Clinical Description – Classic WFS1 Spectrum Disorder
Classic WFS1 spectrum disorder (WFS1-SD) is characterized by childhood-onset diabetes mellitus and progressive optic atrophy, with variable hearing impairment / deafness, diabetes insipidus, neurologic abnormalities, and psychiatric abnormalities (see Table 2).
Table 2.
Select Features Associated with Classic WFS1 Spectrum Disorder
View in own window
Feature | Common | Uncommon | Increases w/Age |
---|
Diabetes mellitus, childhood onset | ● | | |
Diabetes mellitus, neonatal onset or adult onset | | ● | |
Optic atrophy | ● | | |
Sensorineural hearing impairment | ● | | |
Cataracts | | ● | |
Cerebellar ataxia | | | ● |
Autonomic dysfunction | | ● | |
Bulbar dysfunction | | | ● |
Respiratory issues | | ● | |
Developmental delay (in young children) | | ● | |
Intellectual disability (in older children & adults) | | ● | |
Psychiatric disorders | ● | | |
Urinary tract issues 1 | ● | | |
Bowel dysfunction | ● | | |
Seizures | | ● | |
Other endocrine findings | Central diabetes insipidus | ● | | |
Hypogonadism | ● | | |
Hypothyroidism | | ● | |
Growth restriction | | ● | |
- 1.
Both functional (neurogenic bladder) and structural (upper urinary tract dilatation)
A comprehensive review of classic WFS1-SD, genotype-phenotype correlations, pathophysiology, and therapeutic strategies is available [Mishra et al 2021].
Classic WFS1-SD is a progressive neurodegenerative disorder characterized by onset of diabetes mellitus and optic atrophy before age 16 years, and frequently associated with sensorineural hearing loss, progressive neurologic abnormalities, and other endocrine abnormalities. Several organ systems may be affected; however, because only a minority of published cases have had extensive clinical workup, the natural history of these multiorgan findings in classic WFS1-SD is largely unknown.
The natural history of classic WFS1-SD was described in 45 individuals in 29 families in the United Kingdom [Barrett et al 1995]. Hearing impairment was present in 64% by age 20 years. Sixty percent of all individuals studied (mean age: 16 years, range: 5-32 years) had one or more of the following: cerebellar ataxia, peripheral neuropathy, intellectual disability, dementia, psychiatric illness, and urinary tract atony. In the families of British, Pakistani, and mixed Arab/African origin, WFS1 pathogenic variants were subsequently identified in 17 of 19 probands [Hardy et al 1999].
Diabetes mellitus (DM). Median age of onset of DM was before age ten years (age range: <1-17 years). Almost all individuals with DM were insulin dependent. DM may present with ketoacidosis; however, the overall course is milder than that seen in isolated DM, with lower prevalence of microvascular complications.
Optic atrophy (OA) occurs eventually in all known individuals with classic WFS1-SD. OA is progressive; the median age of onset is before ten years. Note: Visual acuity of 6/60, signifying that the tested person sees at six meters that which an average person sees at 60 meters, is the definition of "registered vision impaired" in the United Kingdom and "legally blind" in the United States. Most individuals with classic WFS1-SD gradually progress to severe vision impairment (visual acuity of 3/60) over years.
Very rarely, WFS1 pathogenic variants may be associated with isolated optic atrophy with autosomal recessive inheritance [Grenier et al 2016].
Sensorineural hearing impairment, present in about 66% of individuals with classic WFS1-SD, ranges from congenital deafness to a milder, sometimes progressive sensorineural hearing impairment. Median age of onset in one report was 12.5 years [Barrett et al 1995]. A multicenter study confirmed the preferential involvement of high frequencies and the slowly progressive rate of hearing loss, but did not confirm any sex differences in degree of hearing loss [Plantinga et al 2008].
A longitudinal study of 40 individuals showed that high-frequency hearing loss worsened and speech intelligibility index worsened over time, but the change over one year was subclinical, suggesting gradual progression over years [Karzon et al 2018].
Neurologic abnormalities were present in 62% of the individuals (mean age: 30 years, range: 5-44 years) studied by Barrett et al [1995] before molecular confirmation of the diagnosis was possible. However, very limited data are available regarding the frequency of the types of neurologic abnormalities.
Current experience indicates the presence of symptomatic neurologic findings by the fourth decade, with presymptomatic onset typically between the first and second decades.
Neurologic findings were progressive and resulted from general brain atrophy with brain stem and cranial nerve involvement [Barrett et al 1995, Chaussenot et al 2015]. Abnormal cerebral MRIs found in eight of 45 affected individuals typically showed generalized brain atrophy most prominently of the cerebellum, medulla, and pons; and reduced signal intensity of the optic nerves and the posterior of the hypothalamus [Barrett et al 1995].
Brain MRI findings in 30 individuals with classic WFS1-SD followed for a median of five years [Samara et al 2020] include:
Absent or diminished posterior pituitary bright spot (first visit, 53%; last visit, 70%)
T1-/T2-weighted pons signal abnormalities (first visit, 53%; last visit, 67%)
Optic nerve atrophy (first visit, 30%; last visit, 80%)
White matter T2-weighted hyperintensities (first visit, 27%; last visit, 35%)
Cerebellar atrophy (first visit, 23%; last visit, 70%)
Other endocrine findings
Diabetes insipidus of central origin occurred in 72% of affected individuals, with a median age of onset of 15.5 years. The range in age of onset was broad, possibly because of delays in establishing the correct diagnosis.
Hypogonadism is more prevalent in males than in females. It can be either hypogonadotropic (i.e., central) or hypergonadotropic (i.e., secondary to gonadal failure). The underlying pathology of either type is not understood. Females usually retain their ability to become pregnant; about six successful pregnancies are described in the literature. One female had absence of the uterus [L Tranebjærg, personal observation]. Fertility is reduced, more severely in males than in females [
Haghighi et al 2013].
Hypothyroidism. Frequency is not known.
Growth restriction. Most affected individuals achieve an adult height in the normal range.
Urinary tract. Dilated renal outflow tracts (hydroureter), urinary incontinence, and recurrent infections are common signs of neurogenic bladder. Sixteen of 29 affected individuals had such signs, with a median age of onset of 22 years (age range: 10-44 years) [Barrett et al 1995]. Urodynamic examinations showed incomplete bladder emptying or complete bladder atony, progressing to megacystis and potentially acute urinary outflow obstruction [Wragg et al 2018].
Gastrointestinal dysmotility and celiac disease. Constipation, chronic diarrhea, and other bowel dysfunction is reported in up to 25% of individuals with classic WFS1-SD.
Prognosis. Ten of the 45 individuals with classic WFS1-SD reported in Barrett et al [1995] had died at the time of that report. The causes of death included hypoglycemic coma, status epilepticus, end-stage kidney disease from recurrent urinary tract infection, central respiratory failure associated with brain stem atrophy, and suicide. However, the median age of death is now recognized to be much older than that reported in Barrett et al [1995]. In a national specialist multidisciplinary team clinic for 40 affected adults, the median age in the clinic was 37 years, and the oldest individual was 65 years [B Wright, personal communication].
Clinical Description – Nonclassic WFS1 Spectrum Disorder
Nonclassic WFS1-SD is less common than classic WFS1-SD. At least 14 families with nonclassic WFS1-SD have been reported to date [Eiberg et al 2006, Hogewind et al 2010, Rendtorff et al 2011, Berry et al 2013, Bonnycastle et al 2013, De Franco et al 2017]. In a multidisciplinary clinical service in the UK, only about 15 of more than 100 individuals with WFS1 pathogenic variants presented with nonclassic WFS1-SD [T Barrett, D Williams, B Wright, personal observation].
Most affected individuals have isolated optic atrophy and congenital deafness. Some families also have diabetes mellitus that is isolated or in combination with optic atrophy and deafness. Although published data on follow up are limited, the findings appear to be non-progressive, with a milder phenotype than classic WFS1-SD. Furthermore, affected individuals do not appear to develop progressive neurodegeneration, and no brain MRI findings have been reported to date.
Additionally, five probands were reported with neonatal diabetes mellitus, congenital cataracts, and sensorineural deafness [De Franco et al 2017]; no follow-up data have been reported.
Autosomal dominant optic atrophy and hearing impairment. Autosomal dominantly inherited optic atrophy and hearing impairment was first described in a three-generation Danish family, followed for more than 30 years [Eiberg et al 2006]. Four family members had childhood-onset optic atrophy but retained color vision and useful visual acuity into their seventh decade. In addition, they had moderately severe hearing impairment, present since childhood. Audiograms showed a flat or U-shaped pattern. Although one individual had diabetes mellitus and one had impaired glucose tolerance at ages 70 and 67 years, respectively, this may have been coincidental, as type 2 diabetes is common in the elderly.
In a family of Dutch origin, three affected members from two generations had childhood-onset optic atrophy and hearing impairment [Hogewind et al 2010]. They had vision impairment, partial loss of color vision, and abnormal visual evoked potentials. Audiograms showed a relatively flat pattern of hearing loss across all frequencies in the two older individuals, and low-tone loss in the youngest. No other features of classic WFS1-SD (including diabetes mellitus, diabetes insipidus, kidney abnormalities, or psychiatric issues) were identified.
Eight families from the UK, US, and Sweden also had autosomal dominantly inherited optic atrophy and sensorineural deafness. Optic atrophy, which presented in childhood or adulthood, was very slowly progressive. Early-childhood-onset sensorineural hearing loss was profound; several family members required cochlear implants.
Autosomal dominant diabetes mellitus was reported in a four-generation family from Finland in which eight members had adult-onset diabetes mellitus (diagnosed between ages 18 and 51 years) [Bonnycastle et al 2013]. Diabetes mellitus did not present with diabetic ketoacidosis; seven of the eight individuals were insulin dependent, and six were of normal weight. Detailed clinical examination of the family members with diabetes did not reveal any other features of classic WFS1-SD, including hearing impairment in audiograms, optic atrophy or vision impairment in annual ophthalmologic examinations, or diabetes insipidus.
Autosomal dominant nuclear cataracts. In a four-generation Irish family, 11 family members were affected without other ocular or systemic features [Berry et al 2013].
Autosomal dominant low-frequency sensorineural hearing loss (DFNA6/14/38; see Genetic Hearing Loss Overview) has been reported in individuals without ocular or other systemic features. Because hearing loss in these individuals is congenital, slowly progressive, and low frequency (<2000 Hz), it is often not diagnosed until after language is acquired. (Note: It is unknown why hearing loss is high frequency in classic WFS1-SD and low frequency in DFNA6/14/38.) Unlike classic WFS1-SD, the decline in speech recognition scores in DFNA6/14/38 correlates to the level of hearing impairment.
Neonatal diabetes, profound congenital deafness, and cataracts. This phenotype was reported in five probands who represented simplex cases (i.e., a single occurrence in a family) and had de novo
WFS1 pathogenic variants [De Franco et al 2017]. To date no long-term outcome data are available on these children.