Greenberg dysplasia- MedGen UID:
- 418969
- •Concept ID:
- C2931048
- •
- Disease or Syndrome
Greenberg dysplasia (GRBGD), also known as hydrops-ectopic calcification-moth-eaten (HEM) skeletal dysplasia, is a rare autosomal recessive osteochondrodysplasia characterized by gross fetal hydrops, severe shortening of all long bones with a moth-eaten radiographic appearance, platyspondyly, disorganization of chondroosseous calcification, and ectopic ossification centers. It is lethal in utero. Patient fibroblasts show increased levels of cholesta-8,14-dien-3-beta-ol, suggesting a defect of sterol metabolism (summary by Konstantinidou et al., 2008).
Herman (2003) reviewed the cholesterol biosynthetic pathway and 6 disorders involving enzyme defects in postsqualene cholesterol biosynthesis: Smith-Lemli-Opitz syndrome (SLOS; 270400), desmosterolosis (602398), X-linked dominant chondrodysplasia punctata (CDPX2; 302960), CHILD syndrome (308050), lathosterolosis (607330), and HEM skeletal dysplasia.
Hyperphosphatasia with intellectual disability syndrome 6- MedGen UID:
- 906509
- •Concept ID:
- C4225201
- •
- Disease or Syndrome
Hyperphosphatasia with impaired intellectual development syndrome-6 (HPMRS6) is an autosomal recessive multisystem disorder characterized by global developmental delay, dysmorphic features, seizures, and congenital cataracts. Severity is variable, and the disorder may show a range of phenotypic and biochemical abnormalities, including increased serum alkaline phosphatase levels (summary by Ilkovski et al., 2015). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of HPMRS, see HPMRS1 (239300).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
DEGCAGS syndrome- MedGen UID:
- 1794177
- •Concept ID:
- C5561967
- •
- Disease or Syndrome
DEGCAGS syndrome is an autosomal recessive syndromic neurodevelopmental disorder characterized by global developmental delay, coarse and dysmorphic facial features, and poor growth and feeding apparent from infancy. Affected individuals have variable systemic manifestations often with significant structural defects of the cardiovascular, genitourinary, gastrointestinal, and/or skeletal systems. Additional features may include sensorineural hearing loss, hypotonia, anemia or pancytopenia, and immunodeficiency with recurrent infections. Death in childhood may occur (summary by Bertoli-Avella et al., 2021).
Neurodevelopmental disorder with hypotonia and dysmorphic facies- MedGen UID:
- 1794184
- •Concept ID:
- C5561974
- •
- Disease or Syndrome
Neurodevelopmental disorder with hypotonia and dysmorphic facies (NEDHYDF) is characterized by global developmental delay and hypotonia apparent from birth. Affected individuals have variably impaired intellectual development, often with speech delay and delayed walking. Seizures are generally not observed, although some patients may have single seizures or late-onset epilepsy. Most patients have prominent dysmorphic facial features. Additional features may include congenital cardiac defects (without arrhythmia), nonspecific renal anomalies, joint contractures or joint hyperextensibility, dry skin, and cryptorchidism. There is significant phenotypic variability in both the neurologic and extraneurologic manifestations (summary by Tan et al., 2022).
Branchial arch abnormalities, choanal atresia, athelia, hearing loss, and hypothyroidism syndrome- MedGen UID:
- 1824056
- •Concept ID:
- C5774283
- •
- Disease or Syndrome
Branchial arch abnormalities, choanal atresia, athelia, hearing loss, and hypothyroidism syndrome (BCAHH) is an autosomal dominant disorder characterized by choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. Additional features may include developmental delay, impaired intellectual development, and growth failure/retardation (summary by Cuvertino et al., 2020 and Baldridge et al., 2020).