Clinical Description
Calpainopathy is characterized by symmetric and progressive weakness of proximal limb-girdle muscles, symmetric muscle atrophy of the proximal limb and trunk muscles, scapular winging, scoliosis, and joint contractures. The age at onset of muscle weakness ranges from two to 40 years. Early motor milestones are usually normal. Significant intra- and interfamilial clinical variability is seen [Richard et al 1999, Fanin & Angelini 2015].
Three phenotypes of autosomal recessive calpainopathy have been identified based on the distribution of muscle weakness and age at onset:
Pelvifemoral limb-girdle muscular dystrophy (LGMD) (Leyden-Möbius LGMD) phenotype, the most frequently observed calpainopathy phenotype. Muscle weakness is first evident in the pelvic girdle and later in the shoulder girdle. Onset can be early (age <12 years), adult (age 12-30 years), or late (age >30 years). Individuals with early onset and rapid disease course usually have pelvifemoral LGMD.
Scapulohumeral LGMD (Erb LGMD) phenotype. Muscle weakness is first evident in the shoulder girdle and later in the pelvic girdle. Early onset is infrequent; the disease course is variable, but usually milder than that in the pelvifemoral phenotype.
HyperCKemia. HyperCKemia may be considered a presymptomatic stage of calpainopathy, as it is usually observed in children or in young persons with recessive calpainopathy [
Fanin et al 2009a,
Kyriakides et al 2010]. Asymptomatic individuals may develop symptoms of muscle weakness later.
The first clinical findings of calpainopathy are usually:
Early stage of the disorder. The following are frequently observed:
Variable findings include the following:
Advanced stage of the disorder. Commonly observed findings:
The inability to climb stairs, rise up from a chair, lift weights, or get up from the floor
Joint contractures (in the hips, knees, elbows, and fingers)
Occasionally observed findings:
Respiratory insufficiency with reduced lung vital capacity to 30%-50% due to deficiency in diaphragmatic function, weakness in thoracic and abdominal muscles, and scoliosis [
Fardeau et al 1996,
Urtasun et al 1998]. Compromised respiratory function was observed in 11% of individuals, showing forced vital capacity lower than 50% [
Richard et al 2016]. Some of those with severe respiratory insufficiency required the use of respiratory aids [
Mori-Yoshimura et al 2017].
Uncommon findings include cardiomyopathy. In most individuals, cardiac symptoms that precede cardiac morbidity are not present (e.g., chest pain, lower limb edema, palpitations), and cardiac abnormalities may only be identified by echocardiography or electrocardiography. A systematic cardiac evaluation in affected individuals using cardiovascular MR showed no cardiac involvement, even in individuals of advanced age with severe disease [Quick et al 2015]. A few individuals have presented with non-life-threatening cardiac abnormalities [Richard et al 2016], atrial fibrillation, or variably impaired left ventricular function [Mori-Yoshimura et al 2017].
Note: Intellectual disability is not associated with this disorder. Macroglossia, described in affected individuals from a genetic isolate in the Alps [Fanin et al 2012], also does not to be associated with calpainopathy.
Progression and variability. The asymptomatic stage may be relatively long in some affected individuals, especially in females. In some individuals with calpainopathy, the onset of symptoms or the worsening of symptoms may be influenced by environmental factors, such as infectious disease, strenuous physical exercise, drug treatment, a traumatic event, or pregnancy [Sáenz et al 2005].
The disease is invariably progressive, and loss of ambulation occurs approximately ten to 30 years after the onset of symptoms (range: ages 10-48 years) [Richard et al 1999, Zatz et al 2003, Sáenz et al 2005, Angelini et al 2010, Gallardo et al 2011, Richard et al 2016]. In general, loss of independent ambulation occurs earlier in individuals with childhood onset [Gallardo et al 2011].
A more rapid progression was observed in males than in females [Richard et al 2016]. In a natural history study, a higher proportion of females remained ambulatory as compared to males (72% vs 48%) [Richard et al 2016]. Males are more susceptible to muscle fiber atrophy and have increased muscle weakness and clinical disability [Fanin et al 2014].
Intrafamilial variability in the clinical phenotype has been reported: in sibs with the same pathogenic variants the age at onset and the clinical course can vary considerably [Schessl et al 2008].
Autosomal dominant calpainopathy has a variable clinical phenotype, ranging from almost asymptomatic to wheelchair dependent after age 60 years in a small number of individuals [Vissing et al 2016]. A prominent feature of such individuals is back pain and myalgia (present in more than 50% of heterozygotes for CAPN3 pathogenic variant c.643_663del21). The average age of onset of muscle weakness is 34 years, 16 years later than individuals with autosomal recessive calpainopathy. The clinical phenotype of autosomal dominant calpainopathy is generally milder than autosomal recessive calpainopathy.
Genotype-Phenotype Correlations
There are no consistent genotype-phenotype correlations in calpainopathy, although null homozygous variants are generally associated with a severe phenotype and absent calpain-3 protein in muscle [Richard et al 1999].
Individuals who are compound heterozygous for CAPN3 variant c.1746-20C>G and another variant consistently present with a phenotype of mild-to-moderate severity. This variant is most frequently identified in individuals from northern and western regions of Russia and may originate from this region [Mroczek et al 2022].
CAPN3 variants in proximity to the calmodulin-binding site, which are predicted to interfere with proteolytic activation, are associated with autosomal dominant calpainopathy [González-Mera et al 2021].
Nomenclature
Calpainopathy was originally called LGMD2A because it was the first form of autosomal recessive LGMD to be mapped [Beckmann et al 1991]. The designation LGMDR1 has been proposed in revised nomenclature (LGMDR refers to genetic types of LGMD showing autosomal recessive inheritance).
Vissing et al [2016] proposed that autosomal dominant calpainopathy associated with CAPN3 pathogenic variant c.643_663del21 be designated LGMD1I in the current nomenclature (LGMD1 refers to genetic types of LGMD showing dominant inheritance), and designated LGMDD4 in revised nomenclature [Straub et al 2018] (LGMDD refers to genetic types of LGMD showing autosomal dominant inheritance).
As both recessive and dominant forms are associated with CAPN3 pathogenic variants, calpainopathy is the preferred term for this disorder.
Prevalence
Calpainopathy is the most common form of LGMD [Bushby & Beckmann 2003, Guglieri et al 2008], accounting for 30% of LGMD worldwide (range: 4%-80% depending on the geographic region) [Chou et al 1999, Zatz et al 2000].
A study in northeastern Italy estimated that calpainopathy has a prevalence of approximately 1:100,000 inhabitants (corresponding to a carrier frequency of ~1:160) [Fanin et al 2005]. Another study in southern Italy estimated the prevalence of calpainopathy at 1:42,700 inhabitants (corresponding to a carrier frequency of ~1:103) [Piluso et al 2005]. Three general population screening studies of the most common CAPN3 pathogenic variant (c.550delA) in Lithuania, Croatia, and Poland identified carrier frequencies of 1:175, 1:133, and 1:124, respectively [Canki-Klain et al 2004, Dorobek et al 2015, Inashkina et al 2016].
Higher prevalence rates have been calculated in genetically isolated communities; the prevalence of the disease has been estimated at 48:1,000,000 in La Réunion Island [Fardeau et al 1996], 69:1,000,000 in Basque country [Urtasun et al 1998], 1,900:1,000,000 in the Mòcheni community in the Alps [Fanin et al 2012], 4,300:1,000,000 in the Tlaxcala village in central Mexico (with a carrier frequency of 1:11) (see Table 6) [Pantoja-Melendez et al 2017], and 13,000:1,000,000 among the Amish population of Indiana [Young et al 1992, Richard et al 1995].