U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Regulation of nucleosome landscape and transcription factor binding at enhancers by BRG1

(Submitter supplied) Enhancers of transcription activate transcription via binding of sequence-specific transcription factors to their target sites in chromatin. In this report, we identify GATA1-bound enhancers genome-wide and find a global reorganization of the nucleosomes at these enhancers during differentiation of hematopoietic stem cells (HSCs) to erythrocytes. We show that the catalytic subunit BRG1 of BAF complexes localizes to these enhancers during differentiation and generates a longer nucleosome repeat length surrounding the GATA1 sites by shifting the flanking nucleosomes away. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL9052
20 Samples
Download data: BED, TXT
2.

Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid cell differentiation

(Submitter supplied) The modulation of chromatin structure is a key step in transcription regulation in eukaryotic cells. Mammalian erythropoiesis is accompanied by dynamic alterations in chromatin structure and gene expression, but the epigenetic regulators that modulate and coordinate these changes are largely unknown. USF, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the basis for this regulation is unknown. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
4 Samples
Download data: TXT
Series
Accession:
GSE69347
ID:
200069347
3.

Identification of Biologically Relevant Enhancers in Human Erythroid Cells [ChIP-Seq]

(Submitter supplied) Identification of cell-type specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
8 Samples
Download data: BED
Series
Accession:
GSE43625
ID:
200043625
4.

The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factorsduring erythroid differentiation

(Submitter supplied) SETD8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. SETD8 is highly expressed in erythroid cells and erythroid deletion of Setd8 is embryonic lethal by embryonic day 11.5 (E11.5) due to profound anemia, suggesting it has an erythroid-specific function. To gain insights into the function of SETD8 during erythroid differentiation, we performed ATAC-seq on sorted populations of E10.5 Setd8 null and control erythroblasts. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
5 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE138106
ID:
200138106
5.

Genome-wide map of transcription factor GATA1 occupancy during mitosis in G1E ER4+E2 cells

(Submitter supplied) Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11002 GPL9250
4 Samples
Download data: TXT
Series
Accession:
GSE36589
ID:
200036589
6.

Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis

(Submitter supplied) Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. more...
Organism:
Mus musculus
Type:
Other
Platforms:
GPL13112 GPL9250 GPL6246
42 Samples
Download data: BEDGRAPH, BIGWIG, BROADPEAK, CEL, TXT
Series
Accession:
GSE51337
ID:
200051337
7.

Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis

(Submitter supplied) Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, SCL/TAL1 and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary megakaryocytes (MEG) and erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
12 Samples
Download data: CEL
Series
Accession:
GSE49664
ID:
200049664
8.

Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo

(Submitter supplied) Here we show how chromatin structure is involved in glucocorticoid receptor (GR) binding in a mouse mammary cell line. We show that GR binds to accessible chromatin sites that are either nucleosome-free or contain a nucleosome.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
12 Samples
Download data: TDF
Series
Accession:
GSE94562
ID:
200094562
9.

Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo

(Submitter supplied) Glucocorticoid hormone plays a major role in metabolism and many related diseases. The hormone-bound glucocorticoid receptor (GR) binds to a specific set of enhancers in different cell types, resulting in unique patterns of gene expression. GR-responsive enhancers have an accessible chromatin structure prior to hormone treatment (“pre-programmed”), whereas unresponsive enhancers specific to other cell types are inaccessible and inactive. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: TDF
Series
Accession:
GSE92505
ID:
200092505
10.

TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS

(Submitter supplied) TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. more...
Organism:
Homo sapiens; Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL16173 GPL15456
14 Samples
Download data: WIG
Series
Accession:
GSE36620
ID:
200036620
11.

Identification of Biologically Relevant Enhancers in Human Erythroid Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL6102 GPL9115
20 Samples
Download data: BED
Series
Accession:
GSE43626
ID:
200043626
12.

Identification of Biologically Relevant Enhancers in Human Erythroid Cells [Illumina BeadArray]

(Submitter supplied) Identification of cell-type specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6102
12 Samples
Download data: TXT
Series
Accession:
GSE43624
ID:
200043624
13.

Expression data from G1E erythroid cells expressing GATA1 mutants

(Submitter supplied) Missense mutations in transcription factor GATA1 underlie several distinct forms of anemia and thrombocytopenia. Clinical severity depends on the site and type of substitution, and distinct substiutions of the same residue produce disparate phenotypes. To investigate the effect of GATA1 missense mutations on erythroid differentiation we expressed conditionally activated wild type or mutant versions of GATA1 in GATA1-null G1E cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
15 Samples
Download data: CEL
Series
Accession:
GSE43356
ID:
200043356
14.

Genome-wide measurement of gene expression changes with Bptf knockout in mouse embryonic fibroblasts

(Submitter supplied) Gene expression frequently requires the action of chromatin remodeling complexes and it is assumed that these complexes have common gene targets across cell-types. Contrary to this belief, we show that Bptf, an essential and unique subunit of the Nucleosome Remodeling Factor (NURF), largely regulates cell-type-restricted gene expression across diverse cell-types. Unexpectedly, cell-type-restricted gene expression is accomplished through both physical and functional interactions between NURF and the ubiquitous multivalent factor Ctcf. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
6 Samples
Download data: TXT
Series
Accession:
GSE48123
ID:
200048123
15.

Nucleosome occupancy measurments in Bptf knockout ESC, MEF and DP thymocytes.

(Submitter supplied) NURF is a remodleing complex expressed in many cell types. Knockout of Bptf, the unique and essental subunit of NURF, results in altered nucleosome occupancy across the genome. To measure changes in nucleosome occupancy we hybridized nucleosomal DNA overdigested with MNase to 10 bp tiling arrays covering 3.3 Mbp of the mouse genome.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL17207
20 Samples
Download data: TXT, XLSX
Series
Accession:
GSE47416
ID:
200047416
16.

Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus; Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL20301 GPL21626
90 Samples
Download data: BED, BIGWIG, NARROWPEAK, TXT
Series
Accession:
GSE184606
ID:
200184606
17.

Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis [ChIP-seq]

(Submitter supplied) To determine hemogen function in regulatory elements, ChIPmentation was performed in both WT and hemogen KO K562 cells and H3K27ac enrichment was significantly reduced at both promoters and enhancers in loss of hemogen. To identify direct targets and the regulatory role of hemogen in murine erythroid gene expression, hemogen and BRG1 ChIP-seq was performed in the WT and hemogen KO E14.5 fetal liver cells. more...
Organism:
Homo sapiens; Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL20301 GPL21103
24 Samples
Download data: BED, BIGWIG, NARROWPEAK
Series
Accession:
GSE184605
ID:
200184605
18.

Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis [RNA-seq]

(Submitter supplied) To gain insight into hemogen function during human erythropoiesis, RNA-seq was performed in different type of erythroid cells, such as WT and hemogen KD CD34+ cells, WT and hemogen KD HUDEP2 cells, WT and hemogen KO K562 cells. Notably, depletion of hemogen in these human erythroid cells significantly reduced the expression of genes associated with heme and hemoglobin synthesis, such as ALAS2, HMBS, GYPA, EPOR, and HBB, supporting a positive role of hemogen in erythroid maturation. more...
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL20301
62 Samples
Download data: TXT
Series
Accession:
GSE184558
ID:
200184558
19.

Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis [ATAC-seq]

(Submitter supplied) To determine hemogen function in chromatin accessbility, ATAC Seq was performed in both WT and hemogen KO mouse liver. Loss of hemogen caused generally decresed of chrmoatin accessbility on the hemogen/BRG1 binding promoter and enhancer .
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21626
4 Samples
Download data: BED
Series
Accession:
GSE184553
ID:
200184553
20.

Genome-wide maps of epigenetic features in G1E model and in mouse primary erythroblasts.

(Submitter supplied) Interplays among lineage specific nuclear proteins, chromatin modifying enzymes and the basal transcription machinery govern cellular differentiation, but their dynamics of actions and coordination with transcriptional control are not fully understood. Alterations in chromatin structure appear to establish a permissive state for gene activation at some loci but they play an integral role in activation at other loci. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9250 GPL11002 GPL13112
33 Samples
Download data: TXT
Series
Accession:
GSE30142
ID:
200030142
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_670603f291df3b340a88ae6c|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center