Clinical Description
X-linked dystonia-parkinsonism (XDP) or lubag afflicts primarily adult Filipino men and, rarely, women. The male-to-female ratio is 99:1. The mean age of onset in men is 39 years, with a range of 12 to 64 years. The mean age of onset in women is 52 years, with a range of 26 to 75 years [Evidente et al 2004b]. The time from onset of dystonia to generalization ranges from one to 23 years, with a mean of 3.8 years.
The clinical course in men with XDP is highly variable. Although the presenting finding was traditionally thought to be dystonia in most cases [Lee et al 2002], a longitudinal follow up of asymptomatic or early symptomatic individuals with genetically confirmed XDP revealed that the initial presenting sign is almost universally parkinsonism [Evidente et al 2002c]. In particular, abnormality of rapid alternating limb movements (which can be asymmetric) can often be appreciated on neurologic examination in early symptomatic (or soon to be symptomatic) individuals.
Parkinsonism. Individuals with XDP may present predominantly with one or more of the cardinal features of Parkinson disease, including resting tremor, bradykinesia, rigidity, and postural instability. Shuffling gait, in the absence of lower-limb dystonia, can be severe enough to cause recurrent falls and significant impairment of walking.
Some individuals may have pure parkinsonism and no dystonia for many years [Evidente et al 2002c]. In some of these individuals, the dystonia develops very late in the course and is usually focal or segmental. When the dystonia becomes advanced (i.e., multifocal or generalized in distribution), the parkinsonism remains, although it is overshadowed by the dystonia.
Some individuals with XDP (both male and female) may have all the cardinal features of parkinsonism, asymmetric findings, and levodopa responsiveness. These individuals may initially be misdiagnosed as having Parkinson disease [Evidente et al 2002c, Domingo et al 2014].
Dystonia. The dystonia develops focally, most commonly in the jaw, neck, trunk, and eyes, and less commonly in the limbs, tongue, pharynx, and larynx.
The most characteristic dystonia seen in males with XDP is jaw dystonia, more commonly presenting as more difficulty with jaw opening than jaw closing. Jaw dystonia often progresses to neck dystonia, with retrocollis being more common than torticollis. Retrocollis can be so severe that the neck is extended more than 90 degrees, and the trunk is hyperextended. Cervical dystonia may be accompanied by a dystonic head tremor. Extension dystonia of the trunk is far more common than flexion or lateral dystonia of the trunk.
Blepharospasm is only rarely the initial symptom of XDP. It tends to be more common as the disease progresses. It can coexist with mid- or lower-facial dystonia.
Limb dystonia, rarely an initial presenting finding, is more commonly seen as disease advances. It affects the upper limbs as often as the lower limbs and is usually bilateral, although severity can be greater on one side of the body than the other. Unlike DYT1 torsion dystonia, XDP only rarely presents with dystonia of the foot.
Tongue dystonia may also be seen, manifesting as either involuntary tongue protrusion or limitation in tongue protrusion. Pharyngeal dystonia, manifesting as difficulty swallowing, usually affects those with orolingual dystonia. Pharyngeal dystonia often leads to significant weight loss, aspiration pneumonia, and early death.
Laryngeal dystonia leading to stridor (a rare finding) can also lead to sudden death. Individuals with orolingual, pharyngeal, or laryngeal dystonia may present with respiratory sounds [Evidente et al 2002a]. Such vocalizations can be observed during both inspiration and expiration.
Sensory tricks (improvement in dystonia by touching certain areas) have been observed in individuals with XDP with dystonia, particularly those with cervical dystonia.
Other neurologic findings. Traditionally, XDP was thought to be a combination of dystonia and parkinsonism only [Evidente et al 2002a]; however, with genotypic correlation, other neurologic findings including pure tremor, chorea, athetosis, and myoclonus have been recognized:
Resting tremor or action tremor can be seen in either the early or later stages of disease. In some individuals, an asymmetric resting tremor of a limb with an oscillation of 3-6 Hz (similar to that seen in Parkinson disease) can be observed. Some individuals may also have a coarse, relatively symmetric upper-limb tremor or head tremor similar to that in individuals with essential tremor. The tremor can involve not only the limbs and head, but also the trunk, craniofacial region (lips, jaw, or facial muscles), and voice. Distal limb tremor can sometimes be of slow frequency (1-3 Hz), reminiscent of myorhythmia [
Evidente et al 2002a].
Chorea usually occurs in the distal upper limbs in the early stages and is combined with subtle dystonia, thus resulting in athetotic movements. Chorea can also be seen with the generalized dystonic movements.
Action myoclonus can be present in the limbs or even in the craniofacial region. Myoclonus is characterized by a combination of rapid, brief, lightning-like muscle contractions and is often mistaken for tremor.
Electrophysiologic studies show muscle bursts ≤50-100 milliseconds in duration. Back-averaging may show a jerk-locked pre-movement surface-positive cortical electroencephalographic potential in the contralateral sensorimotor area, supporting the cortical origin of the myoclonus.
General cognition often remains intact although there may be problems with frontal executive functions [Domingo et al 2011].
Depression is also a common feature, most likely related to the profound disability and loss of employment that XDP causes, especially in more advanced cases [Morigaki et al 2013]. Impulse control disorder in the form of pathological gambling has been described in XDP [Gillian 2013].
Disease progression. Those with pure parkinsonism with little or no dystonia have the best prognosis; they have non-disabling symptoms that are slowly progressive or non-progressive.
Those who develop a combination of parkinsonism and orobuccolingual dystonia and cervical dystonia in the first year or two of the disease have the worst prognosis. Such individuals develop multifocal or generalized symptoms from the second to fifth year after onset, rapidly become bedridden, and die prematurely from aspiration pneumonia, laryngeal stridor, and/or intercurrent infections resulting from immobility.
Phenotype in women. Female XDP carriers are mostly asymptomatic, although a small percentage may manifest symptoms. Compared to men, women with XDP often do not present with dystonia, or if they do, the dystonia is usually focal, non-progressive, and non-disabling [Evidente et al 2004b]. The dystonia can subtly manifest in the neck or limbs. However, there have been rare cases of women with XDP who have generalized dystonia similar to that seen in affected men [Lee et al 2011].
Other manifestations in women include chorea (which can be in a hemi-distribution), focal tremor (usually limb), or parkinsonism. The parkinsonism is usually mild, non-progressive, and non-disabling. Rarely, levodopa-responsive parkinsonism very similar to Parkinson disease can be observed.
Neuroimaging studies have revealed the following:
Normal findings on CT and brain MRI in the majority of patients, although generalized cerebral atrophy (usually mild) may be seen in some individuals and caudate atrophy in more advanced disease [Evidente, personal observation]
Evidence for strong involvement of the white matter and putamen based on diffusion-weighted imaging [
Brüggemann et al 2016]
Putaminal abnormalities on fluorodeoxyglucose (FDG) PET scan in affected men with early or mild symptomatic
lubag despite normal brain CT or MRIs [
Evidente et al 2002d]
Results on presynaptic single-photon emission computed tomography (SPECT) studies using either [
123I]-β-carbomethoxy-iodophenyl-nortropane (CIT) or ioflupane I-123 dopamine transporter (DaT scan) which can be similar to those seen in individuals with
Parkinson disease, with the putamina involved more severely than the caudate, and one side more affected than the other [
Tackenberg et al 2007; Evidente, personal observation]. DAT scan abnormalities are noted even in early XDP with pure parkinsonism, or with only mild dystonia.
Functional decline of postsynaptic dopaminergic transmission related to disease duration and ongoing degeneration function on [
123I] (IBZM)-SPECT studies [
Brüggemann et al 2017].
Hyperechogenicity of the substantia nigra in 79% and of the lenticular nuclei in 81% of individuals with XDP on transcranial brain sonography studies [
Walter et al 2017]. Abnormal substantia nigra hyperechogenicity was more frequent in individuals with prominent parkinsonism (100%) compared to those without (68%). Thus, substantia nigra hyperechogenicity may be regarded as a preclinical risk marker of parkinsonism-predominant XDP.
Thus, it appears that by functional imaging, individuals with XDP may have one of the following:
Postsynaptic striatal involvement. Affected individuals may represent the majority of XDP, with pure dystonia or combined dystonia-parkinsonism from the early stages; this group does not respond to levodopa.
Presynaptic nigrostriatal involvement. Affected individuals may represent those few who have pure parkinsonism for a considerable number of years, with dystonia setting in late in the course; this group appears to be more responsive to levodopa.
Neuropathology. Little information is available on the neuropathology of XDP.
The earliest neuropathology report on XDP, from one Filipino male with dystonia-parkinsonism, showed neuronal loss and a multifocal mosaic pattern of astrocytosis in the caudate and lateral putamen [Waters et al 1993]. This information has been updated by Pasco et al [2011], who report that "[i]n the neostriatum, the dystonic phase of XDP shows the involvement of striosomes and matrix sparing, while the later, i.e., parkinsonian phase, shows matrix involvement as well. In the dystonic phase, the loss of striosomal inhibitory projections lead to disinhibition of nigral dopaminergic neurons, perhaps resulting in a hyperkinetic state; while in the parkinsonian phase, severe and critical reduction of matrix-based projection may result in extranigral parkinsonism."
Neuropathologic examination on an individual with severe generalized dystonia and parkinsonism confirmed the mosaic pattern of striatal gliosis as reported earlier, but also noted that the gliotic patches showed gradients that were dorsal to ventral, rostral to caudal, and medial to lateral [Evidente et al 2002b]. The caudate was more affected than the putamen, and the accumbens was largely spared. The head of the caudate was more affected than the tail. The patchy areas of striatal gliosis were not associated with microglial activation. The more marked involvement of caudate and putamen than of the ventral, limbic striatum (i.e., nucleus accumbens) suggests that striatal synaptic input from the limbic lobe is less affected than the synaptic input from the sensorimotor and association cortices. With synaptic immunostaining, it was noted that the patchy areas of gliosis corresponded to the areas of poor synaptophysin staining, suggesting that the basis for the patchy gliosis is synaptic loss rather than neuronal loss. The synaptic loss and gliosis were also observed in the globus pallidus interna and externa. Some focal gliosis was also noted in the substantia nigra pars reticularis, but not in the pars compacta.
Postmortem analyses of the basal ganglia based on striatal compartments (i.e., the striosomes and the matrix compartment) showed that in the neostriatum of individuals with XDP, the striosomes are severely depleted while the matrix component is relatively spared [Goto et al 2005]. Thus, the disproportionate involvement of the neostriatum compartments and their efferent projections may be responsible for dystonia in XDP and possibly in other neurodegenerative disorders.
Neuropathologic studies have shown a neostriatal defect of the neuropeptide Y system in individuals with XDP, suggesting that the neuropeptide Y system may play a role in the progressive loss of striatal neurons [Goto et al 2013].