Heterotaxy, visceral, 1, X-linked- MedGen UID:
- 336609
- •Concept ID:
- C1844020
- •
- Disease or Syndrome
Heterotaxy
Heterotaxy ('heter' meaning 'other' and 'taxy' meaning 'arrangement'), or situs ambiguus, is a developmental condition characterized by randomization of the placement of visceral organs, including the heart, lungs, liver, spleen, and stomach. The organs are oriented randomly with respect to the left-right axis and with respect to one another (Srivastava, 1997). Heterotaxy is a clinically and genetically heterogeneous disorder.
Multiple Types of Congenital Heart Defects
Congenital heart defects (CHTD) are among the most common congenital defects, occurring with an incidence of 8/1,000 live births. The etiology of CHTD is complex, with contributions from environmental exposure, chromosomal abnormalities, and gene defects. Some patients with CHTD also have cardiac arrhythmias, which may be due to the anatomic defect itself or to surgical interventions (summary by van de Meerakker et al., 2011).
Reviews
Obler et al. (2008) reviewed published cases of double-outlet right ventricle and discussed etiology and associations.
Genetic Heterogeneity of Visceral Heterotaxy
See also HTX2 (605376), caused by mutation in the CFC1 gene (605194) on chromosome 2q21; HTX3 (606325), which maps to chromosome 6q21; HTX4 (613751), caused by mutation in the ACVR2B gene (602730) on chromosome 3p22; HTX5 (270100), caused by mutation in the NODAL gene (601265) on chromosome 10q22; HTX6 (614779), caused by mutation in the CCDC11 gene (614759) on chromosome 18q21; HTX7 (616749), caused by mutation in the MMP21 gene (608416) on chromosome 10q26; HTX8 (617205), caused by mutation in the PKD1L1 gene (609721) on chromosome 7p12; HTX9 (618948), caused by mutation in the MNS1 gene (610766) on chromosome 15q21; HTX10 (619607), caused by mutation in the CFAP52 gene (609804) on chromosome 17p13; HTX11 (619608), caused by mutation in the CFAP45 gene (605152) on chromosome 1q23; and HTX12 (619702), caused by mutation in the CIROP gene (619703) on chromosome 14q11.
Genetic Heterogeneity of Multiple Types of Congenital Heart Defects
An X-linked form of CHTD, CHTD1, is caused by mutation in the ZIC3 gene on chromosome Xq26. CHTD2 (614980) is caused by mutation in the TAB2 gene (605101) on chromosome 6q25. A form of nonsyndromic congenital heart defects associated with cardiac rhythm and conduction disturbances (CHTD3; 614954) has been mapped to chromosome 9q31. CHTD4 (615779) is caused by mutation in the NR2F2 gene (107773) on chromosome 15q26. CHTD5 (617912) is caused by mutation in the GATA5 gene (611496) on chromosome 20q13. CHTD6 (613854) is caused by mutation in the GDF1 gene (602880) on chromosome 19p13. CHTD7 (618780) is caused by mutation in the FLT4 gene (136352) on chromosome 5q35. CHTD8 (619657) is caused by mutation in the SMAD2 gene (601366) on chromosome 18q21. CHTD9 (620294) is caused by mutation in the PLXND1 gene (604282) on chromosome 3q22.
Congenital lactic acidosis, Saguenay-Lac-Saint-Jean type- MedGen UID:
- 387801
- •Concept ID:
- C1857355
- •
- Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 5 (MC4DN5) is an autosomal recessive severe metabolic multisystemic disorder with onset in infancy. Features include delayed psychomotor development, impaired intellectual development with speech delay, mild dysmorphic facial features, hypotonia, ataxia, and seizures. There is increased serum lactate and episodic hypoglycemia. Some patients may have cardiomyopathy, abnormal breathing, or liver abnormalities, reflecting systemic involvement. Brain imaging shows lesions in the brainstem and basal ganglia, consistent with a diagnosis of Leigh syndrome (see 256000). Affected individuals tend to have episodic metabolic and/or neurologic crises in early childhood, which often lead to early death (summary by Debray et al., 2011).
For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Hypoplastic left heart syndrome 2- MedGen UID:
- 482425
- •Concept ID:
- C3280795
- •
- Disease or Syndrome
Hypoplastic left heart syndrome results from defective development of the aorta proximal to the entrance of the ductus arteriosus and hypoplasia of the left ventricle and mitral valve. As a result of the abnormal circulation, the ductus arteriosus and foramen ovale are patent and the right atrium, right ventricle, and pulmonary artery are enlarged (Brekke, 1953).
For a discussion of genetic heterogeneity of hypoplastic left heart syndrome, see HLHS1 (241550).
Intellectual disability, autosomal dominant 16- MedGen UID:
- 766163
- •Concept ID:
- C3553249
- •
- Disease or Syndrome
Coffin-Siris syndrome is a congenital malformation syndrome characterized by developmental delay, intellectual disability, coarse facial features, feeding difficulties, and hypoplastic or absent fifth fingernails and fifth distal phalanges. Other more variable features may also occur. Patients with SMARCA4 mutations may have less coarse craniofacial appearances and fewer behavioral abnormalities than Coffin-Siris patients with mutations in other genes (summary by Kosho et al., 2014).
For a general phenotypic description and a discussion of genetic heterogeneity of Coffin-Siris syndrome, see CSS1 (135900).
Aortic valve disease 1- MedGen UID:
- 854610
- •Concept ID:
- C3887892
- •
- Disease or Syndrome
An autosomal dominant form of bicuspid aortic valve caused by mutation(s) in the NOTCH1 gene, encoding neurogenic locus notch homolog protein 1.
Heterotaxy, visceral, 7, autosomal- MedGen UID:
- 902629
- •Concept ID:
- C4225217
- •
- Disease or Syndrome
Autosomal visceral heterotaxy-7 is an autosomal recessive developmental disorder characterized by complex congenital heart malformations and/or situs inversus and caused by defects in the normal left-right asymmetric positioning of internal organs. The phenotype is variable (summary by Guimier et al., 2015).
For a discussion of the genetic heterogeneity of visceral heterotaxy, see HTX1 (306955).
Cardiac, facial, and digital anomalies with developmental delay- MedGen UID:
- 1648330
- •Concept ID:
- C4748484
- •
- Disease or Syndrome
CAFDADD is a multisystemic developmental disorder with variable cardiac and digital anomalies and facial dysmorphism. Some patients may have seizures and ocular/aural abnormalities (Tokita et al., 2018).
Neurodevelopmental disorder with hypotonia and dysmorphic facies- MedGen UID:
- 1794184
- •Concept ID:
- C5561974
- •
- Disease or Syndrome
Neurodevelopmental disorder with hypotonia and dysmorphic facies (NEDHYDF) is characterized by global developmental delay and hypotonia apparent from birth. Affected individuals have variably impaired intellectual development, often with speech delay and delayed walking. Seizures are generally not observed, although some patients may have single seizures or late-onset epilepsy. Most patients have prominent dysmorphic facial features. Additional features may include congenital cardiac defects (without arrhythmia), nonspecific renal anomalies, joint contractures or joint hyperextensibility, dry skin, and cryptorchidism. There is significant phenotypic variability in both the neurologic and extraneurologic manifestations (summary by Tan et al., 2022).
Congenital heart defects, multiple types, 9- MedGen UID:
- 1841003
- •Concept ID:
- C5830367
- •
- Congenital Abnormality
Multiple types of congenital heart defects-9 (CHTD9) is characterized by common arterial trunk (truncus arteriosus communis) in most patients, associated with other cardiac defects, including tetralogy of Fallot, interrupted aortic arch, right aortic arch, ventricular hypoplasia, and hypoplastic left heart, as well as other vascular and valvular anomalies (Ta-Shma et al., 2013; Guimier et al., 2023).
For a general phenotypic description and discussion of genetic heterogeneity of multiple types of congenital heart defects, see CHTD1 (see 306955).
Ciliary dyskinesia, primary, 52- MedGen UID:
- 1852921
- •Concept ID:
- C5882714
- •
- Disease or Syndrome
Primary ciliary dyskinesia-52 (CILD52) is an autosomal recessive disorder characterized by laterality defects and mild respiratory symptoms due to subtle ciliary beating defects (summary by Leslie et al., 2022).
For a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400).