1.
Quigley HA, Browman AT. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology. 2006;90:262–7. [PMC free article: PMC1856963] [PubMed: 16488940]
2.
The Eye Diseases Prevalence Research Group. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol. 2004;122:532–8. [PMC free article: PMC2798086] [PubMed: 15078671]
3.
Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. British Journal of Ophthalmology. 2002;86:238–42. [PMC free article: PMC1771026] [PubMed: 11815354]
4.
Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Investigative Ophthalmology and Visual Science. 1997;38:83–91. [PubMed: 9008633]
5.
U.S. Preventive Services Task Force. Screening for glaucoma: Recommendation statement. 2005. AHRQ Publication No. 04-0548-A. [PMC free article: PMC1466863] [PubMed: 15798045]
6.
Fleming C, Whitlock E, Beil T, Smit B, Harris RP. Screening for primary open-angle glaucoma in the primary care setting: an update for the US Preventive Services Task Force. Annals of Family Medicine. 2005;3(2):167–70. [PMC free article: PMC1466856] [PubMed: 15798044]
7.
Burr JM, Mowatt G, Hernįndez R, et al. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technol Assess. 2007;11(41) [PubMed: 17927922]
8.
International Classification of Diseases, Ninth Revision (ICD-9). Centers for Disease Control and Prevention; 2009.
9.
Li T. PhD dissertation. United States -- Maryland: The Johns Hopkins University; 2010. Bridging the gap between evidence generation and clinical decision making.
10.
Higgins JPT, Altman DG. Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2 (updated September 2009). The Cochrane Collaboration; 2009. Chapter 8: Assessing risk of bias in included studies.
11.
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. [Accessed 10 November 2011]. http://www​.ohri.ca/programs​/clinical_epidemiology/oxford.htm.
12.
Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Medical Research Methodology. 2003;3(25) [PMC free article: PMC305345] [PubMed: 14606960]
13.
Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. [PMC free article: PMC428525] [PubMed: 15205295]
14.
Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions-Agency for Healthcare Research and Quality and the Effective Health-care Program. J Clinical Epidemiology. 2010;63(5):513–23. [PubMed: 19595577]
15.
Whitlock EP, Lin JS, Chou R, Shekelle P, Robinson KA. Using existing systematic reviews in complex systematic reviews. Ann Intern Med. 2008;148:776–82. [PubMed: 18490690]
16.
Hatt S, Wormald R, Burr J. Screening for prevention of optic nerve damage due to chronic open angle glaucoma. Cochrane Database Syst Rev. 2006;(4):CD006129. [PMC free article: PMC8407423] [PubMed: 17054274]
17.
Healey PR, Lee AJ, Aung T, Wong TY, Mitchell P. Diagnostic accuracy of the Heidelberg Retina Tomograph for glaucoma a population-based assessment. Ophthalmology. 2010;117(9):1667–73. [PubMed: 20816247]
18.
Pueyo V, Polo V, Larrosa JM, Pablo LE, Ferreras A, Honrubia FM. Ability of optical imaging devices to detect early structural damage in ocular hypertension. Ann Ophthalmol (Skokie). 2009;41(3–4):150–6. [PubMed: 20214046]
19.
Zheng Y, Wong TY, Lamoureux E, et al. Diagnostic ability of Heidelberg Retina Tomography in detecting glaucoma in a population setting: the Singapore Malay Eye Study. Ophthalmology. 2010;117(2):290–7. [PubMed: 20006907]
20.
Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvetat ML. Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol. 2010;149(1):102–12. [PubMed: 19800607]
21.
Saito H, Tsutsumi T, Araie M, Tomidokoro A, Iwase A. Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study. Ophthalmology. 2009;116(10):1854–61. [PubMed: 19660814]
22.
Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology. 2008;115(8):1340–6. [PMC free article: PMC2832850] [PubMed: 18207246]
23.
Ferreras A, Pablo LE, Pajarin AB, Larrosa JM, Polo V, Pueyo V. Diagnostic ability of the Heidelberg Retina Tomograph 3 for glaucoma. Am J Ophthalmol. 2008;145(2):354–9. [PubMed: 18078851]
24.
De Leon-Ortega JE, Sakata LM, Monheit BE, McGwin G Jr, Arthur SN, Girkin CA. Comparison of diagnostic accuracy of Heidelberg Retina Tomograph II and Heidelberg Retina Tomograph 3 to discriminate glaucomatous and nonglaucomatous eyes. Am J Ophthalmol. 2007;144(4):525–32. [PMC free article: PMC3928044] [PubMed: 17693382]
25.
Naithani P, Sihota R, Sony P, et al. Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. Invest Ophthalmol Vis Sci. 2007;48(7):3138–45. [PubMed: 17591883]
26.
Pueyo V, Polo V, Larrosa JM, Ferreras A, Pablo LE, Honrubia FM. Diagnostic ability of the Heidelberg retina tomograph, optical coherence tomograph, and scanning laser polarimeter in open-angle glaucoma. J Glaucoma. 2007;16(2):173–7. [PubMed: 17473725]
27.
Uysal Y, Bayer A, Erdurman C, Kilic S. Sensitivity and specificity of Heidelberg Retinal Tomography II parameters in detecting early and moderate glaucomatous damage: effect of disc size. Clin Experiment Ophthalmol. 2007;35(2):113–8. [PubMed: 17362450]
28.
Burgansky-Eliash Z, Wollstein G, Bilonick RA, Ishikawa H, Kagemann L, Schuman JS. Glaucoma detection with the Heidelberg retina tomograph 3. Ophthalmology. 2007;114(3):466–71. [PMC free article: PMC1945822] [PubMed: 17141321]
29.
Shah NN, Bowd C, Medeiros FA, et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology. 2006;113(9):1593–602. [PubMed: 16949444]
30.
Medeiros FA, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Influence of disease severity and optic disc size on the diagnostic performance of imaging instruments in glaucoma. Invest Ophthalmol Vis Sci. 2006;47(3):1008–15. [PubMed: 16505035]
31.
Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004;122(6):827–37. [PubMed: 15197057]
32.
Ferreras A, Polo V, Larrosa JM, et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma. 2007;16(4):372–83. [PubMed: 17571000]
33.
Danesh-Meyer HV, Gaskin BJ, Jayusundera T, Donaldson M, Gamble GD. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. Br. J. Ophthalmol. 2006;90(4):437–41. [PMC free article: PMC1857000] [PubMed: 16547323]
34.
Moreno-Montanes J, Anton A, Garcia N, Olmo N, Morilla A, Fallon M. Comparison of retinal nerve fiber layer thickness values using Stratus Optical Coherence Tomography and Heidelberg Retina Tomograph-III. J Glaucoma. 2009;18(7):528–34. [PubMed: 19745667]
35.
Bozkurt B, Irkec M, Arslan U. Diagnostic accuracy of Heidelberg Retina Tomograph III classifications in a Turkish primary open-angle glaucoma population. Acta Ophthalmol. 2010;88(1):125–30. [PubMed: 19681791]
36.
Reddy S, Xing D, Arthur SN, et al. HRT III glaucoma probability score and Moorfields regression across the glaucoma spectrum. J Glaucoma. 2009;18(5):368–72. [PubMed: 19525726]
37.
Oddone F, Centofanti M, Iester M, et al. Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2009;116(6):1106–11. e1–3. [PubMed: 19376590]
38.
Takmaz T, Can I. Comparison of glaucoma probability score and Moorfields regression analysis to discriminate glaucomatous and healthy eyes. Eur J Ophthalmol. 2009;19(2):207–13. [PubMed: 19253236]
39.
Moreno-Montanes J, Anton A, Garcia N, Mendiluce L, Ayala E, Sebastian A. Glaucoma probability score vs Moorfields classification in normal, ocular hypertensive, and glaucomatous eyes. Am J Ophthalmol. 2008;145(2):360–8. [PubMed: 18045569]
40.
Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007;144(5):724–32. [PMC free article: PMC2098694] [PubMed: 17868631]
41.
Ferreras A, Pajarin AB, Polo V, Larrosa JM, Pablo LE, Honrubia FM. Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: glaucoma probability score versus Moorfields regression analysis. Ophthalmology. 2007;114(11):1981–7. [PubMed: 17445899]
42.
Mansoori T, Viswanath K, Balakrishna N. Quantification of Retinal Nerve Fiber Layer Thickness in Normal Eyes, Eyes with Ocular Hypertension, and Glaucomatous Eyes with SD-OCT. Ophthalmic Surg Lasers Imaging. 2010;41(6):S50–7. [PubMed: 21117601]
43.
Fang Y, Pan YZ, Li M, Qiao RH, Cai Y. Diagnostic capability of Fourier-Domain optical coherence tomography in early primary open angle glaucoma. Chin Med J (Engl). 2010;123(15):2045–50. [PubMed: 20819540]
44.
Zhong Y, Zhou X, Cheng Y, Xie L. Relation between blue-on-yellow perimetry and optical coherence tomography in normal tension glaucoma. Can J Ophthalmol. 2010;45(5):494–500. [PubMed: 20648075]
45.
Pablo LE, Ferreras A, Schlottmann PG. Retinal nerve fibre layer evaluation in ocular hypertensive eyes using optical coherence tomography and scanning laser polarimetry in the diagnosis of early glaucomatous defects. Br J Ophthalmol. 2010 [PubMed: 20576777]
46.
Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117(9):1692–9. 1699.e1. [PubMed: 20493529]
47.
Leite MT, Zangwill LM, Weinreb RN, et al. Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51(8):4104–9. [PMC free article: PMC2910643] [PubMed: 20335619]
48.
Li G, Fansi AK, Boivin JF, Joseph L, Harasymowycz P. Screening for glaucoma in high-risk populations using optical coherence tomography. Ophthalmology. 2010;117(3):453–61. [PubMed: 20031231]
49.
Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol. 2009;127(12):1603–9. [PubMed: 20008715]
50.
Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009;116(12):2294–9. [PubMed: 19800694]
51.
Moreno-Montanes J, Olmo N, Alvarez A, Garcia N, Zarranz-Ventura J. Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51(1):335–43. [PubMed: 19737881]
52.
Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol. 2009;148(4):597–605. [PMC free article: PMC2784699] [PubMed: 19589493]
53.
Yuksel N, Altintas O, Ozkan B, Karadag S, Caglar Y. Discriminating ability of optical coherence tomography data in staging glaucomatous damage. Can J Ophthalmol. 2009;44(3):297–307. [PubMed: 19491986]
54.
Sung KR, Kim DY, Park SB, Kook MS. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116(7):1264–70. 1270.e1. [PubMed: 19427696]
55.
Polo V, Larrosa JM, Ferreras A, Mayoral F, Pueyo V, Honrubia FM. Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography. Ophthalmologica. 2009;223(1):2–6. [PubMed: 18849629]
56.
Lu AT, Wang M, Varma R, et al. Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology. 2008;115(8):1352–7. 1357.e1–2. [PMC free article: PMC2756507] [PubMed: 18514318]
57.
Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J. Detection of early glaucoma with optical coherence tomography (StratusOCT). J Glaucoma. 2008;17(3):183–8. [PubMed: 18414102]
58.
Takahashi H, Chihara E. Impact of diabetic retinopathy on quantitative retinal nerve fiber layer measurement and glaucoma screening. Invest Ophthalmol Vis Sci. 2008;49(2):687–92. [PubMed: 18235015]
59.
Sehi M, Ume S, Greenfield DS. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2007;48(5):2099–104. [PubMed: 17460267]
60.
Hong S, Chung W, Hong YJ, Seong GJ. Discriminating ability of Humphrey matrix perimetry in early glaucoma patients. Ophthalmologica. 2007;221(3):195–9. [PubMed: 17440283]
61.
Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand. 2006;84(5):650–5. [PubMed: 16965496]
62.
Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci. 2006;47(5):2006–10. [PubMed: 16639009]
63.
Chen HY, Wang TH, Lee YM, Hung TJ. Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc. 2005;104(12):927–34. [PubMed: 16607450]
64.
Bagga H, Feuer WJ, Greenfield DS. Detection of psychophysical and structural injury in eyes with glaucomatous optic neuropathy and normal standard automated perimetry. Arch Ophthalmol. 2006;124(2):169–76. [PubMed: 16476885]
65.
Leung CK, Chan WM, Yung WH, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3):391–400. [PubMed: 15745764]
66.
Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139(1):44–55. [PubMed: 15652827]
67.
Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005;139(1):39–43. [PubMed: 15652826]
68.
Leung CK, Yung WH, Ng AC, Woo J, Tsang MK, Tse KK. Evaluation of scanning resolution on retinal nerve fiber layer measurement using optical coherence tomography in normal and glaucomatous eyes. J Glaucoma. 2004;13(6):479–85. [PubMed: 15534473]
69.
Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J. Glaucoma. 2010;19(8):528–34. [PubMed: 20164794]
70.
Kim NR, Hong S, Kim JH, Rho SS, Seong GJ, Kim CY. Comparison of Macular Ganglion Cell Complex Thickness by Fourier-Domain OCT in Normal Tension Glaucoma and Primary Open-Angle Glaucoma. J Glaucoma. 2011 [PubMed: 21701394]
71.
Oddone F, Centofanti M, Tanga L, et al. Influence of disc size on optic nerve head versus retinal nerve fiber layer assessment for diagnosing glaucoma. Ophthalmology. 2011;118(7):1340–7. [PubMed: 21474186]
72.
Girkin CA, Liebmann J, Fingeret M, Greenfield DS, Medeiros F. The effects of race, optic disc area, age, and disease severity on the diagnostic performance of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(9):6148–53. [PubMed: 21421879]
73.
Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118(7):1334–9. [PMC free article: PMC3881436] [PubMed: 21377735]
74.
Mansoori T, Viswanath K, Balakrishna N. Quantification of retinal nerve fiber layer thickness in normal eyes, eyes with ocular hypertension, and glaucomatous eyes with SD-OCT. Ophthalmic Surg Lasers Imaging. 2010;41(Suppl):S50–7. [PubMed: 21117601]
75.
Horn FK, Mardin CY, Bendschneider D, Junemann AG, Adler W, Tornow RP. Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye (Lond). 2011;25(1):17–29. [PMC free article: PMC3144638] [PubMed: 21102494]
76.
Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(2):1098–102. [PubMed: 21051712]
77.
Benitez-del-Castillo J, Martinez A, Regi T. Diagnostic capability of scanning laser polarimetry with and without enhanced corneal compensation and optical coherence tomography. Eur J Ophthalmol. 2011;21(3):228–36. [PubMed: 20872357]
78.
Aptel F, Sayous R, Fortoul V, Beccat S, Denis P. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry. Am J Ophthalmol. 2010;150(6):825–33. [PubMed: 20851372]
79.
Cho JW, Sung KR, Hong JT, Um TW, Kang SY, Kook MS. Detection of glaucoma by spectral domain-scanning laser ophthalmoscopy/optical coherence tomography (SD-SLO/OCT) and time domain optical coherence tomography. J Glaucoma. 2011;20(1):15–20. [PubMed: 20436370]
80.
Reus NJ, Lemij HG, Garway-Heath DF, et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. Ophthalmology. 2010;117(4):717–23. [PubMed: 20045571]
81.
Francis BA, Varma R, Vigen C, et al. Population and high-risk group screening for glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2011;52(9):6257–64. [PMC free article: PMC3175989] [PubMed: 21245400]
82.
Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN. Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol. 2004;122(5):698–704. [PubMed: 15136317]
83.
Hong S, Ahn H, Ha SJ, Yeom HY, Seong GJ, Hong YJ. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology. 2007;114(2):210–5. [PubMed: 17270671]
84.
Chen HY, Huang ML, Tsai YY, Hung PT, Lin EJ. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation. J Glaucoma. 2008;17(2):105–10. [PubMed: 18344755]
85.
Parikh RS, Parikh SR, Kumar RS, Prabakaran S, Babu JG, Thomas R. Diagnostic capability of scanning laser polarimetry with variable cornea compensator in Indian patients with early primary open-angle glaucoma. Ophthalmology. 2008;115(7):1167–72. e1. [PubMed: 18061269]
86.
Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2007;48(7):3146–53. [PubMed: 17591884]
87.
Mai TA, Reus NJ, Lemij HG. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology. 2007;114(11):1988–93. [PubMed: 17459481]
88.
Kanamori A, Nagai-Kusuhara A, Escano MF, Maeda H, Nakamura M, Negi A. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefes Arch Clin Exp Ophthalmol. 2006;244(1):58–68. [PubMed: 16044326]
89.
Da Pozzo S, Iacono P, Marchesan R, Fantin A, Ravalico G. Scanning laser polarimetry with variable corneal compensation and detection of glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2005;243(8):774–9. [PubMed: 15756574]
90.
Reus NJ, Lemij HG. Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology. 2004;111(10):1860–5. [PubMed: 15465547]
91.
Salim S, Netland PA, Fung KH, Smith ME, Aldridge A. Assessment of the Student Sight Savers Program methods for glaucoma screening. Ophthalmic Epidemiol. 2009;16(4):238–42. [PubMed: 19874145]
92.
de Pierre-Filho PT, Schimiti RB, de Vasconcellos JP, Costa VP. Sensitivity and specificity of frequency-doubling technology, tendency-oriented perimetry, SITA Standard and SITA Fast perimetry in perimetrically inexperienced individuals. Acta Ophthalmol Scand. 2006;84(3):345–50. [PubMed: 16704696]
93.
Tafreshi A, Sample PA, Liebmann JM, et al. Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. Invest Ophthalmol Vis Sci. 2009;50(3):1234–40. [PMC free article: PMC2848160] [PubMed: 18978349]
94.
Racette L, Medeiros FA, Zangwill LM, Ng D, Weinreb RN, Sample PA. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci. 2008;49(3):954–60. [PMC free article: PMC2367320] [PubMed: 18326718]
95.
Leeprechanon N, Giangiacomo A, Fontana H, Hoffman D, Caprioli J. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Am J Ophthalmol. 2007;143(2):263–71. [PubMed: 17178091]
96.
Burgansky-Eliash Z, Wollstein G, Patel A, et al. Glaucoma detection with matrix and standard achromatic perimetry. Br. J. Ophthalmol. 2007;91(7):933–8. [PMC free article: PMC1955642] [PubMed: 17215267]
97.
Sample PA, Medeiros FA, Racette L, et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci. 2006;47(8):3381–9. [PubMed: 16877406]
98.
Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Brusini P. Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye. 2010;24(5):835–42. [PubMed: 19696803]
99.
Ng M, Racette L, Pascual JP, et al. Comparing the full-threshold and Swedish interactive thresholding algorithms for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2009;50(4):1726–33. [PMC free article: PMC2716113] [PubMed: 19074800]
100.
Fleming C, Whitlock E, Beil T, Smit B. Primary care screening for ocular hypertension and primary open-angle glaucoma: evidence synthesis (Structured abstract). Rockville, MD: Agency for Healthcare Research and Quality (AHRQ); 2005. p. 28. [PubMed: 20722130]
101.
Weinreb R, Healey P, Topouzis F, editors. The Global Glaucoma Network. Kugler Publications; 2008. Glaucoma Screening.
102.
Prum B, Friedman D, Gedde S, et al. Primary Open-Angle Glaucoma. 2010. Preferred Practice Pattern.