U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 9

1.

Investigating patterns of chromatin accessibility, histone modifications, and insulation involved in rattlesnake venom gene regulation

(Submitter supplied) We generated ATAC-seq data for pre- and post-extraction venom gland samples and H3K4me3, H3K27ac, and CTCF ChIP-seq from post-extraction venom gland samples from the Prairie Rattlesnake to investigate patterns of chromatin accessibility, transcription factor binding, and insulation during venom production, and to identify open promoters and active enhancer regions.
Organism:
Crotalus viridis
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL29886
6 Samples
Download data: BW, NARROWPEAK, TXT
Series
Accession:
GSE169217
ID:
200169217
2.

Diverse gene regulatory mechanisms alter rattlesnake venom gene expression at fine evolutionary scales

(Submitter supplied) Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic variation evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce variation in venom gene expression. more...
Organism:
Crotalus concolor; Crotalus viridis; Crotalus lutosus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL29886 GPL34139 GPL34140
11 Samples
Download data: BW
Series
Accession:
GSE254420
ID:
200254420
3.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Hylobates lar; Hylobates muelleri; Nomascus gabriellae; Nomascus leucogenys; Symphalangus syndactylus; Hylobates moloch; Hylobates pileatus; Hoolock leuconedys
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
15 related Platforms
60 Samples
Download data: TXT
Series
Accession:
GSE136968
ID:
200136968
4.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome [WGS]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Hylobates lar; Hylobates pileatus; Nomascus leucogenys; Symphalangus syndactylus; Nomascus gabriellae; Hylobates muelleri; Hylobates moloch; Hoolock leuconedys
Type:
Other
14 related Platforms
23 Samples
Download data: XLSX
Series
Accession:
GSE136966
ID:
200136966
5.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome[RNA-Seq]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Nomascus leucogenys
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL25055 GPL24727
9 Samples
Download data: TXT
Series
Accession:
GSE136965
ID:
200136965
6.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome [PU.1 ChIP-seq]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Nomascus leucogenys
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL27430
4 Samples
Download data: BEDGRAPH, TXT, XLSX
Series
Accession:
GSE136964
ID:
200136964
7.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome [Histone ChIP-seq]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Nomascus leucogenys
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL25055 GPL24727
24 Samples
Download data: BEDGRAPH
Series
Accession:
GSE136963
ID:
200136963
8.

Chromatin states and transcriptome of CD8+ T cells over the course of differentiation

(Submitter supplied) The goal of this study is to analyze the contribution of transposable elements (TEs) tocis-regulation in CD8+ T cells. Using a combination of NGS techniques we show that specific subfamilies of TEs are enriched, and distributed in a lineage-specific fashion in core and boundary domains of CD8+T cell enhancers.This study represents the first detailed analysis of the topology and the enhancer domain-associated putative functions of distinct TE types.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
23 Samples
Download data: BW, WIG
Series
Accession:
GSE142151
ID:
200142151
9.

Evolutionary co-option of a Drosophila enhancer of the yellow gene through shared chromatin accessibility input

(Submitter supplied) The diversity of forms in multicellular organisms originates largely from the spatial redeployment of genes expressed during development. Several scenarios explain the emergence of cis-regulatory elements that govern novel aspects of a gene expression pattern. One scenario, enhancer co-option, holds that a DNA sequence producing an ancestral regulatory activity also becomes the template for a new regulatory activity and shares regulatory information. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19951
6 Samples
Download data: BW
Series
Accession:
GSE142176
ID:
200142176
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=14|blobid=MCID_67432fa69717406d363a0f7c|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center