U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 69

1.

Kartagener syndrome

Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disorder resulting from loss of function of different parts of the primary ciliary apparatus, most often dynein arms. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus (270100), and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). Genetic Heterogeneity of Primary Ciliary Dyskinesia Other forms of primary ciliary dyskinesia include CILD2 (606763), caused by mutation in the DNAAF3 gene (614566) on 19q13; CILD3 (608644), caused by mutation in the DNAH5 gene (603335) on 5p15; CILD4 (608646), mapped to 15q13; CILD5 (608647), caused by mutation in the HYDIN gene (610812) on 16q22; CILD6 (610852), caused by mutation in the TXNDC3 gene (607421) on 7p14; CILD7 (611884), caused by mutation in the DNAH11 gene (603339) on 7p15; CILD8 (612274), mapped to 15q24-q25; CILD9 (612444), caused by mutation in the DNAI2 gene (605483) on 17q25; CILD10 (612518), caused by mutation in the DNAAF2 gene (612517) on 14q21; CILD11 (612649), caused by mutation in the RSPH4A gene (612647) on 6q22; CILD12 (612650), caused by mutation in the RSPH9 gene (612648) on 6p21; CILD13 (613193), caused by mutation in the DNAAF1 gene (613190) on 16q24; CILD14 (613807), caused by mutation in the CCDC39 gene (613798) gene on 3q26; CILD15 (613808), caused by mutation in the CCDC40 gene (613799) on 17q25; CILD16 (614017), caused by mutation in the DNAL1 gene (610062) on 14q24; CILD17 (614679), caused by mutation in the DNAAF19 gene (614677) on 17q21; CILD18 (614874), caused by mutation in the DNAAF5 gene (614864) on 7p22; CILD19 (614935), caused by mutation in the DNAAF11 gene (614930) on 8q24; CILD20 (615067), caused by mutation in the CCDC114 gene (615038) on 19q13; CILD21 (615294), caused by mutation in the DRC1 gene (615288) on 2p23; CILD22 (615444), caused by mutation in the ZMYND10 gene (607070) on 3p21; CILD23 (615451), caused by mutation in the ARMC4 gene (615408) on 10p; CILD24 (615481), caused by mutation in the RSPH1 gene (609314) on 21q22; CILD25 (615482), caused by mutation in the DYX1C1 gene (608706) on 15q21; CILD26 (615500), caused by mutation in the C21ORF59 gene (615494) on 21q22; CILD27 (615504), caused by mutation in the CCDC65 gene (611088) on 12q13; CILD28 (615505), caused by mutation in the SPAG1 gene (603395) on 8q22; CILD29 (615872), caused by mutation in the CCNO gene (607752) on 5q11; CILD30 (616037), caused by mutation in the CCDC151 gene (615956) on 19p13; CILD32 (616481), caused by mutation in the RSPH3 gene (615876) on 6q25; CILD33 (616726), caused by mutation in the GAS8 gene (605178) on 16q24; CILD34 (617091), caused by mutation in the DNAJB13 gene (610263) on 11q13; CILD35 (617092), caused by mutation in the TTC25 gene (617095) on 17q21; CILD36 (300991), caused by mutation in the DNAAF6 gene (300933) on Xq22; CILD37 (617577), caused by mutation in the DNAH1 gene (603332) on 3p21; CILD38 (618063), caused by mutation in the CFAP300 gene (618058) on 11q22; CILD39 (618254), caused by mutation in the LRRC56 gene (618227) on 11p15; CILD40 (618300), caused by mutation in the DNAH9 gene (603330) on 17p12; CILD41 (618449), caused by mutation in the GAS2L2 gene (611398) on 17q12; CILD42 (618695), caused by mutation in the MCIDAS gene (614086) on 5q11; CILD43 (618699), caused by mutation in the FOXJ1 gene (602291) on 17q25; CILD44 (618781), caused by mutation in the NEK10 gene (618726) on 3p24; CILD45 (618801), caused by mutation in the TTC12 gene (610732) on 11q23; CILD46 (619436), caused by mutation in the STK36 gene (607652) on 2q35; CILD47 (619466), caused by mutation in the TP73 gene (601990) on 1p36; CILD48 (620032), caused by mutation in the NME5 gene (603575) on chromosome 5q31; CILD49 (620197), caused by mutation in the CFAP74 gene (620187) on chromosome 1p36; CILD50 (620356), caused by mutation in the DNAH7 gene (610061) on chromosome 2q32; CILD51 (620438), caused by mutation in the BRWD1 gene (617824) on chromosome 21q22; CILD52 (620570), caused by mutation in the DAW1 gene (620279) on chromosome 2q36; and CILD53 (620642), caused by mutation in the CLXN gene (619564) on chromosome 8q11. Ciliary abnormalities have also been reported in association with both X-linked and autosomal forms of retinitis pigmentosa. Mutations in the RPGR gene (312610), which underlie X-linked retinitis pigmentosa (RP3; 300029), are in some instances (e.g., 312610.0016) associated with recurrent respiratory infections indistinguishable from immotile cilia syndrome; see 300455. Afzelius (1979) gave an extensive review of cilia and their disorders. There are also several possibly distinct CILDs described based on the electron microscopic appearance of abnormal cilia, including CILD with transposition of the microtubules (215520), CILD with excessively long cilia (242680), and CILD with defective radial spokes (242670). [from OMIM]

MedGen UID:
1646059
Concept ID:
C4551906
Disease or Syndrome
2.

Polycystic kidney disease 2

Autosomal dominant polycystic kidney disease (ADPKD) is generally a late-onset multisystem disorder characterized by bilateral kidney cysts, liver cysts, and an increased risk of intracranial aneurysms. Other manifestations include: cysts in the pancreas, seminal vesicles, and arachnoid membrane; dilatation of the aortic root and dissection of the thoracic aorta; mitral valve prolapse; and abdominal wall hernias. Kidney manifestations include early-onset hypertension, kidney pain, and kidney insufficiency. Approximately 50% of individuals with ADPKD have end-stage kidney disease (ESKD) by age 60 years. The prevalence of liver cysts increases with age and occasionally results in clinically significant severe polycystic liver disease (PLD), most often in females. Overall, the prevalence of intracranial aneurysms is fivefold higher than in the general population and further increased in those with a positive family history of aneurysms or subarachnoid hemorrhage. There is substantial variability in the severity of kidney disease and other extra-kidney manifestations. [from GeneReviews]

MedGen UID:
442699
Concept ID:
C2751306
Disease or Syndrome
3.

Megaloblastic anemia, thiamine-responsive, with diabetes mellitus and sensorineural deafness

Thiamine-responsive megaloblastic anemia syndrome (TRMA) is characterized by megaloblastic anemia, progressive sensorineural hearing loss, and diabetes mellitus. Onset of megaloblastic anemia occurs between infancy and adolescence. The anemia is corrected with thiamine treatment, but the red cells remain macrocytic and anemia can recur if treatment is withdrawn. Progressive sensorineural hearing loss often occurs early and can be detected in toddlers; hearing loss is irreversible and may not be prevented by thiamine treatment. The diabetes mellitus is non-type I in nature, with age of onset from infancy to adolescence. Thiamine treatment may reduce insulin requirement and delay onset of diabetes in some individuals. [from GeneReviews]

MedGen UID:
83338
Concept ID:
C0342287
Congenital Abnormality
4.

Primary ciliary dyskinesia 3

Primary ciliary dyskinesia (PCD; CILD) is an autosomal recessive disorder resulting from loss of normal ciliary function. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus, and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (summary by Afzelius, 1976; El Zein et al., 2003). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia and the Kartagener syndrome, see CILD1 (244400). [from OMIM]

MedGen UID:
325210
Concept ID:
C1837618
Disease or Syndrome
5.

Infantile nephronophthisis

The nephronophthisis (NPH) phenotype is characterized by reduced renal concentrating ability, chronic tubulointerstitial nephritis, cystic renal disease, and progression to end-stage renal disease (ESRD) before age 30 years. Three age-based clinical subtypes are recognized: infantile, juvenile, and adolescent/adult. Infantile NPH can present in utero with oligohydramnios sequence (limb contractures, pulmonary hypoplasia, and facial dysmorphisms) or postnatally with renal manifestations that progress to ESRD before age 3 years. Juvenile NPH, the most prevalent subtype, typically presents with polydipsia and polyuria, growth retardation, chronic iron-resistant anemia, or other findings related to chronic kidney disease (CKD). Hypertension is typically absent due to salt wasting. ESRD develops at a median age of 13 years. Ultrasound findings are increased echogenicity, reduced corticomedullary differentiation, and renal cysts (in 50% of affected individuals). Histologic findings include tubulointerstitial fibrosis, thickened and disrupted tubular basement membrane, sporadic corticomedullary cysts, and normal or reduced kidney size. Adolescent/adult NPH is clinically similar to juvenile NPH, but ESRD develops at a median age of 19 years. Within a subtype, inter- and intrafamilial variability in rate of progression to ESRD is considerable. Approximately 80%-90% of individuals with the NPH phenotype have no extrarenal features (i.e., they have isolated NPH); ~10%-20% have extrarenal manifestations that constitute a recognizable syndrome (e.g., Joubert syndrome, Bardet-Biedl syndrome, Jeune syndrome and related skeletal disorders, Meckel-Gruber syndrome, Senior-Løken syndrome, Leber congenital amaurosis, COACH syndrome, and oculomotor apraxia, Cogan type). [from GeneReviews]

MedGen UID:
355574
Concept ID:
C1865872
Disease or Syndrome
6.

Primary ciliary dyskinesia 7

Primary ciliary dyskinesia is an autosomal recessive disorder resulting from loss of normal ciliary function. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus, and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia and the Kartagener syndrome, see CILD1 (244400). [from OMIM]

MedGen UID:
394834
Concept ID:
C2678473
Disease or Syndrome
7.

NPHP3-related Meckel-like syndrome

This autosomal recessive disorder is designated Meckel syndrome type 7 (MKS7) based on the classic phenotypic triad of (1) cystic renal disease; (2) a central nervous system abnormality, and (3) hepatic abnormalities, as defined by Meckel (1822), Salonen (1984), and Logan et al. (2011). According to these criteria, polydactyly is a variable feature. Herriot et al. (1991) and Al-Gazali et al. (1996) concluded that Dandy-Walker malformation can be the phenotypic manifestation of a central nervous system malformation in MKS. For a general phenotypic description and a discussion of genetic heterogeneity of Meckel syndrome, see MKS1 (249000). [from OMIM]

MedGen UID:
382217
Concept ID:
C2673885
Disease or Syndrome
8.

Primary ciliary dyskinesia 14

Primary ciliary dyskinesia-14 (CILD14) is an autosomal recessive disorder characterized by recurrent respiratory infections associated with defects in ciliary inner dynein arms and axonemal disorganization (Merveille et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400). [from OMIM]

MedGen UID:
462486
Concept ID:
C3151136
Disease or Syndrome
9.

Nephronophthisis 14

Nephronophthisis can occur as part of separate syndromes that affect other areas of the body; these are often referred to as nephronophthisis-associated ciliopathies. For example, Senior-Løken syndrome is characterized by the combination of nephronophthisis and a breakdown of the light-sensitive tissue at the back of the eye (retinal degeneration); Joubert syndrome affects many parts of the body, causing neurological problems and other features, which can include nephronophthisis.

About 85 percent of all cases of nephronophthisis are isolated, which means they occur without other signs and symptoms. Some people with nephronophthisis have additional features, which can include liver fibrosis, heart abnormalities, or mirror image reversal of the position of one or more organs inside the body (situs inversus).

Nephronophthisis eventually leads to end-stage renal disease (ESRD), a life-threatening failure of kidney function that occurs when the kidneys are no longer able to filter fluids and waste products from the body effectively. Nephronophthisis can be classified by the approximate age at which ESRD begins: around age 1 (infantile), around age 13 (juvenile), and around age 19 (adolescent).

Nephronophthisis is a disorder that affects the kidneys. It is characterized by inflammation and scarring (fibrosis) that impairs kidney function. These abnormalities lead to increased urine production (polyuria), excessive thirst (polydipsia), general weakness, and extreme tiredness (fatigue). In addition, affected individuals develop fluid-filled cysts in the kidneys, usually in an area known as the corticomedullary region. Another feature of nephronophthisis is a shortage of red blood cells, a condition known as anemia. [from MedlinePlus Genetics]

MedGen UID:
761313
Concept ID:
C3539071
Disease or Syndrome
10.

Primary ciliary dyskinesia 9

Primary ciliary dyskinesia is an autosomal recessive disorder resulting from loss of normal ciliary function. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus, and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). For a general description and a discussion of genetic heterogeneity of primary ciliary dyskinesia and Kartagener syndrome, see CILD1 (244400). [from OMIM]

MedGen UID:
390990
Concept ID:
C2676235
Disease or Syndrome
11.

Renpenning syndrome

Renpenning syndrome (RENS1) is an X-linked syndromic intellectual developmental disorder with clinically recognizable features. Affected individuals have microcephaly, short stature, small testes, and dysmorphic facies, including tall narrow face, upslanting palpebral fissures, abnormal nasal configuration, cupped ears, and short philtrum. The nose may appear long or bulbous, with overhanging columella. Less consistent manifestations include ocular colobomas, cardiac malformations, cleft palate, and anal anomalies. Stevenson et al. (2005) proposed that the various X-linked mental retardation syndromes due to PQBP1 mutations be combined under the name of Renpenning syndrome. [from OMIM]

MedGen UID:
208670
Concept ID:
C0796135
Disease or Syndrome
12.

Johanson-Blizzard syndrome

Johanson-Blizzard syndrome is an autosomal recessive disorder characterized by poor growth, mental retardation, and variable dysmorphic features, including aplasia or hypoplasia of the nasal alae, abnormal hair patterns or scalp defects, and oligodontia. Other features include hypothyroidism, sensorineural hearing loss, imperforate anus, and pancreatic exocrine insufficiency (summary by Al-Dosari et al., 2008). [from OMIM]

MedGen UID:
59798
Concept ID:
C0175692
Disease or Syndrome
13.

Primary ciliary dyskinesia 15

Primary ciliary dyskinesia-15 (CILD15) is an autosomal recessive disorder characterized by recurrent respiratory infections associated with defects in ciliary inner dynein arms and axonemal disorganization (summary by Becker-Heck et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400). [from OMIM]

MedGen UID:
462487
Concept ID:
C3151137
Disease or Syndrome
14.

Primary ciliary dyskinesia 13

Primary ciliary dyskinesia is a disorder characterized by chronic respiratory tract infections, abnormally positioned internal organs, and the inability to have children (infertility). The signs and symptoms of this condition are caused by abnormal cilia and flagella. Cilia are microscopic, finger-like projections that stick out from the surface of cells. They are found in the linings of the airway, the reproductive system, and other organs and tissues. Flagella are tail-like structures, similar to cilia, that propel sperm cells forward.

Some individuals with primary ciliary dyskinesia have abnormally placed organs within their chest and abdomen. These abnormalities arise early in embryonic development when the differences between the left and right sides of the body are established. About 50 percent of people with primary ciliary dyskinesia have a mirror-image reversal of their internal organs (situs inversus totalis). For example, in these individuals the heart is on the right side of the body instead of on the left. Situs inversus totalis does not cause any apparent health problems. When someone with primary ciliary dyskinesia has situs inversus totalis, they are often said to have Kartagener syndrome.

In the respiratory tract, cilia move back and forth in a coordinated way to move mucus towards the throat. This movement of mucus helps to eliminate fluid, bacteria, and particles from the lungs. Most babies with primary ciliary dyskinesia experience breathing problems at birth, which suggests that cilia play an important role in clearing fetal fluid from the lungs. Beginning in early childhood, affected individuals develop frequent respiratory tract infections. Without properly functioning cilia in the airway, bacteria remain in the respiratory tract and cause infection. People with primary ciliary dyskinesia also have year-round nasal congestion and a chronic cough. Chronic respiratory tract infections can result in a condition called bronchiectasis, which damages the passages, called bronchi, leading from the windpipe to the lungs and can cause life-threatening breathing problems.

Approximately 12 percent of people with primary ciliary dyskinesia have a condition known as heterotaxy syndrome or situs ambiguus, which is characterized by abnormalities of the heart, liver, intestines, or spleen. These organs may be structurally abnormal or improperly positioned. In addition, affected individuals may lack a spleen (asplenia) or have multiple spleens (polysplenia). Heterotaxy syndrome results from problems establishing the left and right sides of the body during embryonic development. The severity of heterotaxy varies widely among affected individuals.

Primary ciliary dyskinesia can also lead to infertility. Vigorous movements of the flagella are necessary to propel the sperm cells forward to the female egg cell. Because their sperm do not move properly, males with primary ciliary dyskinesia are usually unable to father children. Infertility occurs in some affected females and is likely due to abnormal cilia in the fallopian tubes.

Another feature of primary ciliary dyskinesia is recurrent ear infections (otitis media), especially in young children. Otitis media can lead to permanent hearing loss if untreated. The ear infections are likely related to abnormal cilia within the inner ear.

Rarely, individuals with primary ciliary dyskinesia have an accumulation of fluid in the brain (hydrocephalus), likely due to abnormal cilia in the brain. [from MedlinePlus Genetics]

MedGen UID:
413399
Concept ID:
C2750790
Disease or Syndrome
15.

Primary ciliary dyskinesia 10

Primary ciliary dyskinesia-10 (CILD10) is characterized by recurrent respiratory tract infections, sinusitis, otitis media, and bronchiectasis. Situs inversus may be present. Infertility in affected males results from immotile sperm (Omran et al., 2008, Sun et al., 2020). For a phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400). [from OMIM]

MedGen UID:
382707
Concept ID:
C2675867
Disease or Syndrome
16.

Primary ciliary dyskinesia 16

Primary ciliary dyskinesia-16 (CILD16) is an autosomal recessive disorder characterized by early infantile onset of respiratory distress associated with absence of ciliary outer dynein arms (Mazor et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400). [from OMIM]

MedGen UID:
462810
Concept ID:
C3151460
Disease or Syndrome
17.

Primary ciliary dyskinesia 17

Primary ciliary dyskinesia-17 is an autosomal recessive disorder characterized by early infantile onset of respiratory distress associated with a defect in the function of ciliary outer dynein arms. Situs inversus is variable (summary by Panizzi et al., 2012). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400). [from OMIM]

MedGen UID:
762261
Concept ID:
C3542550
Disease or Syndrome
18.

Primary ciliary dyskinesia 12

Primary ciliary dyskinesia is a disorder characterized by chronic respiratory tract infections, abnormally positioned internal organs, and the inability to have children (infertility). The signs and symptoms of this condition are caused by abnormal cilia and flagella. Cilia are microscopic, finger-like projections that stick out from the surface of cells. They are found in the linings of the airway, the reproductive system, and other organs and tissues. Flagella are tail-like structures, similar to cilia, that propel sperm cells forward.

In the respiratory tract, cilia move back and forth in a coordinated way to move mucus towards the throat. This movement of mucus helps to eliminate fluid, bacteria, and particles from the lungs. Most babies with primary ciliary dyskinesia experience breathing problems at birth, which suggests that cilia play an important role in clearing fetal fluid from the lungs. Beginning in early childhood, affected individuals develop frequent respiratory tract infections. Without properly functioning cilia in the airway, bacteria remain in the respiratory tract and cause infection. People with primary ciliary dyskinesia also have year-round nasal congestion and a chronic cough. Chronic respiratory tract infections can result in a condition called bronchiectasis, which damages the passages, called bronchi, leading from the windpipe to the lungs and can cause life-threatening breathing problems.

Some individuals with primary ciliary dyskinesia have abnormally placed organs within their chest and abdomen. These abnormalities arise early in embryonic development when the differences between the left and right sides of the body are established. About 50 percent of people with primary ciliary dyskinesia have a mirror-image reversal of their internal organs (situs inversus totalis). For example, in these individuals the heart is on the right side of the body instead of on the left. Situs inversus totalis does not cause any apparent health problems. When someone with primary ciliary dyskinesia has situs inversus totalis, they are often said to have Kartagener syndrome.

Approximately 12 percent of people with primary ciliary dyskinesia have a condition known as heterotaxy syndrome or situs ambiguus, which is characterized by abnormalities of the heart, liver, intestines, or spleen. These organs may be structurally abnormal or improperly positioned. In addition, affected individuals may lack a spleen (asplenia) or have multiple spleens (polysplenia). Heterotaxy syndrome results from problems establishing the left and right sides of the body during embryonic development. The severity of heterotaxy varies widely among affected individuals.

Primary ciliary dyskinesia can also lead to infertility. Vigorous movements of the flagella are necessary to propel the sperm cells forward to the female egg cell. Because their sperm do not move properly, males with primary ciliary dyskinesia are usually unable to father children. Infertility occurs in some affected females and is likely due to abnormal cilia in the fallopian tubes.

Another feature of primary ciliary dyskinesia is recurrent ear infections (otitis media), especially in young children. Otitis media can lead to permanent hearing loss if untreated. The ear infections are likely related to abnormal cilia within the inner ear.

Rarely, individuals with primary ciliary dyskinesia have an accumulation of fluid in the brain (hydrocephalus), likely due to abnormal cilia in the brain. [from MedlinePlus Genetics]

MedGen UID:
436379
Concept ID:
C2675228
Disease or Syndrome
19.

Primary ciliary dyskinesia 2

Primary ciliary dyskinesia-2 (CILD2) is an autosomal recessive disorder arising from immotile cilia that lack both outer and inner dynein arms. Ineffective airway mucociliary clearance usually manifests within the first year of life with recurrent infections resulting in a chronic respiratory condition and progressing to permanent lung damage. Some patients have nasal polyps, infertility, or hearing loss. About half of patients have situs inversus (Mitchison et al., 2012). For a phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see 244400. [from OMIM]

MedGen UID:
338258
Concept ID:
C1847554
Disease or Syndrome
20.

Bardet-Biedl syndrome 8

BBS8 is an autosomal recessive disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, hypogonadism, and developmental delay (Ansley et al., 2003). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900). [from OMIM]

MedGen UID:
347181
Concept ID:
C1859566
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity