U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly

(Submitter supplied) ATP-dependent chromatin remodelers (CRs), including SWI/SNF, RSC and Ino80C in budding yeast, are thought to stimulate transcription by repositioning or evicting promoter nucleosomes. The relative importance of these CRs in stimulating activator binding and recruitment of TATA-binding protein (TBP) to promoters is incompletely understood. Examining mutants depleted of the catalytic subunits of these CRs, we determined that RSC and Ino80C stimulate binding of transcription factor Gcn4 to nucleosome-depleted regions, or linkers between genic nucleosomes, at multiple target genes activated by Gcn4 in amino acid-starved cells, frequently by evicting nucleosomes from the Gcn4 binding motifs.  At some genes, SWI/SNF functionally complements RSC, while opposing RSC at others to limit Gcn4 binding. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL23014
71 Samples
Download data: BW
Series
Accession:
GSE192592
ID:
200192592
2.

Chromatin Remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast

(Submitter supplied) The chromatin remodelers (CRs) SWI/SNF and RSC function in evicting promoter nucleosomes at highly expressed yeast genes, particularly those activated by transcription factor Gcn4. Ino80 remodeling complex (Ino80C) can establish nucleosome-depleted regions (NDRs) in reconstituted chromatin, and was implicated in removing histone variant H2A.Z from the -1 and +1 nucleosomes flanking NDRs; however, Ino80C’s function in transcriptional activation in vivo is not well understood. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL23014
101 Samples
Download data: BW
Series
Accession:
GSE142273
ID:
200142273
3.

The Chromatin Remodelers RSC and ISW1 Display Functional and Chromatin-based Promoter Antagonism

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array; Expression profiling by genome tiling array; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
21 Samples
Download data: BW, TXT
Series
Accession:
GSE65594
ID:
200065594
4.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [MNase-Seq]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
2 Samples
Download data: BW
Series
Accession:
GSE65593
ID:
200065593
5.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [ChIP-seq]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13821 GPL13272
7 Samples
Download data: BW
Series
Accession:
GSE65592
ID:
200065592
6.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [HybMap microarray]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by genome tiling array
Platform:
GPL19733
6 Samples
Download data: TXT
Series
Accession:
GSE65591
ID:
200065591
7.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [nucleosome occupancy]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4130
2 Samples
Download data: TXT
Series
Accession:
GSE65590
ID:
200065590
8.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [ChIP-chip]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4130
4 Samples
Download data: TXT
Series
Accession:
GSE65589
ID:
200065589
9.

Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation

(Submitter supplied) Chaperones, nucleosome remodeling complexes and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these co-factors function ubiquitously, and the impact of nucleosome eviction on transcription genome-wide, are poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple co-factors to address these issues for ~200 genes belonging to the Gcn4 transcriptome, of which ~70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
67 Samples
Download data: BW
Series
Accession:
GSE74787
ID:
200074787
10.

Promoter DNA sequence guides factors that position the +1 nucleosome and facilitate TBP binding

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae; Saccharomyces cerevisiae S288C; Saccharomyces cerevisiae W303
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17342 GPL11232
64 Samples
Download data: BW, TXT
Series
Accession:
GSE98260
ID:
200098260
11.

Promoter DNA sequence guides factors that position the +1 nucleosome and facilitate TBP binding [sequencing]

(Submitter supplied) Here we present evidence that precise positioning of the +1 promoter nucleosome in yeast is critical for efficient TBP binding and pre-initiation complex assembly, and is determined, at least in part, by the action of two key factors, the essential chromatin remodeler RSC and one (or more) of a small set of ubiquitous pioneer transcription factors (PTFs). Despite their widespread co-localization, we show that RSC and PTFs often act independently to generate accessible chromatin. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
52 Samples
Download data: BW
Series
Accession:
GSE98259
ID:
200098259
12.

Promoter DNA sequence guides factors that position the +1 nucleosome and facilitate TBP binding [array]

(Submitter supplied) Here we present evidence that precise positioning of the +1 promoter nucleosome in yeast is critical for efficient TBP binding and pre-initiation complex assembly, and is determined, at least in part, by the action of two key factors, the essential chromatin remodeler RSC and one (or more) of a small set of ubiquitous pioneer transcription factors (PTFs). Despite their widespread co-localization, we show that RSC and PTFs often act independently to generate accessible chromatin. more...
Organism:
Saccharomyces cerevisiae W303; Saccharomyces cerevisiae; Saccharomyces cerevisiae S288C
Type:
Expression profiling by array
Platform:
GPL11232
12 Samples
Download data: TXT
Series
Accession:
GSE98205
ID:
200098205
13.

Nucleosome position mapping by micrococcal nuclease analysis of S. cerevisiae anchor-away Sth1, Swi2 and/of TBP cells in raffinose and galactose-rich media in rapamycin or DMSO

(Submitter supplied) We analyed the nucleosome positions by using 2 concentrations of micrococcal nuclease on yeast strains that were grown in raffinose or galactose containing media (synthetic complete). Strains contained FRB-tags to Sth1, Swi2, Sth1 & Swi2 or Sth1 and TBP, where TBP was tagged on one of two alleles in a diploid strain. Cells were treated for 60 min either with 7.5 uM rapamycin or the same volume of DMSO.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19756
34 Samples
Download data: TXT
Series
Accession:
GSE190737
ID:
200190737
14.

Differential requirements for Gcn5 and NuA4 HAT activities in the starvation-induced versus basal transcriptomes

(Submitter supplied) The histone acetyltransferase (HAT) subunit of coactivator complex SAGA, Gcn5, is required for efficient eviction of promoter nucleosomes at certain highly expressed yeast genes, including those activated by transcription factor Gcn4 in amino acid-deprived cells; however, the importance of other HAT complexes in this process was poorly understood. Analyzing mutations that disrupt the integrity or activity of HAT complexes NuA4 or NuA3, or the HAT Rtt109, revealed that only NuA4 acts on par with Gcn5, and functions additively, in evicting and repositioning promoter nucleosomes and stimulating transcription of starvation-induced genes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL27812 GPL23014
283 Samples
Download data: BIGWIG, BW
Series
Accession:
GSE207278
ID:
200207278
15.

Gcn4 binding in coding regions can activate internal and canonical 5’ promoters in yeast [RNA-seq]

(Submitter supplied) Gcn4 is a yeast transcriptional activator induced by amino acid starvation. ChIP-seq analysis revealed 546 genomic sites occupied by Gcn4 in starved cells, representing ~30% of all Gcn4 binding-motifs. Deviation from the consensus motif and nucleosome occupancy are key negative determinants of Gcn4 binding. Surprisingly, only ~40% of the bound sites are in promoter regions, and only ~50-67% of these activate transcription, indicating extensive negative control over Gcn4 function. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19756
12 Samples
Download data: TDF
Series
Accession:
GSE110413
ID:
200110413
16.

Gcn4 binding in coding regions can activate internal and canonical 5’ promoters in yeast [ChIP-seq]

(Submitter supplied) Gcn4 is a yeast transcriptional activator induced by amino acid starvation. ChIP-seq analysis revealed 546 genomic sites occupied by Gcn4 in starved cells, representing ~30% of all Gcn4 binding-motifs. Deviation from the consensus motif and nucleosome occupancy are key negative determinants of Gcn4 binding. Surprisingly, only ~40% of the bound sites are in promoter regions, and only ~50-67% of these activate transcription, indicating extensive negative control over Gcn4 function. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL23014
42 Samples
Download data: BW
Series
Accession:
GSE107532
ID:
200107532
17.

Role of rsc2 in nucleotide excision repair in yeast

(Submitter supplied) Nucleosomes are a significant barrier to the repair of UV damage because they impede damage recognition by nucleotide excision repair (NER). The RSC chromatin remodeler functions in cells to promote DNA access by moving or evicting nucleosomes and has been linked to NER in yeast. Here, we report genome-wide repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast cells lacking Rsc2.
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL18249
3 Samples
Download data: TXT, WIG
Series
Accession:
GSE168369
ID:
200168369
18.

Distinct roles for ATP-dependent chromatin remodeling enzymes in nucleotide excision repair in yeast

(Submitter supplied) Nucleosomes are a significant barrier to the repair of UV damage because they impede damage recognition by nucleotide excision repair (NER). The RSC and SWI/SNF chromatin remodelers function in cells to promote DNA access by moving or evicting nucleosomes and both have been linked to NER in yeast. Here, we report genome-wide repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast cells lacking RSC or SWI/SNF activity. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL18249
23 Samples
Download data: TXT, WIG
Series
Accession:
GSE161930
ID:
200161930
19.

RSC chromatin remodeler regulates base excision repair of MMS induced DNA damage

(Submitter supplied) Nucleosomes are a significant barrier to the repair of UV damage because they impede damage recognition by nucleotide excision repair (NER). The RSC and SWI/SNF chromatin remodelers function in cells to promote DNA access by moving or evicting nucleosomes and both have been linked to NER in yeast. Here, we report genome-wide repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast cells lacking RSC or SWI/SNF activity. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL18249
6 Samples
Download data: TXT, WIG
Series
Accession:
GSE161929
ID:
200161929
20.

Dynamics of yeast ISWI and CHD chromatin remodeler genomic association (part 2)

(Submitter supplied) Chromatin remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, yeast ISWI and CHD remodelers require > 20 bp of extranucleosomal DNA for remodeling, but linker DNA in S. cerevisiae averages < 20 bp. To resolve this paradox, we have mapped the genomic distributions of the yeast Isw1, Isw2, and Chd1 remodelers at base-pair resolution. Surprisingly, remodelers are highly enriched at promoter nucleosome depleted regions (5' NDRs), where they bind to regions of extended linker DNA. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
11 Samples
Download data: WIG
Series
Accession:
GSE39431
ID:
200039431
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_668a224749fc8a232550aac9|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center