U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

The single-stranded DNA binding protein Ssbp3 promotes trophoblast differentiation of mouse embryonic stem cells

(Submitter supplied) Unlimited self-renewal and developmental pluripotency are hallmarks of embryonic stem cells. Both properties are precisely controlled by the extrinsic signals and intrinsic factors and have been extensively investigated. However, factors capable of converting ES cells to extra-embryonic lineages have been poorly studied. Here we found that overexpression of Ssbp3 dramatically up-regulated trophoblast specific markers. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
4 Samples
Download data: CEL
Series
Accession:
GSE67562
ID:
200067562
2.

Activin A in Combination with ERK1/2 MAPK Pathway Inhibition Sustains Propagation of Mouse Embryonic Stem Cells

(Submitter supplied) Activin/Nodal/TGF-β signaling pathway plays a major role in maintaining mouse epiblast stem cells (mEpiSCs). The mEpiSC medium which contains Activin A and bFGF induces differentiation of mouse embryonic stem cells (mESCs) to mEpiSC. Here we show that Activin A also has an ability to efficiently propagate mESCs without differentiation to mEpiSCs when combined with a MEK inhibitor PD0325901. mESCs cultured in Activin+PD retained high-level expression of naive pluripotency-related transcription factors. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
3 Samples
Download data: CEL
Series
Accession:
GSE84679
ID:
200084679
3.

Activin A in combination with ERK1/2 MAPK pathway inhibition sustains propagation of mouse embryonic stem cells

(Submitter supplied) The combination of Wnt pathway activation by the GSK3 inhibitor and ERK pathway inhibition by the MEK inhibitor, which is known as 2i is a well-established method to maintain mouse embryonic stem cell (mESC) self-renewal. Here we show that Activin A also has the ability to promote naive pluripotency of mESCs when combined with the MEK inhibitor PD0325901. mESCs were efficiently propagated in a medium containing both Activin A and the MEK inhibitor (PD0325901). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
6 Samples
Download data: CEL
Series
Accession:
GSE74963
ID:
200074963
4.

Gata3 acts alongside Cdx2 to promote trophoblast gene expression downstream of Tead4 during mouse development

(Submitter supplied) The first lineage decisions during mouse development lead to establishment of embryonic and extraembryonic tissues. The transcription factor Cdx2 plays a central role by repressing pluripotency genes, such as Oct4 and promoting trophoblast fate at the blastocyst stage. Here we show that the transcription factor Gata3 is coexpressed with Cdx2 in the blastocyst and that overexpression of Gata3 in embryonic stem cells is sufficient to induce expression of trophoblast genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Datasets:
GDS3948 GDS3949
Platform:
GPL1261
24 Samples
Download data: CEL, CHP
Series
Accession:
GSE12999
ID:
200012999
5.

Expression of Cdx2 or Gata3 in R1 mouse embryonic stem cells

(Submitter supplied) To identify whether Cdx2 or Gata3 can activate trophoblast specific gene expression when expressed in R1 ES cells. To assess the dependency of Gata3 activity on Cdx2, Gata3 was also expressed in Cdx2-null ES cells. Keywords: gene expression
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
10 Samples
Download data: CEL, CHP
Series
Accession:
GSE12986
ID:
200012986
6.

Differentiation time course of trophoblast stem cells

(Submitter supplied) To characterized the changes in gene expression during the differentiation of TS cells. TS cells can be derived from two time point during embryogenesis, cell lines tested were from each of these time points. Keywords: time course
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
14 Samples
Download data: CEL, CHP
Series
Accession:
GSE12985
ID:
200012985
7.
Full record GDS3949

Cdx2 and Gata3 overexpression effect on R1 embryonic stem cell line

Analysis of R1 embryonic stem (ES) cells overexpressing transcription factor Cdx2 or Gata3 and cultured under trophoblast stem (TS) cell derivation conditions. Gata3-expressing Cdx2-null ES cells also examined. Results provide insight into the roles of Gata3 and Cdx2 in trophoblast development.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation, 3 protocol sets
Platform:
GPL1261
Series:
GSE12999
10 Samples
Download data: CEL, CHP
DataSet
Accession:
GDS3949
ID:
3949
8.
Full record GDS3948

Trophoblast stem cell differentiation in vitro

Analysis of trophoblast stem (TS) cell lines TS3.5 and TS6.5 derived from 2 time points during embryogenesis (from blastocyst and E6.5 embryos, respectively) and differentiated over 6 days. Results provide insight into the molecular basis of trophoblast development.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 cell line, 2 protocol, 7 time sets
Platform:
GPL1261
Series:
GSE12999
14 Samples
Download data: CEL, CHP
DataSet
Accession:
GDS3948
ID:
3948
9.

Expression data of the control and CITED1 OE ESCs

(Submitter supplied) Trophoblast lineages, as the precursor of placenta, are essential for post-implantation embryo survival. However, the regulatory networks for trophoblast development remains incompletely understood. Here, we identified CITED1 as a regulator to induce trophoblast-like differentiation from mESCs. Overexpression of CITED1 in ESCs prompted differentiation towards trophoblast accompanying with elevated expression of trophoblast marker genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
15 Samples
Download data: CEL, CHP
Series
Accession:
GSE103414
ID:
200103414
10.

Genome-wide map of SET1A occupancy in mouse ES cells

(Submitter supplied) To identify SET1A genome-wide occupancy and further unveil its role in transcriptional regulation in mouse ES cells, we carried out chromatin immunoprecipitation followed by high sequencing (ChIP-seq).We established a stable ES cell line expressing 2X Flag tagged SET1A and performed ChIP with anti-Flag M2 beads, followed by deep sequencing. We found that the SET1A peaks show an outstanding enrichment in promoter region. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED, BW
Series
Accession:
GSE66067
ID:
200066067
11.

Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10333 GPL9250 GPL1261
17 Samples
Download data: CEL, TXT
Series
Accession:
GSE85029
ID:
200085029
12.

Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (ChIP-seq)

(Submitter supplied) Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9250
2 Samples
Download data: BED
Series
Accession:
GSE85028
ID:
200085028
13.

Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (vsmutNT)

(Submitter supplied) Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10333
3 Samples
Download data: TXT
Series
Accession:
GSE85027
ID:
200085027
14.

Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (vsmutCT)

(Submitter supplied) Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10333
3 Samples
Download data: TXT
Series
Accession:
GSE85026
ID:
200085026
15.

Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (vsmut)

(Submitter supplied) Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10333
3 Samples
Download data: TXT
Series
Accession:
GSE85025
ID:
200085025
16.

Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (Affy)

(Submitter supplied) Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE85006
ID:
200085006
17.

Cells with features of totipotency derived from human ESC and iPSC by transient BMP4 exposure

(Submitter supplied) Human pluripotent stem cells (hPSC) exposed to BMP4 (B) and inhibitors of ACTIVIN signaling (A83-01; A) and FGF2 (PD173074; P) in absence of FGF2 (BAP conditions) differentiate into colonies primarily comprised of trophoblast. In an attempt to isolate trophoblast stem cells, colonies of hESC were exposed to BAP for 24 h at which time they had begun to transition into a CDX2-positive state. Cultures were then dissociated into single cells by trypsin and grown on a gelatin substratum. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
6 Samples
Download data
Series
Accession:
GSE62065
ID:
200062065
18.

TG-interacting factor1 (Tgif1) maintains the identity of mouse ES cells by counterbalancing the expression of core pluripotency factors and ES cell core factors

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL8321
22 Samples
Download data: CEL, TXT
Series
Accession:
GSE55437
ID:
200055437
19.

TG-interacting factor1 (Tgif1) maintains the identity of mouse ES cells by counterbalancing the expression of ES cell core factors

(Submitter supplied) TG-interacting factor1 (Tgif1) is well-known as a transcriptional repressor in transforming growth factor beta (TGFβ) signaling pathway. Target mapping of ES cell core factors in mouse embryonic stem (ES) cells revealed that Tgif1 is occupied by Oct4 and Nanog. Moreover, recent interactome study of mouse gene regulatory regions showed a preferential regulation of Tgif1 by mouse ES cell specific enhancers. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
6 Samples
Download data: TXT
Series
Accession:
GSE55404
ID:
200055404
20.

TG-interacting factor1 (Tgif1) maintains the identity of mouse ES cells by counterbalancing the expression of core pluripotency factors.

(Submitter supplied) TG-interacting factor1 (Tgif1) is well-known as a transcriptional repressor in transforming growth factor beta (TGFβ) signaling pathway. Target mapping of ES core factors in mouse embryonic stem (ES) cells revealed that Tgif1 is occupied by Oct4 and Nanog. Moreover, recent interactome study of mouse gene regulatory regions showed a preferential regulation of Tgif1 by mouse ES cell specific enhancers. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8321
16 Samples
Download data: CEL
Series
Accession:
GSE55401
ID:
200055401
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_66b57b1b8e929f777275b685|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center