U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes > Kartagener syndrome

Summary

Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disorder resulting from loss of function of different parts of the primary ciliary apparatus, most often dynein arms. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus (270100), and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). Genetic Heterogeneity of Primary Ciliary Dyskinesia Other forms of primary ciliary dyskinesia include CILD2 (606763), caused by mutation in the DNAAF3 gene (614566) on 19q13; CILD3 (608644), caused by mutation in the DNAH5 gene (603335) on 5p15; CILD4 (608646), mapped to 15q13; CILD5 (608647), caused by mutation in the HYDIN gene (610812) on 16q22; CILD6 (610852), caused by mutation in the TXNDC3 gene (607421) on 7p14; CILD7 (611884), caused by mutation in the DNAH11 gene (603339) on 7p15; CILD8 (612274), mapped to 15q24-q25; CILD9 (612444), caused by mutation in the DNAI2 gene (605483) on 17q25; CILD10 (612518), caused by mutation in the DNAAF2 gene (612517) on 14q21; CILD11 (612649), caused by mutation in the RSPH4A gene (612647) on 6q22; CILD12 (612650), caused by mutation in the RSPH9 gene (612648) on 6p21; CILD13 (613193), caused by mutation in the DNAAF1 gene (613190) on 16q24; CILD14 (613807), caused by mutation in the CCDC39 gene (613798) gene on 3q26; CILD15 (613808), caused by mutation in the CCDC40 gene (613799) on 17q25; CILD16 (614017), caused by mutation in the DNAL1 gene (610062) on 14q24; CILD17 (614679), caused by mutation in the DNAAF19 gene (614677) on 17q21; CILD18 (614874), caused by mutation in the DNAAF5 gene (614864) on 7p22; CILD19 (614935), caused by mutation in the DNAAF11 gene (614930) on 8q24; CILD20 (615067), caused by mutation in the CCDC114 gene (615038) on 19q13; CILD21 (615294), caused by mutation in the DRC1 gene (615288) on 2p23; CILD22 (615444), caused by mutation in the ZMYND10 gene (607070) on 3p21; CILD23 (615451), caused by mutation in the ARMC4 gene (615408) on 10p; CILD24 (615481), caused by mutation in the RSPH1 gene (609314) on 21q22; CILD25 (615482), caused by mutation in the DYX1C1 gene (608706) on 15q21; CILD26 (615500), caused by mutation in the C21ORF59 gene (615494) on 21q22; CILD27 (615504), caused by mutation in the CCDC65 gene (611088) on 12q13; CILD28 (615505), caused by mutation in the SPAG1 gene (603395) on 8q22; CILD29 (615872), caused by mutation in the CCNO gene (607752) on 5q11; CILD30 (616037), caused by mutation in the CCDC151 gene (615956) on 19p13; CILD32 (616481), caused by mutation in the RSPH3 gene (615876) on 6q25; CILD33 (616726), caused by mutation in the GAS8 gene (605178) on 16q24; CILD34 (617091), caused by mutation in the DNAJB13 gene (610263) on 11q13; CILD35 (617092), caused by mutation in the TTC25 gene (617095) on 17q21; CILD36 (300991), caused by mutation in the DNAAF6 gene (300933) on Xq22; CILD37 (617577), caused by mutation in the DNAH1 gene (603332) on 3p21; CILD38 (618063), caused by mutation in the CFAP300 gene (618058) on 11q22; CILD39 (618254), caused by mutation in the LRRC56 gene (618227) on 11p15; CILD40 (618300), caused by mutation in the DNAH9 gene (603330) on 17p12; CILD41 (618449), caused by mutation in the GAS2L2 gene (611398) on 17q12; CILD42 (618695), caused by mutation in the MCIDAS gene (614086) on 5q11; CILD43 (618699), caused by mutation in the FOXJ1 gene (602291) on 17q25; CILD44 (618781), caused by mutation in the NEK10 gene (618726) on 3p24; CILD45 (618801), caused by mutation in the TTC12 gene (610732) on 11q23; CILD46 (619436), caused by mutation in the STK36 gene (607652) on 2q35; CILD47 (619466), caused by mutation in the TP73 gene (601990) on 1p36; CILD48 (620032), caused by mutation in the NME5 gene (603575) on chromosome 5q31; CILD49 (620197), caused by mutation in the CFAP74 gene (620187) on chromosome 1p36; CILD50 (620356), caused by mutation in the DNAH7 gene (610061) on chromosome 2q32; CILD51 (620438), caused by mutation in the BRWD1 gene (617824) on chromosome 21q22; CILD52 (620570), caused by mutation in the DAW1 gene (620279) on chromosome 2q36; and CILD53 (620642), caused by mutation in the CLXN gene (619564) on chromosome 8q11. Ciliary abnormalities have also been reported in association with both X-linked and autosomal forms of retinitis pigmentosa. Mutations in the RPGR gene (312610), which underlie X-linked retinitis pigmentosa (RP3; 300029), are in some instances (e.g., 312610.0016) associated with recurrent respiratory infections indistinguishable from immotile cilia syndrome; see 300455. Afzelius (1979) gave an extensive review of cilia and their disorders. There are also several possibly distinct CILDs described based on the electron microscopic appearance of abnormal cilia, including CILD with transposition of the microtubules (215520), CILD with excessively long cilia (242680), and CILD with defective radial spokes (242670). [from OMIM]

Available tests

94 tests are in the database for this condition.

Check Related conditions for additional relevant tests.

Genes See tests for all associated and related genes

  • Also known as: CILD1, DIC1, ICS1, PCD, oda6, DNAI1
    Summary: dynein axonemal intermediate chain 1

Clinical features

Help

Show allHide all

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.