U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Elevated lactate:pyruvate ratio

MedGen UID:
1717835
Concept ID:
C5397670
Finding
HPO: HP:0032653

Definition

An abnormal increase in the molar ratio of lactate to pyruvate in the blood circulation. [from HPO]

Term Hierarchy

CClinical test,  RResearch test,  OOMIM,  GGeneReviews,  VClinVar  
  • CROGVElevated lactate:pyruvate ratio

Conditions with this feature

Hepatoencephalopathy due to combined oxidative phosphorylation defect type 1
MedGen UID:
322999
Concept ID:
C1836797
Disease or Syndrome
Combined oxidative phosphorylation deficiency is an autosomal recessive multisystem disorder with variable manifestations resulting from a defect in the mitochondrial oxidative phosphorylation (OXPHOS) system. Onset occurs at or soon after birth, and features can include growth retardation, microcephaly, hypertonicity, axial hypotonia, encephalopathy, cardiomyopathy, and liver dysfunction. Death usually occurs in the first weeks or years of life (summary by Smits et al., 2011). Genetic Heterogeneity of Combined Oxidative Phosphorylation Deficiency See also COXPD2 (610498), caused by mutation in the MRPS16 gene (609204) on 10q22; COXPD3 (610505), caused by mutation in the TSFM gene (604723) on 12q14; COXPD4 (610678), caused by mutation in the TUFM gene (602389) on 16p11; COXPD5 (611719), caused by mutation in the MRPS22 gene (605810) on 3q23; COXPD6 (300816), caused by mutation in the AIFM1 gene (300169) on Xq26; COXPD7 (613559), caused by mutation in the MTRFR gene (613541) on 12q24; COXPD8 (614096), caused by mutation in the AARS2 gene (612035) on 6p21; COXPD9 (614582), caused by mutation in the MRPL3 gene (607118) on 3q22; COXPD10 (614702), caused by mutation in the MTO1 gene (614667) on 6q13; COXPD11 (614922), caused by mutation in the RMND1 gene (614917) on 6q25; COXPD12 (614924), caused by mutation in the EARS2 gene (612799) on 16p13; COXPD13 (614932), caused by mutation in the PNPT1 gene (610316) on 2p16; COXPD14 (614946), caused by mutation in the FARS2 gene (611592) on 6p25; COXPD15 (614947), caused by mutation in the MTFMT gene (611766) on 15q; COXPD16 (615395), caused by mutation in the MRPL44 gene (611849) on 2q36; COXPD17 (615440), caused by mutation in the ELAC2 gene (605367) on 17p11; COXPD18 (615578), caused by mutation in the SFXN4 gene (615564) on 10q26; COXPD19 (615595), caused by mutation in the LYRM4 gene (613311) on 6p25; COXPD20 (615917), caused by mutation in the VARS2 gene (612802) on 6p21; COXPD21 (615918), caused by mutation in the TARS2 gene (612805) on 1q21; COXPD22 (616045), caused by mutation in the ATP5A1 gene (164360) on 18q12; COXPD23 (616198), caused by mutation in the GTPBP3 (608536) gene on 19p13; COXPD24 (616239), caused by mutation in the NARS2 gene (612803) on 11q14; COXPD25 (616430), caused by mutation in the MARS2 gene (609728) on 2q33; COXPD26 (616539), caused by mutation in the TRMT5 gene (611023) on 14q23; COXPD27 (616672), caused by mutation in the CARS2 gene (612800) on 13q34; COXPD28 (616794), caused by mutation in the SLC25A26 gene (611037) on 3p14; COXPD29 (616811), caused by mutation in the TXN2 gene (609063) on 22q12; COXPD30 (616974), caused by mutation in the TRMT10C gene (615423) on 3q12; and COXPD31 (617228), caused by mutation in the MIPEP gene (602241) on 13q12; COXPD32 (617664), caused by mutation in the MRPS34 gene (611994) on 16q13; COXPD33 (617713), caused by mutation in the C1QBP gene (601269) on 17p13; and COXPD34 (617872), caused by mutation in the MRPS7 gene (611974) on 17q25; COXPD35 (617873), caused by mutation in the TRIT1 gene (617840) on 1p34; COXPD36 (617950), caused by mutation in the MRPS2 gene (611971) on 9q34; COXPD37 (618329), caused by mutation in the MICOS13 gene (616658) on 19p13; COXPD38 (618378), caused by mutation in the MRPS14 gene (611978) on 1q23; COXPD39 (618397), caused by mutation in the GFM2 gene (606544) on 5q13; COXPD40 (618835), caused by mutation in the QRSL1 gene (617209) on 6q21; COXPD41 (618838), caused by mutation in the GATB gene (603645) on 4q31; COXPD42 (618839), caused by mutation in the GATC gene (617210) on 12q24; COXPD43 (618851), caused by mutation in the TIMM22 gene (607251) on 17p13; COXPD44 (618855), caused by mutation in the FASTKD2 gene (612322) on 2q33; COXPD45 (618951), caused by mutation in the MRPL12 gene (602375) on 17q25; COXPD46 (618952), caused by mutation in the MRPS23 gene (611985) on 17q22; COXPD47 (618958), caused by mutation in the MRPS28 gene (611990) on 8q21; COXPD48 (619012), caused by mutation in the NSUN3 gene (617491) on 3q11; COXPD49 (619024), caused by mutation in the MIEF2 gene (615498) on 17p11; COXPD50 (619025), caused by mutation in the MRPS25 gene (611987) on 3p25; COXPD51 (619057), caused by mutation in the PTCD3 gene (614918) on 2p11; COXPD52 (619386), caused by mutation in the NFS1 gene (603485) on 20q11; COXPD53 (619423), caused by mutation in the C2ORF69 gene (619219) on 2q33; and COXPD54 (619737), caused by mutation in the PRORP gene (609947) on 14q13.; COXPD55 (619743), caused by mutation in the POLRMT gene (601778) on 19p13; COXPD56 (620139), caused by mutation in the TAMM41 gene (614948) on 3p25; COXPD57 (620167), caused by mutation in the CRLS1 gene (608188) on 20p12; COXPD58 (620451), caused by mutation in the TEFM gene (616422) on 17q11; and COXPD59 (620646), caused by mutation in the MRPL39 gene (611845) on 21q21.
Mitochondrial complex I deficiency
MedGen UID:
374101
Concept ID:
C1838979
Disease or Syndrome
Isolated complex I deficiency is a rare inborn error of metabolism due to mutations in nuclear or mitochondrial genes encoding subunits or assembly factors of the human mitochondrial complex I (NADH: ubiquinone oxidoreductase) and is characterized by a wide range of manifestations including marked and often fatal lactic acidosis, cardiomyopathy, leukoencephalopathy, pure myopathy and hepatopathy with tubulopathy. Among the numerous clinical phenotypes observed are Leigh syndrome, Leber hereditary optic neuropathy and MELAS syndrome (see these terms).
Fatal mitochondrial disease due to combined oxidative phosphorylation defect type 3
MedGen UID:
355842
Concept ID:
C1864840
Disease or Syndrome
Combined oxidative phosphorylation deficiency type 3 is an extremely rare clinically heterogenous disorder described in about 5 patients to date. Clinical signs included hypotonia, lactic acidosis, and hepatic insufficiency, with progressive encephalomyopathy or hypertrophic cardiomyopathy.
Autosomal recessive ataxia due to ubiquinone deficiency
MedGen UID:
436985
Concept ID:
C2677589
Disease or Syndrome
Primary coenzyme Q10 (CoQ10) deficiency is usually associated with multisystem involvement, including neurologic manifestations such as fatal neonatal encephalopathy with hypotonia; a late-onset slowly progressive multiple-system atrophy-like phenotype (neurodegeneration with autonomic failure and various combinations of parkinsonism and cerebellar ataxia, and pyramidal dysfunction); and dystonia, spasticity, seizures, and intellectual disability. Steroid-resistant nephrotic syndrome (SRNS), the hallmark renal manifestation, is often the initial manifestation either as isolated renal involvement that progresses to end-stage renal disease (ESRD), or associated with encephalopathy (seizures, stroke-like episodes, severe neurologic impairment) resulting in early death. Hypertrophic cardiomyopathy (HCM), retinopathy or optic atrophy, and sensorineural hearing loss can also be seen.
Mitochondrial DNA depletion syndrome 9
MedGen UID:
462826
Concept ID:
C3151476
Disease or Syndrome
SUCLG1-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized in the majority of affected newborns by hypotonia, muscle atrophy, feeding difficulties, and lactic acidosis. Affected infants commonly manifest developmental delay / cognitive impairment, growth retardation / failure to thrive, hepatopathy, sensorineural hearing impairment, dystonia, and hypertonia. Notable findings in some affected individuals include hypertrophic cardiomyopathy, epilepsy, myoclonus, microcephaly, sleep disturbance, rhabdomyolysis, contractures, hypothermia, and/or hypoglycemia. Life span is shortened, with median survival of 20 months.
Mitochondrial complex III deficiency nuclear type 1
MedGen UID:
762097
Concept ID:
C3541471
Disease or Syndrome
Autosomal recessive mitochondrial complex III deficiency is a severe multisystem disorder with onset at birth of lactic acidosis, hypotonia, hypoglycemia, failure to thrive, encephalopathy, and delayed psychomotor development. Visceral involvement, including hepatopathy and renal tubulopathy, may also occur. Many patients die in early childhood, but some may show longer survival (de Lonlay et al., 2001; De Meirleir et al., 2003). Genetic Heterogeneity of Mitochondrial Complex III Deficiency Mitochondrial complex III deficiency can be caused by mutation in several different nuclear-encoded genes. See MC3DN2 (615157), caused by mutation in the TTC19 gene (613814) on chromosome 17p12; MC3DN3 (615158), caused by mutation in the UQCRB gene (191330) on chromosome 8q; MC3DN4 (615159), caused by mutation in the UQCRQ gene (612080) on chromosome 5q31; MC3DN5 (615160), caused by mutation in the UQCRC2 gene (191329) on chromosome 16p12; MC3DN6 (615453), caused by mutation in the CYC1 gene (123980) on chromosome 8q24; MC3DN7 (615824), caused by mutation in the UQCC2 gene (614461) on chromosome 6p21; MC3DN8 (615838), caused by mutation in the LYRM7 gene (615831) on chromosome 5q23; MC3DN9 (616111), caused by mutation in the UQCC3 gene (616097) on chromosome 11q12; and MC3DN10 (618775), caused by mutation in the UQCRFS1 gene (191327) on chromosome 19q12. See also MTYCB (516020) for a discussion of a milder phenotype associated with isolated mitochondrial complex III deficiency and mutations in a mitochondrial-encoded gene.
Deafness-encephaloneuropathy-obesity-valvulopathy syndrome
MedGen UID:
766268
Concept ID:
C3553354
Disease or Syndrome
Primary coenzyme Q10 (CoQ10) deficiency is usually associated with multisystem involvement, including neurologic manifestations such as fatal neonatal encephalopathy with hypotonia; a late-onset slowly progressive multiple-system atrophy-like phenotype (neurodegeneration with autonomic failure and various combinations of parkinsonism and cerebellar ataxia, and pyramidal dysfunction); and dystonia, spasticity, seizures, and intellectual disability. Steroid-resistant nephrotic syndrome (SRNS), the hallmark renal manifestation, is often the initial manifestation either as isolated renal involvement that progresses to end-stage renal disease (ESRD), or associated with encephalopathy (seizures, stroke-like episodes, severe neurologic impairment) resulting in early death. Hypertrophic cardiomyopathy (HCM), retinopathy or optic atrophy, and sensorineural hearing loss can also be seen.
Multiple mitochondrial dysfunctions syndrome 3
MedGen UID:
815495
Concept ID:
C3809165
Disease or Syndrome
Multiple mitochondrial dysfunctions syndrome-3 (MMDS3) is an autosomal recessive severe neurodegenerative disorder characterized by loss of previously acquired developmental milestones in the first months or years of life. Some affected patients have normal development in early infancy before the onset of symptoms, whereas others show delays from birth. Features included loss of motor function, spasticity, pyramidal signs, loss of speech, and cognitive impairment. The disease course is highly variable: some patients die of respiratory failure early in childhood, whereas some survive but may be bedridden with a feeding tube. Less commonly, some patients may survive and have a stable course with motor deficits and mild or even absent cognitive impairment, although there may be fluctuating symptoms, often in response to infection. Other variable features include visual problems and seizures. Brain imaging shows diffuse leukodystrophy in the subcortical region, brainstem, cerebellum, and spinal cord. Laboratory studies tend to show increased lactate and CSF glycine, and decreased activity of mitochondrial complexes I and II, although these findings are also variable. There may be additional biochemical evidence of mitochondrial dysfunction (summary by Liu et al., 2018). For a general description and a discussion of genetic heterogeneity of multiple mitochondrial dysfunctions syndrome, see MMDS1 (605711).
Mitochondrial complex III deficiency nuclear type 6
MedGen UID:
815883
Concept ID:
C3809553
Disease or Syndrome
Mitochondrial complex III deficiency nuclear type 6 (MC3DN6) is an autosomal recessive disorder caused by mitochondrial dysfunction. It is characterized by onset in early childhood of episodic acute lactic acidosis, ketoacidosis, and insulin-responsive hyperglycemia, usually associated with infection. Laboratory studies show decreased activity of mitochondrial complex III. Psychomotor development is normal (summary by Gaignard et al., 2013). For a discussion of genetic heterogeneity of mitochondrial complex III deficiency, see MC3DN1 (124000).
Mitochondrial complex III deficiency nuclear type 9
MedGen UID:
863690
Concept ID:
C4015253
Disease or Syndrome
Any mitochondrial complex III deficiency in which the cause of the disease is a mutation in the UQCC3 gene.
Developmental and epileptic encephalopathy, 51
MedGen UID:
1372686
Concept ID:
C4479208
Disease or Syndrome
Developmental and epileptic encephalopathy-51 (DEE51) is an autosomal recessive severe neurodevelopmental disorder characterized by onset of intractable seizures and hypotonia in the first days or weeks of life. Affected individuals have severely delayed psychomotor development and may show abnormal movements. Brain imaging shows nonspecific abnormalities, such as cerebral atrophy, cerebellar atrophy, and delayed myelination. Laboratory studies showed increased lactate, suggesting mitochondrial dysfunction (summary by Ait-El-Mkadem et al., 2017). For a discussion of genetic heterogeneity of DEE, see 308350.
Combined oxidative phosphorylation defect type 9
MedGen UID:
1634481
Concept ID:
C4706315
Disease or Syndrome
A rare mitochondrial disease due to a defect in mitochondrial protein synthesis characterized by initially normal growth and development followed by the infantile-onset of failure to thrive, psychomotor delay, poor feeding, dyspnea, severe hypertrophic cardiomyopathy and hepatomegaly. Laboratory studies report increased plasma lactate and alanine, abnormal liver enzymes and decreased activity of mitochondrial respiratory chain complexes I, III, IV, and V. Caused by compound heterozygous mutation in the MRPL3 gene on chromosome 3q22.
Mitochondrial complex 1 deficiency, nuclear type 22
MedGen UID:
1648347
Concept ID:
C4748796
Disease or Syndrome
Mitochondrial complex 1 deficiency, nuclear type 26
MedGen UID:
1648283
Concept ID:
C4748809
Disease or Syndrome
Mitochondrial complex 1 deficiency, nuclear type 29
MedGen UID:
1648451
Concept ID:
C4748830
Disease or Syndrome
Mitochondrial complex I deficiency nuclear type 29 (MC1DN29) is an autosomal recessive metabolic disorder that usually presents in childhood, adolescence, or adulthood with exercise intolerance and easy fatigue with myalgias and muscle weakness. However, a severe multisystem presentation with chronic renal failure and cardiomyopathy in infancy has been reported (Sanchez-Caballero et al., 2016; Alston et al., 2016). For a discussion of genetic heterogeneity of mitochondrial complex I deficiency, see 252010.
Paganini-Miozzo syndrome
MedGen UID:
1683361
Concept ID:
C5193010
Disease or Syndrome
Paganini-Miozzo syndrome (MRXSPM) is a neurodevelopmental disorder characterized by global developmental delay, impaired intellectual development, high myopia, and mild dysmorphic facial features (summary by Paganini et al., 2019)
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1
MedGen UID:
1748867
Concept ID:
C5399977
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Mitochondrial complex 1 deficiency, nuclear type 35
MedGen UID:
1745427
Concept ID:
C5436576
Disease or Syndrome
Combined oxidative phosphorylation defect type 30
MedGen UID:
1799028
Concept ID:
C5567605
Disease or Syndrome
A rare mitochondrial oxidative phosphorylation disorder with characteristics of neonatal onset of hypotonia, feeding difficulties, deafness, and early fatal respiratory failure. Cardiac and liver involvement has been reported. Serum lactate is increased and metabolic studies show decreased activity of mitochondrial respiratory complexes I and IV in skeletal muscle.
Combined oxidative phosphorylation deficiency 54
MedGen UID:
1812715
Concept ID:
C5676912
Disease or Syndrome
Combined oxidative phosphorylation deficiency-54 (COXPD54) is an autosomal recessive disorder with pleiotropic multisystem presentations resulting from a disruption in mitochondrial transcription and translation. The phenotype is highly variable. Many patients have early-onset sensorineural hearing loss, sometimes in isolation, and sometimes associated with global developmental delay or primary ovarian failure. Other features may include peripheral hypertonia, seizures, muscle weakness, behavioral abnormalities, and leukoencephalopathy on brain imaging. Serum lactate may or may not be elevated (summary by Hochberg et al., 2021). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Mitochondrial complex II deficiency, nuclear type 1
MedGen UID:
1814582
Concept ID:
C5700310
Disease or Syndrome
Mitochondrial complex II deficiency is an autosomal recessive multisystemic metabolic disorder with a highly variable phenotype. Some patients have multisystem involvement of the brain, heart, and muscle with onset in infancy, whereas others have only isolated cardiac or muscle involvement. Measurement of complex II activity in muscle is the most reliable means of diagnosis; however, there is no clear correlation between residual complex II activity and severity or clinical outcome. In some cases, treatment with riboflavin may have clinical benefit (summary by Jain-Ghai et al., 2013). Complex II, also known as succinate dehydrogenase, is part of the mitochondrial respiratory chain. Genetic Heterogeneity of Mitochondrial Complex II Deficiency See MC2DN2 (619166), caused by mutation in the SDHAF1 gene (612848) on chromosome 19q13; MC2DN3 (619167), caused by mutation in the SDHD gene (602690) on chromosome 11q23; and MC2DN4 (619224), caused by mutation in the SDHB gene (185470) on chromosome 1p36. Fullerton et al. (2020) reviewed the genetic basis of isolated mitochondrial complex II deficiency.

Professional guidelines

PubMed

Bernini A, Miroz JP, Abed-Maillard S, Favre E, Iaquaniello C, Ben-Hamouda N, Oddo M
Sci Rep 2022 Feb 22;12(1):3035. doi: 10.1038/s41598-022-07129-z. PMID: 35194150Free PMC Article
Hosmann A, Wang WT, Dodier P, Bavinzski G, Engel A, Herta J, Plöchl W, Reinprecht A, Gruber A
Neurosurgery 2020 Sep 15;87(4):712-719. doi: 10.1093/neuros/nyz500. PMID: 31792510
Chou YH, Tsou Yau KI, Wang PJ
Acta Paediatr 1998 Jul;87(7):764-8. doi: 10.1080/080352598750013851. PMID: 9722250

Recent clinical studies

Etiology

Addevico F, Svedman S, Edman G, Ackermann PW
Scand J Med Sci Sports 2019 Oct;29(10):1529-1536. Epub 2019 Jun 5 doi: 10.1111/sms.13469. PMID: 31102560
Stein NR, McArthur DL, Etchepare M, Vespa PM
Neurocrit Care 2012 Aug;17(1):49-57. doi: 10.1007/s12028-012-9708-y. PMID: 22528283
Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM
Crit Care Med 2008 Oct;36(10):2871-7. doi: 10.1097/CCM.0b013e318186a4a0. PMID: 18766106
Hatherill M, Salie S, Waggie Z, Lawrenson J, Hewitson J, Reynolds L, Argent A
Intensive Care Med 2007 May;33(5):822-829. Epub 2007 Mar 22 doi: 10.1007/s00134-007-0593-3. PMID: 17377768
Vespa PM, O'Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, Glenn T, Hovda DA
Crit Care Med 2007 Apr;35(4):1153-60. doi: 10.1097/01.CCM.0000259466.66310.4F. PMID: 17334254

Diagnosis

Stein NR, McArthur DL, Etchepare M, Vespa PM
Neurocrit Care 2012 Aug;17(1):49-57. doi: 10.1007/s12028-012-9708-y. PMID: 22528283
Larach DB, Kofke WA, Le Roux P
Neurocrit Care 2011 Dec;15(3):609-22. doi: 10.1007/s12028-011-9517-8. PMID: 21336786
Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM
Crit Care Med 2008 Oct;36(10):2871-7. doi: 10.1097/CCM.0b013e318186a4a0. PMID: 18766106

Therapy

Plummer MP, Notkina N, Timofeev I, Hutchinson PJ, Finnis ME, Gupta AK
Crit Care 2018 Jan 25;22(1):16. doi: 10.1186/s13054-017-1933-5. PMID: 29368635Free PMC Article
Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D
Crit Care Med 2006 Mar;34(3):850-6. doi: 10.1097/01.CCM.0000201875.12245.6F. PMID: 16505665
Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA
J Cereb Blood Flow Metab 2005 Jun;25(6):763-74. doi: 10.1038/sj.jcbfm.9600073. PMID: 15716852Free PMC Article

Prognosis

Addevico F, Svedman S, Edman G, Ackermann PW
Scand J Med Sci Sports 2019 Oct;29(10):1529-1536. Epub 2019 Jun 5 doi: 10.1111/sms.13469. PMID: 31102560
Stein NR, McArthur DL, Etchepare M, Vespa PM
Neurocrit Care 2012 Aug;17(1):49-57. doi: 10.1007/s12028-012-9708-y. PMID: 22528283
Van Hove JL, Saenz MS, Thomas JA, Gallagher RC, Lovell MA, Fenton LZ, Shanske S, Myers SM, Wanders RJ, Ruiter J, Turkenburg M, Waterham HR
Pediatr Res 2010 Aug;68(2):159-64. doi: 10.1203/PDR.0b013e3181e5c3a4. PMID: 20453710Free PMC Article
Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM
Crit Care Med 2008 Oct;36(10):2871-7. doi: 10.1097/CCM.0b013e318186a4a0. PMID: 18766106
Smolenski RT, Seymour AM, Yacoub MH
J Thorac Cardiovasc Surg 1994 Nov;108(5):938-45. PMID: 7967678

Clinical prediction guides

Addevico F, Svedman S, Edman G, Ackermann PW
Scand J Med Sci Sports 2019 Oct;29(10):1529-1536. Epub 2019 Jun 5 doi: 10.1111/sms.13469. PMID: 31102560
Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM
Crit Care Med 2008 Oct;36(10):2871-7. doi: 10.1097/CCM.0b013e318186a4a0. PMID: 18766106
Hatherill M, Salie S, Waggie Z, Lawrenson J, Hewitson J, Reynolds L, Argent A
Intensive Care Med 2007 May;33(5):822-829. Epub 2007 Mar 22 doi: 10.1007/s00134-007-0593-3. PMID: 17377768
Vespa PM, O'Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, Glenn T, Hovda DA
Crit Care Med 2007 Apr;35(4):1153-60. doi: 10.1097/01.CCM.0000259466.66310.4F. PMID: 17334254
Smolenski RT, Seymour AM, Yacoub MH
J Thorac Cardiovasc Surg 1994 Nov;108(5):938-45. PMID: 7967678

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...