U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Guideline Centre (UK). Non-Alcoholic Fatty Liver Disease: Assessment and Management. London: National Institute for Health and Care Excellence (NICE); 2016 Jul. (NICE Guideline, No. 49.)

Cover of Non-Alcoholic Fatty Liver Disease

Non-Alcoholic Fatty Liver Disease: Assessment and Management.

Show details

19Glossary

The NICE Glossary can be found at www.nice.org.uk/glossary.

19.1. Guideline-specific terms

TermDefinition
Acoustic radiation force impulse imagingAn ultrasound-based elastography method enabling quantitative measurement of tissue stiffness.
Advanced liver fibrosisA grade of F3 or above using the Kleiner (NASH-CRN) or the SAF score. This is referred to as bridging fibrosis (the presence of fibrosis that reaches from one portal area to another).
Also see: Fibrosis
Alanine transaminase (ALT)An enzyme found mainly inside liver cells.
Aspartate aminotransferase (AST)An enzyme found mainly inside red blood cells, liver, heart, muscle tissue, pancreas, and kidneys.
AST-to-platelet ratio index (APRI)A minimally invasive diagnostic test calculated by an algorithm using AST and platelet count.
BARDA minimally invasive diagnostic test calculated by an algorithm using AST/ALT ratio, BMI and the presence of diabetes.
CirrhosisA chronic disease of the liver marked by degeneration of cells, inflammation, and fibrous thickening of tissue.
Controlled attenuation parameter (CAP)A non-invasive method for the detection of hepatic steatosis based on transient elastography.
Cytokeratin 18A protein found inside cells.
Enhanced Liver Fibrosis Test (ELF)A blood test for measuring fibrosis.
Fatty Liver Index (FLI)An algorithm based on waist circumference, body mass index (BMI), triglyceride and gamma-glutamyl-transferase (GGT) which is used to detect fatty liver.
FerritinA protein found inside cells that stores iron.
FIB-4A minimally invasive diagnostic test calculated by an algorithm using age, ALT, AST and platelet count.
FibroScanSee ‘transient elastography’.
FibrosisWhere scar tissue is formed in an inflamed liver. Fibrosis can take a variable time to develop and, even with scar tissue present, the liver keeps on functioning quite well. However, continued build-up of scar tissue may lead to cirrhosis.
FibroTestA minimally invasive diagnostic test calculated with a formula including age, gender, bilirubin, GGT, apolipoprotein A1, haptoglobin, and α-2 macroglobulin.
Hepatic steatosisAccumulation of fat on the liver.
High-density lipoproteinOne of the 5 major groups of lipoproteins. Lipoprotein molecules enable to transportation of lipids (fat molecules). High-density lipoprotein particles transfer fats away from cells, artery walls and tissues and back to low-density lipoprotein particles and to the liver for other disposition.
Liver biopsyA diagnostic test in which a small sample of tissue is removed from the liver using a needle.
Liver blood testsBlood tests for 2 main liver enzymes: aspartate aminotransferase and alanine aminotransferase.
Low-density lipoproteinOne of the 5 major groups of lipoproteins. Lipoprotein molecules enable to transportation of lipids (fat molecules). Low-density lipoprotein particles transport cholesterol from the liver to the tissues of the body.
Magnetic resonance elastography (MRE)A non-invasive MRI based technique that generates quantitative maps of tissue stiffness.
Magnetic resonance imaging (MRI)A type of scan that uses strong magnetic fields and radio waves to produce detailed images of the inside of the body.
Magnetic resonance spectroscopy (MRS)A non-invasive MRI based technique for the characterization of tissue used to study metabolic changes.
Non-alcoholic steatohepatitisA state in which fatty accumulation in the liver (steatosis) is combined with inflammation and the thickening and scarring of connective tissue (fibrosis).
NAFLD activity score (NAS)A score of how likely someone is to have non-alcoholic steatohepatitis (NASH) – and how severe if so – based on liver biopsy. A score of 2 or less is steatosis alone, 3-4 conventionally seen as borderline NASH, at least 5 seen as definite NASH. This was first proposed by the NASH Clinical Research Network (CRN), and has been adopted in many academic studies and increasingly by clinical histopathology labs.
NAFLD fibrosis scoreA minimally invasive diagnostic test calculated by an algorithm using age, BMI, presence of impaired fasting glucose or diabetes, AST/ALT ratio, platelet count and albumin.
NAFLD liver fat scoreA minimally invasive diagnostic test calculated by an algorithm using presence of metabolic syndrome or diabetes, insulin, AST and AST/ALT ratio.
Negative likelihood ratioThe probability of an individual with the condition having a negative test or the probability of an individual without the condition having a negative test. Indicates how much to increase the probability of disease.
Omega-3 fatty acidAn unsaturated fatty acid of a kind occurring chiefly in fish oils. Important for metabolism.
Percutaneous liver biopsySee ‘liver biopsy
Positive likelihood ratioThe probability of an individual with a condition having a positive test or the probability of an individual without a condition having a positive test. Indicates how much to increase the probability of disease.
ProbioticsLive bacteria and yeasts naturally found in your body that help your digestive system. Probiotics can also be found in some foods (for example, yoghurts) and supplements.
Serum biomarkerA characteristic within blood that can be objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic intervention.
Serum triglyceridesSee ‘triglycerides’.
StatinsA group of medicines that help lower the level of low-density lipoprotein cholesterol in the blood by reducing the production of it inside the liver (see ‘low-density lipoprotein’).
SteatosisSee ‘hepatic steatosis
SteatoTestA minimally invasive diagnostic test calculated with a formula including alpha2-macroglobin, apolipoprotein A1, haptoglobin, total bilirubin, AST, ALT, GGT, fasting glucose, total cholesterol, tryglicerides, weight and height, adjusted for age and gender.
Transient elastographyA non-invasive test for the assessment of liver fibrosis through measuring stiffness of the liver.
TriglyceridesThe main form of natural fats and oils in the body. Formed from glycerol and 3 fatty acid groups.
UltrasoundA device that uses high frequency sound waves to create an image of parts of the inside of the body (for example, the liver).

19.2. General terms

TermDefinition
AbstractSummary of a study, which may be published alone or as an introduction to a full scientific paper.
Algorithm (in guidelines)A flow chart of the clinical decision pathway described in the guideline, where decision points are represented with boxes, linked with arrows.
Allocation concealmentThe process used to prevent advance knowledge of group assignment in an RCT. The allocation process should be impervious to any influence by the individual making the allocation, by being administered by someone who is not responsible for recruiting participants.
ApplicabilityHow well the results of a study or NICE evidence review can answer a clinical question or be applied to the population being considered.
Arm (of a clinical study)Subsection of individuals within a study who receive 1 particular intervention, for example placebo arm.
AssociationStatistical relationship between 2 or more events, characteristics or other variables. The relationship may or may not be causal.
Base case analysisIn an economic evaluation, this is the main analysis based on the most plausible estimate of each input. In contrast, see Sensitivity analysis.
BaselineThe initial set of measurements at the beginning of a study (after run-in period where applicable), with which subsequent results are compared.
BiasInfluences on a study that can make the results look better or worse than they really are. (Bias can even make it look as if a treatment works when it does not.) Bias can occur by chance, deliberately or as a result of systematic errors in the design and execution of a study. It can also occur at different stages in the research process, for example, during the collection, analysis, interpretation, publication or review of research data. For examples see selection bias, performance bias, information bias, confounding factor, and publication bias.
BlindingA way to prevent researchers, doctors and patients in a clinical trial from knowing which study group each patient is in so they cannot influence the results. The best way to do this is by sorting patients into study groups randomly. The purpose of ‘blinding’ or ‘masking’ is to protect against bias. A single-blinded study is 1 in which patients do not know which study group they are in (for example whether they are taking the experimental drug or a placebo). A double-blinded study is 1 in which neither patients nor the researchers and doctors know which study group the patients are in. A triple blind study is 1 in which neither the patients, clinicians or the people carrying out the statistical analysis know which treatment patients received.
Carer (caregiver)Someone who looks after family, partners or friends in need of help because they are ill, frail or have a disability.
Case–control studyA study to find out the cause(s) of a disease or condition. This is done by comparing a group of patients who have the disease or condition (cases) with a group of people who do not have it (controls) but who are otherwise as similar as possible (in characteristics thought to be unrelated to the causes of the disease or condition). This means the researcher can look for aspects of their lives that differ to see if they may cause the condition.
For example, a group of people with lung cancer might be compared with a group of people the same age that do not have lung cancer. The researcher could compare how long both groups had been exposed to tobacco smoke. Such studies are retrospective because they look back in time from the outcome to the possible causes of a disease or condition.
Case seriesReport of a number of cases of a given disease, usually covering the course of the disease and the response to treatment. There is no comparison (control) group of patients.
Clinical efficacyThe extent to which an intervention is active when studied under controlled research conditions.
Clinical effectivenessHow well a specific test or treatment works when used in the ‘real world’ (for example, when used by a doctor with a patient at home), rather than in a carefully controlled clinical trial. Trials that assess clinical effectiveness are sometimes called management trials.
Clinical effectiveness is not the same as efficacy.
ClinicianA healthcare professional who provides patient care. For example, a doctor, nurse or physiotherapist.
Cochrane ReviewThe Cochrane Library consists of a regularly updated collection of evidence-based medicine databases including the Cochrane Database of Systematic Reviews (reviews of randomised controlled trials prepared by the Cochrane Collaboration).
Cohort studyA study with 2 or more groups of people – cohorts – with similar characteristics. One group receives a treatment, is exposed to a risk factor or has a particular symptom and the other group does not. The study follows their progress over time and records what happens. See also observational study.
ComorbidityA disease or condition that someone has in addition to the health problem being studied or treated.
Confidence interval (CI)There is always some uncertainty in research. This is because a small group of patients is studied to predict the effects of a treatment on the wider population. The confidence interval is a way of expressing how certain we are about the findings from a study, using statistics. It gives a range of results that is likely to include the ‘true’ value for the population.
The CI is usually stated as ‘95% CI’, which means that the range of values has a 95 in a 100 chance of including the ‘true’ value. For example, a study may state that “based on our sample findings, we are 95% certain that the ‘true’ population blood pressure is not higher than 150 and not lower than 110”. In such a case the 95% CI would be 110 to 150.
A wide confidence interval indicates a lack of certainty about the true effect of the test or treatment – often because a small group of patients has been studied. A narrow confidence interval indicates a more precise estimate (for example, if a large number of patients have been studied).
Confounding factorSomething that influences a study and can result in misleading findings if it is not understood or appropriately dealt with.
For example, a study of heart disease may look at a group of people that exercises regularly and a group that does not exercise. If the ages of the people in the 2 groups are different, then any difference in heart disease rates between the 2 groups could be because of age rather than exercise. Therefore age is a confounding factor.
Consensus methodsTechniques used to reach agreement on a particular issue. Consensus methods may be used to develop NICE guidance if there is not enough good quality research evidence to give a clear answer to a question. Formal consensus methods include Delphi and nominal group techniques.
Control groupA group of people in a study who do not receive the treatment or test being studied. Instead, they may receive the standard treatment (sometimes called ‘usual care’) or a dummy treatment (placebo). The results for the control group are compared with those for a group receiving the treatment being tested. The aim is to check for any differences.
Ideally, the people in the control group should be as similar as possible to those in the treatment group, to make it as easy as possible to detect any effects due to the treatment.
Cost-benefit analysis (CBA)Cost-benefit analysis is 1 of the tools used to carry out an economic evaluation. The costs and benefits are measured using the same monetary units (for example, pounds sterling) to see whether the benefits exceed the costs.
Cost-consequences analysis (CCA)Cost-consequences analysis is 1 of the tools used to carry out an economic evaluation. This compares the costs (such as treatment and hospital care) and the consequences (such as health outcomes) of a test or treatment with a suitable alternative. Unlike cost-benefit analysis or cost-effectiveness analysis, it does not attempt to summarise outcomes in a single measure (like the quality-adjusted life year) or in financial terms. Instead, outcomes are shown in their natural units (some of which may be monetary) and it is left to decision-makers to determine whether, overall, the treatment is worth carrying out.
Cost-effectiveness analysis (CEA)Cost-effectiveness analysis is 1 of the tools used to carry out an economic evaluation. The benefits are expressed in non-monetary terms related to health, such as symptom-free days, heart attacks avoided, deaths avoided or life years gained (that is, the number of years by which life is extended as a result of the intervention).
Cost-effectiveness modelAn explicit mathematical framework, which is used to represent clinical decision problems and incorporate evidence from a variety of sources in order to estimate the costs and health outcomes.
Cost-utility analysis (CUA)Cost-utility analysis is 1 of the tools used to carry out an economic evaluation. The benefits are assessed in terms of both quality and duration of life, and expressed as quality-adjusted life years (QALYs). See also utility.
Deterministic analysisIn economic evaluation, this is an analysis that uses a point estimate for each input. In contrast, see Probabilistic analysis
DiscountingCosts and perhaps benefits incurred today have a higher value than costs and benefits occurring in the future. Discounting health benefits reflects individual preference for benefits to be experienced in the present rather than the future. Discounting costs reflects individual preference for costs to be experienced in the future rather than the present.
DisutilityThe loss of quality of life associated with having a disease or condition. See Utility
DominanceA health economics term. When comparing tests or treatments, an option that is both less effective and costs more is said to be ‘dominated’ by the alternative.
Drop-outA participant who withdraws from a trial before the end.
Economic evaluationAn economic evaluation is used to assess the cost-effectiveness of healthcare interventions (that is, to compare the costs and benefits of a healthcare intervention to assess whether it is worth doing). The aim of an economic evaluation is to maximise the level of benefits – health effects – relative to the resources available. It should be used to inform and support the decision-making process; it is not supposed to replace the judgement of healthcare professionals.
There are several types of economic evaluation: cost-benefit analysis, cost-consequences analysis, cost-effectiveness analysis, cost-minimisation analysis and cost-utility analysis. They use similar methods to define and evaluate costs, but differ in the way they estimate the benefits of a particular drug, programme or intervention.
Effect (as in effect measure, treatment effect, estimate of effect, effect size)A measure that shows the magnitude of the outcome in 1 group compared with that in a control group.
For example, if the absolute risk reduction is shown to be 5% and it is the outcome of interest, the effect size is 5%.
The effect size is usually tested, using statistics, to find out how likely it is that the effect is a result of the treatment and has not just happened by chance (that is, to see if it is statistically significant).
EffectivenessHow beneficial a test or treatment is under usual or everyday conditions, compared with doing nothing or opting for another type of care.
EfficacyHow beneficial a test, treatment or public health intervention is under ideal conditions (for example, in a laboratory), compared with doing nothing or opting for another type of care.
EQ-5D (EuroQol 5 dimensions)A standardised instrument used to measure health-related quality of life. It provides a single index value for health status.
EvidenceInformation on which a decision or guidance is based. Evidence is obtained from a range of sources including randomised controlled trials, observational studies, expert opinion (of clinical professionals or patients).
Exclusion criteria (literature review)Explicit standards used to decide which studies should be excluded from consideration as potential sources of evidence.
Exclusion criteria (clinical study)Criteria that define who is not eligible to participate in a clinical study.
Extended dominanceIf Option A is both more clinically effective than Option B and has a lower cost per unit of effect, when both are compared with a do-nothing alternative then Option A is said to have extended dominance over Option B. Option A is therefore cost-effective and should be preferred, other things remaining equal.
ExtrapolationAn assumption that the results of studies of a specific population will also hold true for another population with similar characteristics.
Follow-upObservation over a period of time of an individual, group or initially defined population whose appropriate characteristics have been assessed in order to observe changes in health status or health-related variables.
GeneralisabilityThe extent to which the results of a study hold true for groups that did not participate in the research. See also external validity.
Gold standardA method, procedure or measurement that is widely accepted as being the best available to test for or treat a disease.
GRADE, GRADE profileA system developed by the GRADE Working Group to address the shortcomings of present grading systems in healthcare. The GRADE system uses a common, sensible and transparent approach to grading the quality of evidence. The results of applying the GRADE system to clinical trial data are displayed in a table known as a GRADE profile.
HarmsAdverse effects of an intervention.
Hazard ratio (HR)Hazard is similar in notion to risk, but is subtly different in that it measures instantaneous risk and may change continuously. A hazard ratio is interpreted in a similar way to a risk ratio, because it describes how many times more (or less) likely a participant is to suffer the event at a particular point in time if they receive the experimental rather than the control intervention.
Health economicsStudy or analysis of the cost of using and distributing healthcare resources.
Health-related quality of life (HRQoL)A measure of the effects of an illness to see how it affects someone's day-to-day life.
Heterogeneity or Lack of homogeneityThe term is used in meta-analyses and systematic reviews to describe when the results of a test or treatment (or estimates of its effect) differ significantly in different studies. Such differences may occur as a result of differences in the populations studied, the outcome measures used or because of different definitions of the variables involved. It is the opposite of homogeneity.
ImprecisionResults are imprecise when studies include relatively few patients and few events and thus have wide confidence intervals around the estimate of effect.
Inclusion criteria (literature review)Explicit criteria used to decide which studies should be considered as potential sources of evidence.
Incremental analysisThe analysis of additional costs and additional clinical outcomes with different interventions.
Incremental costThe extra cost linked to using 1 test or treatment rather than another. Or the additional cost of doing a test or providing a treatment more frequently.
Incremental cost-effectiveness ratio (ICER)The difference in the mean costs in the population of interest divided by the differences in the mean outcomes in the population of interest for 1 treatment compared with another.
Incremental net benefit (INB)The value (usually in monetary terms) of an intervention net of its cost compared with a comparator intervention. The INB can be calculated for a given cost-effectiveness (willingness to pay) threshold. If the threshold is £20,000 per QALY gained then the INB is calculated as: (£20,000 × QALYs gained) − Incremental cost.
IndirectnessThe available evidence is different to the review question being addressed, in terms of PICO (population, intervention, comparison and outcome).
Intention-to-treat analysis (ITT)An assessment of the people taking part in a clinical trial, based on the group they were initially (and randomly) allocated to. This is regardless of whether or not they dropped out, fully complied with the treatment or switched to an alternative treatment. Intention-to-treat analyses are often used to assess clinical effectiveness because they mirror actual practice: that is, not everyone complies with treatment and the treatment people receive may be changed according to how they respond to it.
InterventionIn medical terms this could be a drug treatment, surgical procedure, diagnostic or psychological therapy. Examples of public health interventions could include action to help someone to be physically active or to eat a more healthy diet.
IntraoperativeThe period of time during a surgical procedure.
Length of stayThe total number of days a participant stays in hospital.
LicenceSee ‘Product licence’.
Life years gainedMean average years of life gained per person as a result of the intervention compared with an alternative intervention.
Likelihood ratioThe likelihood ratio combines information about the sensitivity and specificity. It tells you how much a positive or negative result changes the likelihood that a patient would have the disease. The likelihood ratio of a positive test result (LR+) is sensitivity divided by (1 minus specificity).
Logistic regression or Logit modelIn statistics, logistic regression is a type of analysis used for predicting the outcome of a binary dependent variable based on 1 or more predictor variables. It can be used to estimate the log of the odds (known as the ‘logit’).
Markov modelA method for estimating long-term costs and effects for recurrent or chronic conditions, based on health states and the probability of transition between them within a given time period (cycle).
Meta-analysisA method often used in systematic reviews. Results from several studies of the same test or treatment are combined to estimate the overall effect of the treatment.
Metabolic syndromeCentral obesity (excessive abdominal fat), insulin resistance or type 2 diabetes, hypertension and dyslipidaemia.
Multivariate modelA statistical model for analysis of the relationship between 2 or more predictor (independent) variables and the outcome (dependent) variable.
Negative predictive value (NPV)In screening or diagnostic tests: A measure of the usefulness of a screening or diagnostic test. It is the proportion of those with a negative test result who do not have the disease, and can be interpreted as the probability that a negative test result is correct. It is calculated as follows: NPV = TN/(TN+FN)
Net monetary benefit (NMB)The value in monetary terms of an intervention net of its cost. The NMB can be calculated for a given cost-effectiveness threshold. If the threshold is £20,000 per QALY gained then the NMB for an intervention is calculated as: (£20,000 × mean QALYs) − mean cost.
The most preferable option (that is, the most clinically effective option to have an ICER below the threshold selected) will be the treatment with the highest NMB.
Observational studyIndividuals or groups are observed or certain factors are measured. No attempt is made to affect the outcome. For example, an observational study of a disease or treatment would allow ‘nature’ or usual medical care to take its course. Changes or differences in 1 characteristic (for example, whether or not people received a specific treatment or intervention) are studied without intervening.
There is a greater risk of selection bias than in experimental studies.
Odds ratio (OR)Odds are a way to represent how likely it is that something will happen (the probability). An odds ratio compares the probability of something in 1 group with the probability of the same thing in another.
An odds ratio of 1 between 2 groups would show that the probability of the event (for example a person developing a disease, or a treatment working) is the same for both. An odds ratio greater than 1 means the event is more likely in the first group. An odds ratio less than 1 means that the event is less likely in the first group.
Sometimes probability can be compared across more than 2 groups – in this case, 1 of the groups is chosen as the ‘reference category’, and the odds ratio is calculated for each group compared with the reference category. For example, to compare the risk of dying from lung cancer for non-smokers, occasional smokers and regular smokers, non-smokers could be used as the reference category. Odds ratios would be worked out for occasional smokers compared with non-smokers and for regular smokers compared with non-smokers. See also confidence interval, relative risk, risk ratio.
Opportunity costThe loss of other healthcare programmes displaced by investment in or introduction of another intervention. This may be best measured by the health benefits that could have been achieved had the money been spent on the next best alternative healthcare intervention.
OutcomeThe impact that a test, treatment, policy, programme or other intervention has on a person, group or population. Outcomes from interventions to improve the public's health could include changes in knowledge and behaviour related to health, societal changes (for example, a reduction in crime rates) and a change in people's health and wellbeing or health status. In clinical terms, outcomes could include the number of patients who fully recover from an illness or the number of hospital admissions, and an improvement or deterioration in someone's health, functional ability, symptoms or situation. Researchers should decide what outcomes to measure before a study begins.
P valueThe p value is a statistical measure that indicates whether or not an effect is statistically significant.
For example, if a study comparing 2 treatments found that 1 seems more effective than the other, the p value is the probability of obtaining these results by chance. By convention, if the p value is below 0.05 (that is, there is less than a 5% probability that the results occurred by chance) it is considered that there probably is a real difference between treatments. If the p value is 0.001 or less (less than a 1% probability that the results occurred by chance), the result is seen as highly significant.
If the p value shows that there is likely to be a difference between treatments, the confidence interval describes how big the difference in effect might be.
PlaceboA fake (or dummy) treatment given to participants in the control group of a clinical trial. It is indistinguishable from the actual treatment (which is given to participants in the experimental group). The aim is to determine what effect the experimental treatment has had – over and above any placebo effect caused because someone has received (or thinks they have received) care or attention.
Positive predictive value (PPV)In screening or diagnostic tests: A measure of the usefulness of a screening or diagnostic test. It is the proportion of those with a positive test result who have the disease, and can be interpreted as the probability that a positive test result is correct. It is calculated as follows: PPV = TP/(TP+FP)
Power (statistical)The ability to demonstrate an association when 1 exists. Power is related to sample size; the larger the sample size, the greater the power and the lower the risk that a possible association could be missed.
PrevalenceSee Pre-test probability.
Primary careHealthcare delivered outside hospitals. It includes a range of services provided by GPs, nurses, health visitors, midwives and other healthcare professionals and allied health professionals such as dentists, pharmacists and opticians.
Primary outcomeThe outcome of greatest importance, usually the 1 in a study that the power calculation is based on.
Probabilistic analysisIn economic evaluation, this is an analysis that uses a probability distribution for each input. In contrast, see Deterministic analysis.
Product licenceAn authorisation from the MHRA to market a medicinal product.
PrognosisA probable course or outcome of a disease. Prognostic factors are patient or disease characteristics that influence the course. Good prognosis is associated with low rate of undesirable outcomes; poor prognosis is associated with a high rate of undesirable outcomes.
Prospective studyA research study in which the health or other characteristic of participants is monitored (or ‘followed up’) for a period of time, with events recorded as they happen. This contrasts with retrospective studies.
Publication biasPublication bias occurs when researchers publish the results of studies showing that a treatment works well and do not publish those showing it did not have any effect. If this happens, analysis of the published results will not give an accurate idea of how well the treatment works. This type of bias can be assessed by a funnel plot.
Quality of lifeSee ‘Health-related quality of life’.
Quality-adjusted life year (QALY)A measure of the state of health of a person or group in which the benefits, in terms of length of life, are adjusted to reflect the quality of life. One QALY is equal to 1 year of life in perfect health.
QALYS are calculated by estimating the years of life remaining for a patient following a particular treatment or intervention and weighting each year with a quality of life score (on a scale of 0 to 1). It is often measured in terms of the person's ability to perform the activities of daily life, freedom from pain and mental disturbance.
RandomisationAssigning participants in a research study to different groups without taking any similarities or differences between them into account. For example, it could involve using a random numbers table or a computer-generated random sequence. It means that each individual (or each group in the case of cluster randomisation) has the same chance of receiving each intervention.
Randomised controlled trial (RCT)A study in which a number of similar people are randomly assigned to 2 (or more) groups to test a specific drug or treatment. One group (the experimental group) receives the treatment being tested, the other (the comparison or control group) receives an alternative treatment, a dummy treatment (placebo) or no treatment at all. The groups are followed up to see how effective the experimental treatment was. Outcomes are measured at specific times and any difference in response between the groups is assessed statistically. This method is also used to reduce bias.
RCTSee ‘Randomised controlled trial’.
Receiver operated characteristic (ROC) curveA graphical method of assessing the accuracy of a diagnostic test. Sensitivity is plotted against 1 minus specificity. A perfect test will have a positive, vertical linear slope starting at the origin. A good test will be somewhere close to this ideal.
Reference standardThe test that is considered to be the best available method to establish the presence or absence of the outcome – this may not be the 1 that is routinely used in practice.
Relative risk (RR)The ratio of the risk of disease or death among those exposed to certain conditions compared with the risk for those who are not exposed to the same conditions (for example, the risk of people who smoke getting lung cancer compared with the risk for people who do not smoke).
If both groups face the same level of risk, the relative risk is 1. If the first group had a relative risk of 2, subjects in that group would be twice as likely to have the event happen. A relative risk of less than 1 means the outcome is less likely in the first group. Relative risk is sometimes referred to as risk ratio.
Resource implicationThe likely impact in terms of finance, workforce or other NHS resources.
Retrospective studyA research study that focuses on the past and present. The study examines past exposure to suspected risk factors for the disease or condition. Unlike prospective studies, it does not cover events that occur after the study group is selected.
Review questionIn guideline development, this term refers to the questions about treatment and care that are formulated to guide the development of evidence-based recommendations.
Selection biasSelection bias occurs if:
  1. The characteristics of the people selected for a study differ from the wider population from which they have been drawn, or
  2. There are differences between groups of participants in a study in terms of how likely they are to get better.
SensitivityHow well a test detects the thing it is testing for.
If a diagnostic test for a disease has high sensitivity, it is likely to pick up all cases of the disease in people who have it (that is, give a ‘true positive’ result). But if a test is too sensitive it will sometimes also give a positive result in people who do not have the disease (that is, give a ‘false positive’).
For example, if a test were developed to detect if a woman is 6 months pregnant, a very sensitive test would detect everyone who was 6 months pregnant, but would probably also include those who are 5 and 7 months pregnant.
If the same test were more specific (sometimes referred to as having higher specificity), it would detect only those who are 6 months pregnant, and someone who was 5 months pregnant would get a negative result (a ‘true negative’). But it would probably also miss some people who were 6 months pregnant (that is, give a ‘false negative’).
Breast screening is a ‘real-life’ example. The number of women who are recalled for a second breast screening test is relatively high because the test is very sensitive. If it were made more specific, people who do not have the disease would be less likely to be called back for a second test but more women who have the disease would be missed.
Sensitivity analysisA means of representing uncertainty in the results of economic evaluations. Uncertainty may arise from missing data, imprecise estimates or methodological controversy. Sensitivity analysis also allows for exploring the generalisability of results to other settings. The analysis is repeated using different assumptions to examine the effect on the results.
One-way simple sensitivity analysis (univariate analysis): each parameter is varied individually in order to isolate the consequences of each parameter on the results of the study.
Multi-way simple sensitivity analysis (scenario analysis): 2 or more parameters are varied at the same time and the overall effect on the results is evaluated.
Threshold sensitivity analysis: the critical value of parameters above or below which the conclusions of the study will change are identified.
Probabilistic sensitivity analysis: probability distributions are assigned to the uncertain parameters and are incorporated into evaluation models based on decision analytical techniques (for example, Monte Carlo simulation).
Significance (statistical)A result is deemed statistically significant if the probability of the result occurring by chance is less than 1 in 20 (p<0.05).
SpecificityThe proportion of true negatives that are correctly identified as such. For example in diagnostic testing the specificity is the proportion of non-cases correctly diagnosed as non-cases.
See related term ‘Sensitivity’.
In terms of literature searching a highly specific search is generally narrow and aimed at picking up the key papers in a field and avoiding a wide range of papers.
StakeholderAn organisation with an interest in a topic that NICE is developing a clinical guideline or piece of public health guidance on. Organisations that register as stakeholders can comment on the draft scope and the draft guidance. Stakeholders may be:
  • manufacturers of drugs or equipment
  • national patient and carer organisations
  • NHS organisations
  • organisations representing healthcare professionals.
State transition modelSee Markov model
Systematic reviewA review in which evidence from scientific studies has been identified, appraised and synthesised in a methodical way according to predetermined criteria. It may include a meta-analysis.
Time horizonThe time span over which costs and health outcomes are considered in a decision analysis or economic evaluation.
Transition probabilityIn a state transition model (Markov model), this is the probability of moving from 1 health state to another over a specific period of time.
Treatment allocationAssigning a participant to a particular arm of a trial.
UnivariateAnalysis which separately explores each variable in a data set.
UtilityIn health economics, a ‘utility’ is the measure of the preference or value that an individual or society places upon a particular health state. It is generally a number between 0 (representing death) and 1 (perfect health). The most widely used measure of benefit in cost-utility analysis is the quality-adjusted life year, but other measures include disability-adjusted life years (DALYs) and healthy year equivalents (HYEs).
Youden's IndexA way of summarising the performance of a diagnostic test (sensitivity + specificity − 1). Values range from 0 to 1. A zero value means the diagnostic test gives the same proportion of positive results for groups with and without the disease, that is, the test is not informative. A value of 1 indicates that there are no false positives or false negatives, i.e. the test is perfect.
Copyright © National Institute for Health and Care Excellence 2016.
Bookshelf ID: NBK384746

Views

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...