Hollmann H, et al. Early vibration assisted physiotherapy in toddlers with cerebral palsy - a randomized controlled pilot trial. J Musculoskelet Neuronal Interact. 2016 Sep 7;16(3):183–92. PMID: 27609033. Exclusion: 4. [PMC free article: PMC5114341] [PubMed: 27609033]
1010.
Steimer J, Weissert R. Effects of sport climbing on multiple sclerosis. Front Physiol. 2017;8:1021. doi: 10.3389/fphys.2017.01021. PMID: 29311957. Exclusion: 12. [PMC free article: PMC5742106] [PubMed: 29311957] [CrossRef]
1011.
Stergiou A, Tzoufi M, Ntzani E, et al. Therapeutic effects of horseback riding interventions: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2017 Oct;96(10):717–25. doi: 10.1097/PHM.0000000000000726. PMID: 28252520. Exclusion: 12. [PubMed: 28252520] [CrossRef]
1012.
Stone WJ, Stevens SL, Fuller DK, et al. Ambulation and physical function after eccentric resistance training in adults with incomplete spinal cord injury: a feasibility study. J Spinal Cord Med. 2019 Jan 23;42(4):526–33. doi: 10.1080/10790268.2017.1417804. PMID: 29360000. Exclusion: 11. [PMC free article: PMC6718937] [PubMed: 29360000] [CrossRef]
1013.
Straudi S, Benedetti MG, Venturini E, et al. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation. 2013;33(4):555–63. doi: 10.3233/NRE-130990. PMID: 24018369. Exclusion: 11. [PubMed: 24018369] [CrossRef]
1014.
Straudi S, Martinuzzi C, Pavarelli C, et al. A task-oriented circuit training in multiple sclerosis: a feasibility study. BMC Neurol. 2014 Jun 7;14:124. doi: 10.1186/1471-2377-14-124. PMID: 24906545. Exclusion: 11. [PMC free article: PMC4059088] [PubMed: 24906545] [CrossRef]
1015.
Streber R, Peters S, Pfeifer K. Systematic review of correlates and determinants of physical activity in persons with multiple sclerosis. Arch Phys Med Rehabil. 2016 Apr;97(4):633–45.e29. doi: 10.1016/j.apmr.2015.11.020. PMID: 26751247. Exclusion: 12. [PubMed: 26751247] [CrossRef]
1016.
Street T, Singleton C. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury. J Spinal Cord Med. 2018 May;41(3):361–6. doi: 10.1080/10790268.2017.1392106. PMID: 29108487. Exclusion: 4. [PMC free article: PMC6055946] [PubMed: 29108487] [CrossRef]
1017.
Stribling K, Christy J. Dance practice improves postural control in a child with cerebral palsy. Pediatr Phys Ther. 2011 Spring;23(1):129–30. doi: 10.1097/PEP.0000000000000450. PMID: 28953185 Exclusion: 7. [PubMed: 28953185] [CrossRef]
1018.
Sucuoglu H. Effects of robot-assisted gait training alongside conventional therapy on the development of walking in children with cerebral palsy. J Pediatr Rehabil Med. 2020 May 09;09:09. doi: 10.3233/PRM-180541. PMID: 32444570. Exclusion: 8. [PubMed: 32444570] [CrossRef]
1019.
Suder R, Fu MJ, Knutson J, et al. Contralaterally controlled functional electrical stimulation and hand therapy video games for cerebral palsy. Am J Occup Ther. 2016 Aug;70(4):1. doi: 10.5014/ajot.2016.70S1-PO5113. Exclusion: 7. [CrossRef]
1020.
Sukal-Moulton T, Clancy T, Zhang LQ, et al. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Arch Phys Med Rehabil. 2014 Aug;95(8):1433–40. doi: 10.1016/j.apmr.2014.04.010. PMID: 24792141. Exclusion: 4. [PMC free article: PMC4112152] [PubMed: 24792141] [CrossRef]
1021.
Sung YH, Ha SY. The Vojta approach changes thicknesses of abdominal muscles and gait in children with spastic cerebral palsy: a randomized controlled trial, pilot study. Technol Health Care. 2019 Oct 16;16:16. doi: 10.3233/THC-191726. PMID: 31658070. Exclusion: 11. [PubMed: 31658070] [CrossRef]
1022.
Surana BK, Ferre CL, Dew AP, et al. Effectiveness of lower-extremity functional training (LIFT) in young children with unilateral spastic cerebral palsy: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33(10):862–72. doi: 10.1177/1545968319868719. Exclusion: 4. [PubMed: 31434537] [CrossRef]
1023.
Swank C, Thompson M, Medley A. Aerobic exercise in people with multiple sclerosis: its feasibility and secondary benefits. Int J MS Care. 2013;15(3):138–45. doi: 10.7224/1537-2073.2012-037. PMID: 24453776. Exclusion: 11. [PMC free article: PMC3883024] [PubMed: 24453776] [CrossRef]
1024.
Swank C, Trammell M, Bennett M, et al. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings. Int J Rehabil Res. 2020 Apr 08;08:08. doi: 10.1097/MRR.0000000000000409. PMID: 32282573. Exclusion: 4. [PubMed: 32282573] [CrossRef]
1025.
Syed UE, Kamal A. Video game-based and conventional therapies in patients of neurological deficits: an experimental study. Disabil Rehabil Assist Technol. 2019 Nov 05:1–8. doi: 10.1080/17483107.2019.1679266. PMID: 31684776. Exclusion: 11. [PubMed: 31684776] [CrossRef]
1026.
Tafreshi AS, Riener R, Klamroth-Marganska V. Distinctive steady-state heart rate and blood pressure responses to passive robotic leg exercise during head-up tilt: a pilot study in neurological patients. Front Physiol. 2017;8(JUN) doi: 10.3389/fphys.2017.00327. Exclusion: 3. [PMC free article: PMC5454056] [PubMed: 28626427] [CrossRef]
1027.
Tallner A, Maeurer M, Pfeifer K. An internet-based at home training protocol enhances muscle strength and lung function in multiple sclerosis patients (#133). Mult Scler J Exp Transl Clin. 2012 May;18(5):S23–S4. doi: 10.1177/1352458512444209. PMID: 28071271. Exclusion: 10. [CrossRef]
1028.
Tallner A, Streber R, Hentschke C, et al. Internet-supported physical exercise training for persons with multiple sclerosis-a randomised, controlled study. Int J Mol Sci. 2016 Sep 30;17(10):30. doi: 10.3390/ijms17101667. PMID: 27706046. Exclusion: 4. [PMC free article: PMC5085700] [PubMed: 27706046] [CrossRef]
1029.
Tamburella F, Scivoletto G, Molinari M. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Eur J Phys Rehabil Med. 2013 Jun;49(3):353–64. PMID: 23486301. Exclusion: 11. [PubMed: 23486301]
1030.
Tan C, Battaglino R, Gupta R, et al. FES-rowing training improves bone strength of the paralyzed legs in a dose-dependent fashion. J Bone Miner Res. Conference. 2015;30(Supplement 1). Exclusion: 10.
1031.
Tanabe S, Koyama S, Saitoh E, et al. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: a case study. NeuroRehabilitation. 2017;41(1):85–95. doi: 10.3233/NRE-171460. PMID: 28527225. Exclusion: 7. [PubMed: 28527225] [CrossRef]
1032.
Taspinar O, Aydin T, Celebi A, et al. Psychological effects of calisthenic exercises on neuroinflammatory and rheumatic diseases. Z Rheumatol. 2015 Oct;74(8):722–7. doi: 10.1007/s00393-015-1570-9. PMID: 26115762. Exclusion: 4. [PubMed: 26115762] [CrossRef]
1033.
Taylor E, Taylor-Piliae RE. The effects of Tai Chi on physical and psychosocial function among persons with multiple sclerosis: a systematic review. Complement Ther Med. 2017 Apr;31:100–8. doi: 10.1016/j.ctim.2017.03.001. PMID: 28434462. Exclusion: 12. [PubMed: 28434462] [CrossRef]
1034.
Taylor N, Dodd KJ, Baker R, et al. The effect of individualized progressive resistance training on mobility in adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2013 Oct;55(S3):25–6. doi: 10.1111/dmcn.12247. Exclusion: 10. [CrossRef]
1035.
Taylor P, Barrett C, Mann G, et al. A feasibility study to investigate the effect of functional electrical stimulation and physiotherapy exercise on the quality of gait of people with multiple sclerosis. Neuromodulation. 2014 Jan;17(1):75–84; discussion doi: 10.1111/ner.12048. PMID: 23601128. Exclusion: 11. [PubMed: 23601128] [CrossRef]
1036.
Taylor P, Humphreys L, Swain I. The long-term cost-effectiveness of the use of Functional Electrical Stimulation for the correction of dropped foot due to upper motor neuron lesion. J Rehabil Med. 2013 Feb;45(2):154–60. doi: 10.2340/16501977-1090. PMID: 23303521. Exclusion: 5. [PubMed: 23303521] [CrossRef]
1037.
Taylor SM, Cheung EO, Sun R, et al. Applications of complementary therapies during rehabilitation for individuals with traumatic spinal cord injury: findings from the SCIRehab project. J Spinal Cord Med. 2019 Sep;42(5):571–8. doi: 10.1080/10790268.2018.1481693. PMID: 29883300. Exclusion: 4. [PMC free article: PMC6758717] [PubMed: 29883300] [CrossRef]
1038.
Taylor-Schroeder S, LaBarbera J, McDowell S, et al. The SCIRehab project: treatment time spent in SCI rehabilitation. Physical therapy treatment time during inpatient spinal cord injury rehabilitation. J Spinal Cord Med. 2011;34(2):149–61. doi: 10.1179/107902611X12971826988057. PMID: 21675354. Exclusion: 4. [PMC free article: PMC3066500] [PubMed: 21675354] [CrossRef]
1039.
Tefertiller C, Hays K, Jones J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil. 2018;24(1):78–85. doi: 10.1310/sci17-00014. PMID: 29434463. Exclusion: 8. [PMC free article: PMC5791927] [PubMed: 29434463] [CrossRef]
1040.
Temcharoensuk P, Lekskulchai R, Akamanon C, et al. Effect of horseback riding versus a dynamic and static horse riding simulator on sitting ability of children with cerebral palsy: a randomized controlled trial. J Phys Ther Sci. 2015 Jan;27(1):273–7. doi: 10.1589/jpts.27.273. PMID: 25642090. Exclusion: 4. [PMC free article: PMC4305581] [PubMed: 25642090] [CrossRef]
1041.
Terson de Paleville D, McKay W, Aslan S, et al. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir Physiolo Neurobiol. 2013 Dec 1;189(3):491–7. doi: 10.1016/j.resp.2013.08.018. PMID: 23999001. Exclusion: 11. [PMC free article: PMC3833892] [PubMed: 23999001] [CrossRef]
1042.
Theis N, Korff T, Mohagheghi AA. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy? Clin Biomech. 2015 Dec;30(10):1071–6. doi: 10.1016/j.clinbiomech.2015.09.004. PMID: 26403361. Exclusion: 11. [PubMed: 26403361] [CrossRef]
1043.
Thomas S, Fazakarley L, Thomas PW, et al. Mii-vitaliSe: a pilot randomised controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open. 2017 Sep 27;7(9):e016966. doi: 10.1136/bmjopen-2017-016966. PMID: 28954791. Exclusion: 4. [PMC free article: PMC5623500] [PubMed: 28954791] [CrossRef]
1044.
Thongsumrit L, Nana A, Limroongreungrat W, et al. Effects of wheelchair Tai-Chi training on sitting balance of individuals with spinal cord injury. J Sci Med Sport. 2011 Dec;14(S1):e110–1. doi: 10.1016/j.jsams.2011.11.231. Exclusion: 10. [CrossRef]
1045.
To CS, Kobetic R, Bulea TC, et al. Sensor-based stance control with orthosis and functional neuromuscular stimulation for walking after spinal cord injury. J Prosthet Orthot. 2012;24(3):124–32. doi: 10.1097/JPO.0b013e3182627a13. Exclusion: 7. [CrossRef]
1046.
To CS, Kobetic R, Bulea TC, et al. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia. J Rehabil Res Dev. 2014;51(2):229–44. doi: 10.1682/JRRD.2012.10.0190. PMID: 24933721. Exclusion: 7. [PubMed: 24933721] [CrossRef]
1047.
Torhaug T, Brurok B, Hoff J, et al. The effect from maximal bench press strength training on work economy during wheelchair propulsion in men with spinal cord injury. Spinal Cord. 2016 Oct;54(10):838–42. doi: 10.1038/sc.2016.27. PMID: 26976530. Exclusion: 11. [PubMed: 26976530] [CrossRef]
1048.
Tornberg AB, Lauruschkus K. Non-ambulatory children with cerebral palsy: effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. PeerJ. 2020;8:e8561. doi: 10.7717/peerj.8561. PMID: 32211225. Exclusion: 4. [PMC free article: PMC7083156] [PubMed: 32211225] [CrossRef]
1049.
Tosh J, Dixon S, Carter A, et al. Cost effectiveness of a pragmatic exercise intervention (EXIMS) for people with multiple sclerosis: economic evaluation of a randomised controlled trial. Mult Scler. 2014 Jul;20(8):1123–30. doi: 10.1177/1352458513515958. PMID: 24421304. Exclusion: 6. [PubMed: 24421304] [CrossRef]
1050.
Totosy de Zepetnek JO, Au JS, Ditor DS, et al. Lower limb conduit artery endothelial responses to acute upper limb exercise in spinal cord injured and able-bodied men. Physiol Rep. 2015 Apr;3(4) doi: 10.14814/phy2.12367. PMID: 25847920. Exclusion: 4. [PMC free article: PMC4425972] [PubMed: 25847920] [CrossRef]
1051.
Totosy de Zepetnek JO, Au JS, Hol AT, et al. Predicting peak oxygen uptake from submaximal exercise after spinal cord injury. Appl Physiol Nutr Metab. 2016 Jul;41(7):775–81. doi: 10.1139/apnm-2015-0670. PMID: 27363732. Exclusion: 4. [PMC free article: PMC4959875] [PubMed: 27363732] [CrossRef]
1052.
Totosy de Zepetnek JO, Miyatani M, Szeto M, et al. The effects of whole body vibration on pulse wave velocity in men with chronic spinal cord injury. J Spinal Cord Med. 2017 Nov;40(6):795–802. doi: 10.1080/10790268.2017.1369248. PMID: 28868990. Exclusion: 11. [PMC free article: PMC5778943] [PubMed: 28868990] [CrossRef]
1053.
Tramontano M, Cinnera AM, Manzari L, et al. Vestibular rehabilitation has positive effects on balance, fatigue and activities of daily living in highly disabled multiple sclerosis people: a preliminary randomized controlled trial. Restor Neurol Neurosci. 2018;36(6):709–18. doi: 10.3233/RNN-180850. Exclusion: 11. [PubMed: 30412513] [CrossRef]
1054.
Troy KL. Biomechanical validation of upper extremity exercise in wheelchair users: design considerations and improvements in a prototype device. Disabil Rehabil Assist Technol. 2011;6(1):22–8. doi: 10.3109/17483107.2010.509883. PMID: 20726741. Exclusion: 4. [PubMed: 20726741] [CrossRef]
1055.
Troy KL, Munce TA, Longworth JA. An exercise trial targeting posterior shoulder strength in manual wheelchair users: pilot results and lessons learned. Disabil Rehabil Assist Technol. 2015;10(5):415–20. doi: 10.3109/17483107.2014.905644. PMID: 24694062. Exclusion: 11. [PubMed: 24694062] [CrossRef]
1056.
Truchon C, Fallah N, Santos A, et al. Impact of therapy on recovery during rehabilitation in patients with traumatic spinal cord injury. J Neurotrauma. 2017 Oct 15;34(20):2901–9. doi: 10.1089/neu.2016.4932. PMID: 28493787. Exclusion: 7. [PMC free article: PMC5652980] [PubMed: 28493787] [CrossRef]
1057.
Tsai C-Y, Delgado AD, Weinrauch WJ, et al. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil. 2020;101(4):607–12. doi: 10.1016/j.apmr.2019.11.010. Exclusion: 4. [PubMed: 31891715] [CrossRef]
1058.
Tsai LC, Ren Y, Gaebler-Spira DJ, et al. Effects of an off-axis pivoting elliptical training program on gait function in persons with spastic cerebral palsy: a preliminary study. Am J Phys Med Rehabil. 2017 Jul;96(7):515–22. doi: 10.1097/PHM.0000000000000632. PMID: 28628539. Exclusion: 11. [PubMed: 28628539] [CrossRef]
1059.
Tupimai T, Peungsuwan P, Prasertnoo J, et al. Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy. J Phys Ther Sci. 2016 Jan;28(1):7–13. doi: 10.1589/jpts.28.7. PMID: 26957720. Exclusion: 11. [PMC free article: PMC4755966] [PubMed: 26957720] [CrossRef]
1060.
Turbanski S, Schmidtbleicher D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J Strength Cond Res. 2010 Jan;24(1):8–16. doi: 10.1519/JSC.0b013e3181bdddda. PMID: 19996772. Exclusion: 11. [PubMed: 19996772] [CrossRef]
1061.
Turconi AC, Biffi E, Maghini C, et al. Can new technologies improve upper limb performance in grown-up diplegic children? Eur J Phys Rehabil Med. 2016 Oct;52(5):672–81. PMID: 26554345. Exclusion: 11. [PubMed: 26554345]
1062.
Tyler ME, Kaczmarek KA, Rust KL, et al. Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial. J Neuroengineering Rehabil. 2014 May 1;11:79. doi: 10.1186/1743-0003-11-79. PMID: 24885412. Exclusion: 11. [PMC free article: PMC4017705] [PubMed: 24885412] [CrossRef]
1063.
Ukhanova TA, Gorbunov FE. [Efficacy of reflexology in the combination with neuroprotective treatment in hemiparetic form of children cerebral palsy]. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(7):28–31. PMID: 23011423. Exclusion: 13. [PubMed: 23011423]
1064.
Ukhanova TA, Noivikova EE, Dement’eva EV. The role of microcurrent reflexotherapy in combination with neuroprotector in the rehabilitation of the patients with infantile cerebral palsy. Vopr Kurortol Fizioter Lech Fiz Kult. 2012 Sep–Oct(5):33–6. PMID: 23210360. Exclusion: 13. [PubMed: 23210360]
1065.
Unger M, Jelsma J. Effect of a trunk-targeted intervention on pelvic positioning and lower limb function in children with spastic type cerebral palsy. Physiotherapy. 2011 Jun;97(S1):eS1267. doi: 10.1016/j.physio.2011.04.002. Exclusion: 10. [CrossRef]
1066.
Unger M, Jelsma J, Stark C. Effect of a trunk-targeted intervention using vibration on posture and gait in children with spastic type cerebral palsy: a randomized control trial. Dev Neurorehabil. 2013;16(2):79–88. doi: 10.3109/17518423.2012.715313. PMID: 23477461. Exclusion: 8. [PubMed: 23477461] [CrossRef]
1067.
Valent LJ, Dallmeijer AJ, Houdijk H, et al. Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial. Phys Ther. 2009 Oct;89(10):1051–60. doi: 10.2522/ptj.20080340. PMID: 19643834. Exclusion: 11. [PubMed: 19643834] [CrossRef]
1068.
Valent LJ, Dallmeijer AJ, Houdijk H, et al. Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study. Arch Phys Med Rehabil. 2008 Jun;89(6):1016–22. doi: 10.1016/j.apmr.2007.10.034. PMID: 18503794. Exclusion: 4. [PubMed: 18503794] [CrossRef]
1069.
Valentin-Gudiol M, Mattern-Baxter K, Girabent-Farres M, et al. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev. 2017 Jul 29;7:CD009242. doi: 10.1002/14651858.CD009242.pub3. PMID: 28755534. Exclusion: 3. [PMC free article: PMC6483121] [PubMed: 28755534] [CrossRef]
1070.
Van Campenhout A, Bar-On L, Aertbelien E, et al. Can we unmask features of spasticity during gait in children with cerebral palsy by increasing their walking velocity? Gait Posture. 2014 Mar;39(3):953–7. doi: 10.1016/j.gaitpost.2013.12.024. PMID: 24444653. Exclusion: 4. [PubMed: 24444653] [CrossRef]
1071.
van den Berg-Emons RJ, Bussmann JB, Haisma JA, et al. A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge. Arch Phys Med Rehabil. 2008 Nov;89(11):2094–101. doi: 10.1016/j.apmr.2008.04.024. PMID: 18996237. Exclusion: 4. [PubMed: 18996237] [CrossRef]
1072.
Van den Broeck C, De Cat J, Molenaers G, et al. The effect of individually defined physiotherapy in children with cerebral palsy (CP). Europ J Paediatr Neurol. 2010 Nov;14(6):519–25. doi: 10.1016/j.ejpn.2010.03.004. PMID: 20434378. Exclusion: 11. [PubMed: 20434378] [CrossRef]
1073.
van der Scheer JW, de Groot S, Postema K, et al. Design of a randomized-controlled trial on low-intensity aerobic wheelchair exercise for inactive persons with chronic spinal cord injury. Disabil Rehabil. 2013 Jun;35(13):1119–26. doi: 10.3109/09638288.2012.709301. PMID: 22900530. Exclusion: 11. [PubMed: 22900530] [CrossRef]
1074.
van der Scheer JW, de Groot S, Vegter RJ, et al. Low-intensity wheelchair training in inactive people with long-term spinal cord injury: a randomized controlled trial on propulsion technique. Am J Phys Med Rehabil. 2015 Nov;94(11):975–86. doi: 10.1097/PHM.0000000000000289. PMID: 25802961. Exclusion: 11. [PubMed: 25802961] [CrossRef]
1075.
van der Scheer JW, Martin Ginis KA, Ditor DS, et al. Effects of exercise on fitness and health of adults with spinal cord injury: a systematic review. Neurology. 2017 Aug 15;89(7):736–45. doi: 10.1212/WNL.0000000000004224. PMID: 28733344. Exclusion: 12. [PubMed: 28733344] [CrossRef]
1076.
van der Woude LH, de Groot S, Postema K, et al. Active LifestyLe Rehabilitation interventions in aging spinal cord injury (ALLRISC): a multicentre research program. Disabil Rehabil. 2013 Jun;35(13):1097–103. doi: 10.3109/09638288.2012.718407. PMID: 23030594. Exclusion: 10. [PubMed: 23030594] [CrossRef]
1077.
Van Gestel L, Molenaers G, Huenaerts C, et al. Effect of dynamic orthoses on gait: a retrospective control study in children with hemiplegia. Dev Med Child Neurol. 2008 Jan;50(1):63–7. doi: 10.1111/j.1469-8749.2007.02014.x. PMID: 18173633. Exclusion: 4. [PubMed: 18173633] [CrossRef]
1078.
Van Gestel L, Wambacq H, Aertbelien E, et al. To what extent is mean EMG frequency during gait a reflection of functional muscle strength in children with cerebral palsy? Res Dev Disabil. 2012 May–Jun;33(3):916–23. doi: 10.1016/j.ridd.2011.12.010. PMID: 22245734. Exclusion: 6. [PubMed: 22245734] [CrossRef]
1079.
van Hedel HJ, Meyer-Heim A, Rusch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 2016 Dec;19(6):410–5. doi: 10.3109/17518423.2015.1017661. PMID: 25837449. Exclusion: 4. [PubMed: 25837449] [CrossRef]
1080.
van Koppenhagen CF, de Groot S, Post MW, et al. Patterns of changes in wheelchair exercise capacity after spinal cord injury. Arch Phys Med Rehabil. 2013 Jul;94(7):1260–7. doi: 10.1016/j.apmr.2013.02.025. PMID: 23510968. Exclusion: 4. [PubMed: 23510968] [CrossRef]
1081.
van Koppenhagen CF, Post M, de Groot S, et al. Longitudinal relationship between wheelchair exercise capacity and life satisfaction in patients with spinal cord injury: A cohort study in the Netherlands. J Spinal Cord Med. 2014 May;37(3):328–37. doi: 10.1179/2045772313Y.0000000167. PMID: 24621019. Exclusion: 5. [PMC free article: PMC4064582] [PubMed: 24621019] [CrossRef]
1082.
van Middendorp JJ, Hosman AJ, Donders AR, et al. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011 Mar 19;377(9770):1004–10. doi: 10.1016/S0140-6736(10)62276-3. PMID: 21377202. Exclusion: 4. [PubMed: 21377202] [CrossRef]
1083.
van Middendorp JJ, Hosman AJ, Pouw MH, et al. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009 Jul;47(7):555–60. doi: 10.1038/sc.2008.162. PMID: 19104512. Exclusion: 7. [PubMed: 19104512] [CrossRef]
1084.
van Vulpen LF, de Groot S, Rameckers E, et al. Improved walking capacity and muscle strength after functional power-training in young children with cerebral palsy. Neurorehabil Neural Repair. 2017 Sep;31(9):827–41. doi: 10.1177/1545968317723750. PMID: 28786309. Exclusion: 8. [PubMed: 28786309] [CrossRef]
1085.
van Vulpen LF, de Groot S, Rameckers EA, et al. Improved parent-reported mobility and achievement of individual goals on activity and participation level after functional power-training in young children with cerebral palsy: a double-baseline controlled trial. Eur J Phys Rehabil Med. 2018 Oct;54(5):730–7. doi: 10.23736/S1973-9087.18.04921-3. PMID: 29517188. Exclusion: 8. [PubMed: 29517188] [CrossRef]
1086.
van Vulpen LF, de Groot S, Rameckers EAA, et al. Effectiveness of functional power training on walking ability in young children with cerebral palsy: study protocol of a double-baseline trial. Pediatr Phys Ther. 2017 Jul;29(3):275–82. doi: 10.1097/PEP.0000000000000424. PMID: 28654503. Exclusion: 8. [PubMed: 28654503] [CrossRef]
1087.
Van Wely L, Balemans A, Becher J, et al. Effectiveness of a 6-month physical activity stimulation program for children with cerebral palsy. Dev Med Child Neurol. 2013 Oct;55(S3):8–9. doi: 10.1111/dmcn.12247. PMID: 24621033. Exclusion: 10. [CrossRef]
1088.
van Wely L, Becher JG, Balemans AC, et al. Ambulatory activity of children with cerebral palsy: which characteristics are important? Dev Med Child Neurol. 2012 May;54(5):436–42. doi: 10.1111/j.1469-8749.2012.04251.x. PMID: 22414202. Exclusion: 4. [PubMed: 22414202] [CrossRef]
1089.
Vaney C, Gattlen B, Lugon-Moulin V, et al. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair. 2012 Mar–Apr;26(3):212–21. doi: 10.1177/1545968311425923. PMID: 22140197. Exclusion: 4. [PubMed: 22140197] [CrossRef]
1090.
Veneri D, Gannotti M, Bertucco M, et al. Using the international classification of functioning, disability, and health model to gain perspective of the benefits of yoga in stroke, multiple sclerosis, and children to inform practice for children with cerebral palsy: a meta-analysis. J Altern Complement Med. 2018 May;24(5):439–57. doi: 10.1089/acm.2017.0030. PMID: 29406768. Exclusion: 12. [PubMed: 29406768] [CrossRef]
1091.
Venturini E, Balugani L, Zarattin F, et al. The effects of robot-assisted gait training on locomotor function in subjects with multiple sclerosis: a three months follow-up study. Gait Posture. 2010;33(4). Exclusion: 10.
1092.
Verschuren O, Bongers BC, Obeid J, et al. Validity of the muscle power sprint test in ambulatory youth with cerebral palsy. Pediatr Phys Ther. 2013;25(1):25–8. doi: 10.1097/PEP.0b013e3182791459. PMID: 23288003. Exclusion: 4. [PubMed: 23288003] [CrossRef]
1093.
Verschuren O, Bosma L, Takken T. Reliability of a shuttle run test for children with cerebral palsy who are classified at Gross Motor Function Classification System level III. Dev Med Child Neurol. 2011 May;53(5):470–2. doi: 10.1111/j.1469-8749.2010.03893.x. PMID: 21309762. Exclusion: 4. [PubMed: 21309762] [CrossRef]
1094.
Verschuren O, Maltais DB, Douma-van Riet D, et al. Anaerobic performance in children with cerebral palsy compared to children with typical development. Pediatr Phys Ther. 2013;25(4):409–13. doi: 10.1097/PEP.0b013e3182a47022. PMID: 23974826. Exclusion: 4. [PubMed: 23974826] [CrossRef]
1095.
Verschuren O, Zwinkels M, Ketelaar M, et al. Reproducibility and validity of the 10-meter shuttle ride test in wheelchair-using children and adolescents with cerebral palsy. Phys Ther. 2013 Jul;93(7):967–74. doi: 10.2522/ptj.20120513. PMID: 23580630. Exclusion: 6. [PubMed: 23580630] [CrossRef]
1096.
Vikman T, Fielding P, Lindmark B, et al. Effects of inpatient rehabilitation in multiple sclerosis patients with moderate disability. Adv Physiother. 2008;10(2):58–65. doi: 10.1080/14038190701288785. Exclusion: 7. [CrossRef]
1097.
Villiger M, Bohli D, Kiper D, et al. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 2013 Oct;27(8):675–83. doi: 10.1177/1545968313490999. PMID: 23757298. Exclusion: 11. [PubMed: 23757298] [CrossRef]
1098.
Villiger M, Liviero J, Awai L, et al. Home-based virtual reality-augmented training improves lower limb muscle strength, balance, and functional mobility following chronic incomplete spinal cord injury. Front Neurol. 2017;8(NOV) doi: 10.3389/fneur.2017.00635. Exclusion: 11. [PMC free article: PMC5712347] [PubMed: 29234302] [CrossRef]
1099.
Vitiello D, Pochon L, Malatesta D, et al. Walking-induced muscle fatigue impairs postural control in adolescents with unilateral spastic cerebral palsy. Res Dev Disabil. 2016 Jun–Jul;53–54:11–8. doi: 10.1016/j.ridd.2016.01.019. PMID: 26851383. Exclusion: 11. [PubMed: 26851383] [CrossRef]
1100.
Vogtle LK, Malone LA, Azuero A. Outcomes of an exercise program for pain and fatigue management in adults with cerebral palsy. Disabil Rehabil. 2014;36(10):818–25. doi: 10.3109/09638288.2013.821181. PMID: 23924251. Exclusion: 8. [PubMed: 23924251] [CrossRef]
1101.
Vore ME, Elgelid S, Bolger S, et al. Impact of a 10-week individualized exercise program on physical function and fatigue of people with multiple sclerosis: a pilot study. Int J MS Care. 2011;13(3):121–6. doi: 10.7224/1537-2073-13.3.121. PMID: 24453715. Exclusion: 11. [PMC free article: PMC3882966] [PubMed: 24453715] [CrossRef]
1102.
Wall A, Borg J, Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front Syst Neurosci. 2015;9:48. doi: 10.3389/fnsys.2015.00048. PMID: 25859191. Exclusion: 12. [PMC free article: PMC4373251] [PubMed: 25859191] [CrossRef]
1103.
Wall T, Falvo L, Kesten A. Activity-specific aquatic therapy targeting gait for a patient with incomplete spinal cord injury. Physiother Theory Pract. 2017 Apr;33(4):331–44. doi: 10.1080/09593985.2017.1302026. PMID: 28379060. Exclusion: 7. [PubMed: 28379060] [CrossRef]
1104.
Wall TE. The effects of the Nintendo(TM) Wii Fit on functional gait, balance and quality of life in ambulatory individuals with incomplete spinal cord injury. 2013. Exclusion: 11. [PMC free article: PMC4725811] [PubMed: 25613853]
1105.
Waltersson L, Rodby-Bousquet E. Physical activity in adolescents and young adults with cerebral palsy. Biomed Res Int. 2017;2017:8080473. doi: 10.1155/2017/8080473. PMID: 29423412. Exclusion: 4. [PMC free article: PMC5750505] [PubMed: 29423412] [CrossRef]
1106.
Wang J, Lang YB, Du JH, et al. Effect of suspension exercise training on motor and balance functions in children with spastic cerebral palsy. Zhongguo Dang Dai Er Ke Za Zhi. 2018 Jun;20(6):465–9. PMID: 29972120. Exclusion: 13. [PMC free article: PMC7389949] [PubMed: 29972120]
1107.
Wang RL, Zhou ZH, Xi YC, et al. Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy. Beijing Da Xue Xue Bao. 2018 Apr 18;50(2):207–12. PMID: 29643516. Exclusion: 13. [PubMed: 29643516]
1108.
Wang S, Wang L, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):277–86. doi: 10.1109/TNSRE.2014.2365697. PMID: 25373109. Exclusion: 10. [PubMed: 25373109] [CrossRef]
1109.
Wang TH, Peng YC, Chen YL, et al. A home-based program using patterned sensory enhancement improves resistance exercise effects for children with cerebral palsy: a randomized controlled trial. Neurorehabil Neural Repair. 2013 Oct;27(8):684–94. doi: 10.1177/1545968313491001. PMID: 23757295. Exclusion: 4. [PubMed: 23757295] [CrossRef]
1110.
Wang TH, Peng YC, Chen YL, et al. Long-term effects of therapeutic music combined with loaded sit-to-stand resistance exercise on mobility for children with cerebral palsy. Physiotherapy. 2011;97(20). Exclusion: 10.
1111.
Wang YT, Li Z, Yang Y, et al. Effects of wheelchair Tai Chi on physical and mental health among elderly with disability. Res Sports Med. 2016 Jul–Sep;24(3):157–70. doi: 10.1080/15438627.2016.1191487. PMID: 27248716. Exclusion: 3. [PubMed: 27248716] [CrossRef]
1112.
Wang YT, Vrongistinos KD, Xu D. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing. J Appl Biomech. 2008 Aug;24(3):280–7. PMID: 18843158. Exclusion: 4. [PubMed: 18843158]
1113.
Warms CA, Whitney JD, Belza B. Measurement and description of physical activity in adult manual wheelchair users. Disabil Health J. 2008 Oct;1(4):236–44. doi: 10.1016/j.dhjo.2008.07.002. PMID: 21122734. Exclusion: 4. [PMC free article: PMC3475493] [PubMed: 21122734] [CrossRef]
1114.
Weightman A, Preston N, Levesley M, et al. The nature of arm movement in children with cerebral palsy when using computer-generated exercise games. Disabil Rehabil Assist Technol. 2014 May;9(3):219–25. doi: 10.3109/17483107.2013.782576. PMID: 23597314. Exclusion: 11. [PubMed: 23597314] [CrossRef]
1115.
Wendebourg MJ, Heesen C, Finlayson M, et al. Patient education for people with multiple sclerosis-associated fatigue: a systematic review. PLoS One. 2017;12(3):e0173025. doi: 10.1371/journal.pone.0173025. PMID: 28267811. Exclusion: 4. [PMC free article: PMC5340368] [PubMed: 28267811] [CrossRef]
1116.
Wens I, Dalgas U, Vandenabeele F, et al. High intensity aerobic and resistance exercise can improve glucose tolerance in persons with multiple sclerosis: a randomized controlled trial. Am J Phys Med Rehabil. 2017 Mar;96(3):161–6. doi: 10.1097/PHM.0000000000000563. PMID: 27362697. Exclusion: 4. [PubMed: 27362697] [CrossRef]
1117.
Wens I, Keytsman C, Deckx N, et al. Brain derived neurotrophic factor in multiple sclerosis: effect of 24 weeks endurance and resistance training. Eur J Neurol. 2016 Jun;23(6):1028–35. doi: 10.1111/ene.12976. PMID: 26992038. Exclusion: 11. [PubMed: 26992038] [CrossRef]
1118.
Wernig A, Wernig S. The trouble with “body weight support” in treadmill training. Arch Phys Med Rehabil. 2010;91(9):1478. doi: 10.1016/j.apmr.2010.05.015. Exclusion: 10. [PubMed: 20801272] [CrossRef]
1119.
West CR, Romer LM, Krassioukov A. Autonomic function and exercise performance in elite athletes with cervical spinal cord injury. Med Sci Sports Exerc. 2013 Feb;45(2):261–7. doi: 10.1249/MSS.0b013e31826f5099. PMID: 22914247. Exclusion: 11. [PubMed: 22914247] [CrossRef]
1120.
West CR, Taylor BJ, Campbell IG, et al. Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury. Scand J Med Sci Sports. 2014 Oct;24(5):764–72. doi: 10.1111/sms.12070. PMID: 23530708. Exclusion: 11. [PubMed: 23530708] [CrossRef]
1121.
West CR, Wong SC, Krassioukov AV. Autonomic cardiovascular control in Paralympic athletes with spinal cord injury. Med Sci Sports Exerc. 2014 Jan;46(1):60–8. doi: 10.1249/MSS.0b013e31829e46f3. PMID: 23739527. Exclusion: 4. [PubMed: 23739527] [CrossRef]
1122.
Westerdahl E, Wittrin A, Kånåhols M, et al. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis – a randomized controlled trial. Clin Respir J. 2016;10(6):698–706. doi: 10.1111/crj.12272. Exclusion: 4. [PubMed: 25620034] [CrossRef]
1123.
White L, Volfson Z, Faulkner G, et al. Reliability and validity of physical activity instruments used in children and youth with physical disabilities: a systematic review. Pediatr Exerc Sci. 2016 May;28(2):240–63. doi: 10.1123/pes.2015-0123. PMID: 26695088. Exclusion: 4. [PubMed: 26695088] [CrossRef]
1124.
Wiart L, Rosychuk RJ, Wright FV. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT. BMC Neurol. 2016 Jun 2;16:86. doi: 10.1186/s12883-016-0582-7. PMID: 27255908. Exclusion: 10. [PMC free article: PMC4890515] [PubMed: 27255908] [CrossRef]
1125.
Widener GL, Allen DD, Gibson-Horn C. Randomized clinical trial of balance-based torso weighting for improving upright mobility in people with multiple sclerosis. Neurorehabil Neural Repair. 2009 Oct;23(8):784–91. doi: 10.1177/1545968309336146. PMID: 19470807. Exclusion: 4. [PubMed: 19470807] [CrossRef]
1126.
Wier LM, Hatcher MS, Triche EW, et al. Effect of robot-assisted versus conventional body-weight-supported treadmill training on quality of life for people with multiple sclerosis. J Rehabil Res Dev. 2011;48(4):483–92. PMID: 21674396. Exclusion: 11. [PubMed: 21674396]
1127.
Wilbanks SR, Rogers R, Pool S, et al. Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. J Spinal Cord Med. 2016 Nov;39(6):645–54. doi: 10.1179/2045772315Y.0000000052. PMID: 26449780. Exclusion: 11. [PMC free article: PMC5137570] [PubMed: 26449780] [CrossRef]
1128.
Willerslev-Olsen M, Andersen JB, Sinkjaer T, et al. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol. 2014 Feb;111(4):746–54. doi: 10.1152/jn.00372.2013. PMID: 24225545. Exclusion: 4. [PubMed: 24225545] [CrossRef]
1129.
Willerslev-Olsen M, Petersen TH, Farmer SF, et al. Gait training facilitates central drive to ankle dorsiflexors in children with cerebral palsy. Brain. 2015 Mar;138(Pt 3):589–603. doi: 10.1093/brain/awu399. PMID: 25623137. Exclusion: 11. [PMC free article: PMC4408439] [PubMed: 25623137] [CrossRef]
1130.
Williams SA, Elliott C, Valentine J, et al. Combining strength training and botulinum neurotoxin intervention in children with cerebral palsy: the impact on muscle morphology and strength. Disabil Rehabil. 2013 Apr;35(7):596–605. doi: 10.3109/09638288.2012.711898. PMID: 22928803. Exclusion: 11. [PubMed: 22928803] [CrossRef]
1131.
Wilroy J, Hibberd E. Evaluation of a shoulder injury prevention program in wheelchair basketball. J Sport Rehabil. 2017 Nov 15;27(6):554–9. doi: 10.1123/jsr.2017-0011. PMID: 29140190. Exclusion: 4. [PubMed: 29140190] [CrossRef]
1132.
Wilroy JD, Lai B, Davlyatov G, et al. Correlates of adherence in a home-based, self-managed exercise program tailored to wheelchair users with spinal cord injury. Spinal Cord. 2020 Jun 15;15:15. doi: 10.1038/s41393-020-0497-4. PMID: 32541883. Exclusion: 4. [PMC free article: PMC7962257] [PubMed: 32541883] [CrossRef]
1133.
Winkels DG, Kottink AI, Temmink RA, et al. Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Dev Neurorehabil. 2013;16(1):44–51. doi: 10.3109/17518423.2012.713401. PMID: 23030054. Exclusion: 11. [PubMed: 23030054] [CrossRef]
1134.
Wirz M, Bastiaenen C, de Bie R, et al. Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol. 2011 May 27;11:60. doi: 10.1186/1471-2377-11-60. PMID: 21619574. Exclusion: 10. [PMC free article: PMC3119169] [PubMed: 21619574] [CrossRef]
1135.
Wirz M, Mac HO, Maier D, et al. Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized, controlled, multicenter trial. J Neurotrauma. 2017;34(10):1891–6. doi: 10.1089/neu.2016.4643. PMID: 27750478. Exclusion: 11. [PubMed: 27750478] [CrossRef]
1136.
Wittry S, Tsao E, Bjornson K. Are clinic-based walking measures associated with community walking activity in children with cerebral palsy? J Pediatr Rehabil Med. 2018;11(1):23–30. doi: 10.3233/PRM-160425. Exclusion: 7. [PubMed: 29630560] [CrossRef]
1137.
Wohl C, Siebert H, Blattner B. [Interventions for promoting physical activity in nursing homes : Systematic review of the effectiveness of universal prevention]. Z Gerontol Geriatr. 2017 Aug;50(6):475–82. doi: 10.1007/s00391-016-1158-2. PMID: 27966009. Exclusion: 13. [PubMed: 27966009] [CrossRef]
1138.
Wolfsegger T, Assar H, Topakian R. 3-week whole body vibration does not improve gait function in mildly affected multiple sclerosis patients--a randomized controlled trial. J Neurol Sci. 2014 Dec 15;347(1–2):119–23. doi: 10.1016/j.jns.2014.09.030. PMID: 25439165. Exclusion: 11. [PubMed: 25439165] [CrossRef]
1139.
Wonneberger M, Schmidt S. Changes of gait parameters following long-term aerobic endurance exercise in mildly disabled multiple sclerosis patients: an exploratory study. Eur J Phys Rehabil Med. 2015 Dec;51(6):755–62. PMID: 25986223. Exclusion: 4. [PubMed: 25986223]
1140.
Wood WH, Fields BE. Hippotherapy: a systematic mapping review of peer-reviewed research, 1980 to 2018. Disabil Rehabil. 2019 Sep 6:1–25. doi: 10.1080/09638288.2019.1653997. PMID: 31491353. Exclusion: 12. [PubMed: 31491353] [CrossRef]
1141.
Woodmansee C, Hahne A, Imms C, et al. Comparing participation in physical recreation activities between children with disability and children with typical development: a secondary analysis of matched data. Res Dev Disabil. 2016 Feb–Mar;49–50:268–76. doi: 10.1016/j.ridd.2015.12.004. PMID: 26741263. Exclusion: 4. [PubMed: 26741263] [CrossRef]
1142.
Worobey LA, Rigot SK, Hogaboom NS, et al. Investigating the efficacy of web-based transfer training on independent wheelchair transfers through randomized controlled trials. Arch Phys Med Rehabil. 2018 Jan;99(1):9–16.e0. doi: 10.1016/j.apmr.2017.06.025. PMID: 28782541. Exclusion: 4. [PubMed: 28782541] [CrossRef]
1143.
Wouda MF, Lundgaard E, Becker F, et al. Effects of moderate- and high-intensity aerobic training program in ambulatory subjects with incomplete spinal cord injury-a randomized controlled trial. Spinal Cord. 2018 Oct;56(10):955–63. doi: 10.1038/s41393-018-0140-9. PMID: 29795172. Exclusion: 8. [PubMed: 29795172] [CrossRef]
1144.
Wouda MF, Lundgaard E, Becker F, et al. Changes in cardiorespiratory fitness and activity levels over the first year after discharge in ambulatory persons with recent incomplete spinal cord injury. Spinal Cord. 2020 Jul 09;09:09. doi: 10.1038/s41393-020-0514-7. PMID: 32647328. Exclusion: 4. [PMC free article: PMC7943418] [PubMed: 32647328] [CrossRef]
1145.
Wren TA, Dryden JW, Mueske NM, et al. Comparison of 2 orthotic approaches in children with cerebral palsy. Pediatr Phys Ther. 2015;27(3):218–26. doi: 10.1097/PEP.0000000000000153. PMID: 26035652. Exclusion: 11. [PubMed: 26035652] [CrossRef]
1146.
Wren TA, Lee DC, Hara R, et al. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Orthop. 2010 Oct–Nov;30(7):732–8. doi: 10.1097/BPO.0b013e3181efbabc. PMID: 20864862. Exclusion: 4. [PMC free article: PMC2946103] [PubMed: 20864862] [CrossRef]
1147.
Wren TA, Lening C, Rethlefsen SA, et al. Impact of gait analysis on correction of excessive hip internal rotation in ambulatory children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013 Oct;55(10):919–25. doi: 10.1111/dmcn.12184. PMID: 23738949. Exclusion: 4. [PubMed: 23738949] [CrossRef]
1148.
Wright V, Fehlings D, Avery L, et al. Walking with my robot: results of a randomized crossover trial evaluating the impact of robotic-assisted gait training on the walking-related gross motor skills and goal accomplishment of children with cerebral palsy. Dev Med Child Neurol. 2017;59:77. doi: 10.1111/dmcn.118_13511. Exclusion: 10. [CrossRef]
1149.
Wu M, Hornby TG, Landry JM, et al. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 2011 Feb;33(2):256–60. doi: 10.1016/j.gaitpost.2010.11.016. PMID: 21232961. Exclusion: 11. [PubMed: 21232961] [CrossRef]
1150.
Wu M, Kim J, Arora P, et al. Kinematic and EMG responses to pelvis and leg assistance force during treadmill walking in children with cerebral palsy. Neural Plast. 2016;2016:5020348. doi: 10.1155/2016/5020348. PMID: 27651955. Exclusion: 11. [PMC free article: PMC5019900] [PubMed: 27651955] [CrossRef]
1151.
Wu M, Kim J, Gaebler-Spira D, et al. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: a randomized controlled study. Dev Med Child Neurol. 2015;57:66–7. doi: 10.1111/dmcn.108_12887. Exclusion: 10. [CrossRef]
1152.
Wu M, Kim J, Wei F. Facilitating weight shifting during treadmill training improves walking function in humans with spinal cord injury: a randomized controlled pilot study. Am J Phys Med Rehabil. 2018 Aug;97(8):585–92. doi: 10.1097/PHM.0000000000000927. PMID: 29547448. Exclusion: 11. [PMC free article: PMC6051897] [PubMed: 29547448] [CrossRef]
1153.
Wu M, Landry JM, Kim J, et al. Repeat exposure to leg swing perturbations during treadmill training induces long-term retention of increased step length in human SCI: a pilot randomized controlled study. Am J Phys Med Rehabil. 2016 Dec;95(12):911–20. doi: 10.1097/PHM.0000000000000517. PMID: 27149587. Exclusion: 11. [PubMed: 27149587] [CrossRef]
1154.
Wu M, Landry JM, Schmit BD, et al. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2012 May;93(5):782–9. doi: 10.1016/j.apmr.2011.12.018. PMID: 22459697. Exclusion: 11. [PubMed: 22459697] [CrossRef]
1155.
Wu YN, Hwang M, Ren Y, et al. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011 May;25(4):378–85. doi: 10.1177/1545968310388666. PMID: 21343525. Exclusion: 11. [PubMed: 21343525] [CrossRef]
1156.
Xiang Y, Lu L, Chen X, et al. Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2017;12(4):e0174872. doi: 10.1371/journal.pone.0174872. PMID: 28380067. Exclusion: 12. [PMC free article: PMC5381792] [PubMed: 28380067] [CrossRef]
1157.
Xu K, He L, Mai J, et al. Muscle recruitment and coordination following constraint-induced movement therapy with electrical stimulation on children with hemiplegic cerebral palsy: a randomized controlled trial. PLoS One. 2015;10(10):e0138608. doi: 10.1371/journal.pone.0138608. PMID: 26452230. Exclusion: 4. [PMC free article: PMC4599892] [PubMed: 26452230] [CrossRef]
1158.
Xu K, Wang L, Mai J, et al. Efficacy of constraint-induced movement therapy and electrical stimulation on hand function of children with hemiplegic cerebral palsy: a controlled clinical trial. Disabil Rehabil. 2012;34(4):337–46. doi: 10.3109/09638288.2011.607213. PMID: 21961441. Exclusion: 4. [PubMed: 21961441] [CrossRef]
1159.
Ya L, Petrini MA. Effects of a home-based resistance exercise in Chinese individuals living with physical disability: resistance exercise on PWPD. Rehabil Nurs. 2018 May/Jun;43(3):174–82. doi: 10.1097/rnj.0000000000000010. PMID: 29710062. Exclusion: 3. [PubMed: 29710062] [CrossRef]
1160.
Yamada M, Arai H. Self-management group exercise extends healthy life expectancy in frail community-dwelling older adults. Int J Environ Res Public Health. 2017 May 15;14(5):15. doi: 10.3390/ijerph14050531. PMID: 28505140. Exclusion: 3. [PMC free article: PMC5451982] [PubMed: 28505140] [CrossRef]
1161.
Yanci J, Castillo D, Iturricastillo A, et al. Evaluation of the official match external load in soccer players with cerebral palsy. J Strength Cond Res. 2019 Mar;33(3):866–73. doi: 10.1519/JSC.0000000000002085. PMID: 28658075. Exclusion: 4. [PubMed: 28658075] [CrossRef]
1162.
Yang F, Estrada EF, Sanchez MC. Vibration training improves disability status in multiple sclerosis: a pretest-posttest pilot study. J Neurol Sci. 2016 Oct 15;369:96–101. doi: 10.1016/j.jns.2016.08.013. PMID: 27653872. Exclusion: 11. [PubMed: 27653872] [CrossRef]
1163.
Yang F, Finlayson M, Bethoux F, et al. Effects of controlled whole-body vibration training in improving fall risk factors among individuals with multiple sclerosis: a pilot study. Disabil Rehabil. 2018 Mar;40(5):553–60. doi: 10.1080/09638288.2016.1262466. PMID: 27976932. Exclusion: 11. [PubMed: 27976932] [CrossRef]
1164.
Yang JF, Norton J, Nevett-Duchcherer J, et al. Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury. Phys Ther. 2011 Jun;91(6):931–43. doi: 10.2522/ptj.20100163. PMID: 21511993. Exclusion: 11. [PMC free article: PMC3107440] [PubMed: 21511993] [CrossRef]
1165.
Yarar C. Acute effects of whole body vibration on central and peripheral hemodynamics and oxygen consumption in individuals with spinal cord injury. 2011. Exclusion: 4.
1166.
Yarar-Fisher C, Pascoe DD, Gladden LB, et al. Acute physiological effects of whole body vibration (WBV) on central hemodynamics, muscle oxygenation and oxygen consumption in individuals with chronic spinal cord injury. Disabil Rehabil. 2014;36(2):136–45. doi: 10.3109/09638288.2013.782358. PMID: 23651125. Exclusion: 11. [PubMed: 23651125] [CrossRef]
1167.
Yarar-Fisher C, Polston KFL, Eraslan M, et al. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol. 2018 Jul 1;125(1):64–72. doi: 10.1152/japplphysiol.01029.2017. PMID: 29494292. Exclusion: 11. [PMC free article: PMC6086973] [PubMed: 29494292] [CrossRef]
1168.
Yasar E, Yilmaz B, Goktepe S, et al. The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury.[Erratum appears in Spinal Cord. 2015 Dec;53(12):900; PMID: 26634319]. Spinal Cord. 2015 Dec;53(12):866–9. doi: 10.1038/sc.2015.19. PMID: 25687513. Exclusion: 11. [PubMed: 25687513] [CrossRef]
1169.
Yen CL, McHenry CL, Petrie MA, et al. Vibration training after chronic spinal cord injury: evidence for persistent segmental plasticity. Neurosci Lett. 2017 Apr 24;647:129–32. doi: 10.1016/j.neulet.2017.03.019. PMID: 28315725. Exclusion: 11. [PMC free article: PMC5518623] [PubMed: 28315725] [CrossRef]
1170.
Yen SC, Schmit BD, Landry JM, et al. Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI. Exp Brain Res. 2012 Feb;216(3):473–82. doi: 10.1007/s00221-011-2950-2. PMID: 22108702. Exclusion: 11. [PubMed: 22108702] [CrossRef]
1171.
Yeo SS, Kwon JW. Wheelchair skills training for functional activity in adults with cervical spinal cord injury. Int J Sports Med. 2018 Sep 11;39(12):924–8. doi: 10.1055/a-0635-0941. PMID: 30206918. Exclusion: 6. [PubMed: 30206918] [CrossRef]
1172.
Yildirim A, Surucu GD, Karamercan A, et al. Short-term effects of upper extremity circuit resistance training on muscle strength and functional independence in patients with paraplegia. J Back Musculoskeletal Rehabil. 2016 Nov 21;29(4):817–23. doi: 10.3233/BMR-160694. PMID: 27002667. Exclusion: 11. [PubMed: 27002667] [CrossRef]
1173.
Yildirim Şik B, Çekmece C, Dursun N, et al. Is hyppotherapy beneficial for rehabilitation of children with cerebral palsy? Turkiye Klinikleri Journal of Medical Sciences. 2012;32(3):601–8. doi: 10.5336/medsci.2011-22465. Exclusion: 13. [CrossRef]
1174.
You JS, Kim YL, Lee SM. Effects of a standard transfer exercise program on transfer quality and activities of daily living for transfer-dependent spinal cord injury patients. J Phys Ther Sci. 2017 Mar;29(3):478–83. doi: 10.1589/jpts.29.478. PMID: 28356635. Exclusion: 4. [PMC free article: PMC5361014] [PubMed: 28356635] [CrossRef]
1175.
Yu Y, Wang D, Ma K, et al. Research hot spots in the treatment of pediatric cerebral palsy based on bibliometric analysis. Int J Clin Exp Med. 2019;12(7):8239–50. Exclusion: 7.
1176.
Zabay Neiro C, Martínez Lerín N. How to decrease cardiovascular risk factors in people with multiple sclerosis. Revista Cientifica de la Sociedad Espanola de Enfermeria Neurologica. 2018;47:11–7. doi: 10.1016/j.sedene.2017.10.003. PMID: 8112704 Exclusion: 11. [CrossRef]
1177.
Zackowski KM, Wang JI, McGready J, et al. Quantitative sensory and motor measures detect change overtime and correlate with walking speed in individuals with multiple sclerosis. Mult Scler Relat Disord. 2015 Jan;4(1):67–74. doi: 10.1016/j.msard.2014.11.001. PMID: 25692092. Exclusion: 4. [PMC free article: PMC4327874] [PubMed: 25692092] [CrossRef]
1178.
Zaenker P, Favret F, Lonsdorfer E, et al. High-intensity interval training combined with resistance training improves physiological capacities, strength and quality of life in multiple sclerosis patients: a pilot study. Eur J Phys Rehabil Med. 2018 Feb;54(1):58–67. doi: 10.23736/S1973-9087.17.04637-8. PMID: 28681596. Exclusion: 11. [PubMed: 28681596] [CrossRef]
1179.
Žalienė L, Mockevičienė D, Kreivinienė B, et al. Short-term and long-term effects of riding for children with cerebral palsy gross motor functions. Biomed Res Int. 2018;2018:1–6. doi: 10.1155/2018/4190249. Exclusion: 11. [PMC free article: PMC6057413] [PubMed: 30069468] [CrossRef]
1180.
Zamuner AR, Silva E, Teodori RM, et al. Autonomic modulation of heart rate in paraplegic wheelchair basketball players: linear and nonlinear analysis. J Sports Sci. 2013;31(4):396–404. doi: 10.1080/02640414.2012.734917. PMID: 23088300. Exclusion: 11. [PubMed: 23088300] [CrossRef]
1181.
Zanca JM, Natale A, Labarbera J, et al. Group physical therapy during inpatient rehabilitation for acute spinal cord injury: findings from the SCIRehab Study. Phys Ther. 2011 Dec;91(12):1877–91. doi: 10.2522/ptj.20100392. PMID: 22003169. Exclusion: 7. [PubMed: 22003169] [CrossRef]
1182.
Zariffa J, Kapadia N, Kramer JL, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2012 Mar;50(3):220–6. doi: 10.1038/sc.2011.104. PMID: 21912402. Exclusion: 11. [PubMed: 21912402] [CrossRef]
1183.
Zbogar D, Eng JJ, Miller WC, et al. Reliability and validity of daily physical activity measures during inpatient spinal cord injury rehabilitation. SAGE Open Med. 2016;4 doi: 10.1177/2050312116666941. PMID: 27635252. Exclusion: 4. [PMC free article: PMC5011392] [PubMed: 27635252] [CrossRef]
1184.
Zewdie ET, Roy FD, Yang JF, et al. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury. Prog Brain Res. 2015;218:127–55. doi: 10.1016/bs.pbr.2014.12.005. PMID: 25890135. Exclusion: 11. [PubMed: 25890135] [CrossRef]
1185.
Zhang B, Zhu Y, Jiang C, et al. Effects of transcutaneous electrical acupoint stimulation on motor functions and self-care ability in children with cerebral palsy. J Altern Complement Med. 2018 Jan;24(1):55–61. doi: 10.1089/acm.2016.0111. PMID: 28767271. Exclusion: 4. [PubMed: 28767271] [CrossRef]
1186.
Zhang ZM, Hu XM, Yang CM, et al. Early age at menarche is associated with insulin resistance: a systemic review and meta-analysis. Postgrad Med. 2018 Dec 18;18:18. doi: 10.1080/00325481.2019.1559429. PMID: 30560708. Exclusion: 6. [PubMed: 30560708] [CrossRef]
1187.
Zhao H, Wu YN, Liu J, et al. Changes of calf muscle-tendon properties due to stretching and active movement of children with cerebral palsy--a pilot study. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5287–90. doi: 10.1109/IEMBS.2009.5333518. PMID: 19964117. Exclusion: 10. [PubMed: 19964117] [CrossRef]
1188.
Zhou H, Xu Q, Zhao S, et al. Distinct clinical characteristics of atypical optic neuritis with seronegative aquaporin-4 antibody among Chinese patients. Br J Ophthalmol. 2017 12;101(12):1720–4. doi: 10.1136/bjophthalmol-2017-310157. PMID: 28404667. Exclusion: 3. [PubMed: 28404667] [CrossRef]
1189.
Zhou R, Alvarado L, Ogilvie R, et al. Non-gait-specific intervention for the rehabilitation of walking after SCI: Role of the arms. J Neurophysiol. 2018;119(6):2194–212. doi: 10.1152/jn.00569.2017. PMID: 29364074 Exclusion: 11. [PubMed: 29364074] [CrossRef]
1190.
Zhou R, Parhizi B, Assh J, et al. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury. J Neurophysiol. 2018;120(6):3172–86. doi: 10.1152/jn.00509.2017. PMID: 30207867. Exclusion: 6. [PubMed: 30207867] [CrossRef]
1191.
Zimmer P, Bloch W, Schenk A, et al. High-intensity interval exercise improves cognitive performance and reduces matrix metalloproteinases-2 serum levels in persons with multiple sclerosis: a randomized controlled trial. Mult Scler. 2018 Oct;24(12):1635–44. doi: 10.1177/1352458517728342. PMID: 28825348. Exclusion: 4. [PubMed: 28825348] [CrossRef]
1192.
Zollinger M, Degache F, Currat G, et al. External mechanical work and pendular energy transduction of overground and treadmill walking in adolescents with unilateral cerebral palsy. Front Physiol. 2016;7(APR) doi: 10.3389/fphys.2016.00121. PMID: 27148062 Exclusion: 5. [PMC free article: PMC4829600] [PubMed: 27148062] [CrossRef]
1193.
Zou L, Wang H, Xiao Z, et al. Tai chi for health benefits in patients with multiple sclerosis: a systematic review. PLoS One. 2017;12(2):e0170212. doi: 10.1371/journal.pone.0170212. PMID: 28182629. Exclusion: 12. [PMC free article: PMC5300172] [PubMed: 28182629] [CrossRef]
1194.
Zwinkels M, Takken T, Ruyten T, et al. Body mass index and fitness in high-functioning children and adolescents with cerebral palsy: what happened over a decade? Res Dev Disabil. 2017 Dec;71:70–6. doi: 10.1016/j.ridd.2017.09.021. PMID: 29024824. Exclusion: 4. [PubMed: 29024824] [CrossRef]
1195.
Zwinkels M, Verschuren O, Lankhorst K, et al. Sport-2-stay-fit study: health effects of after-school sport participation in children and adolescents with a chronic disease or physical disability. BMC Sports Sci Med Rehabil. 2015;7:22. doi: 10.1186/s13102-015-0016-7. PMID: 26445674. Exclusion: 3. [PMC free article: PMC4594646] [PubMed: 26445674] [CrossRef]

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (11M)

Other titles in this collection

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...