U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Links from Gene

Items: 2

1.

Malaria, susceptibility to

Malaria, a major cause of child mortality worldwide, is caused by mosquito-borne hematoprotozoan parasites of the genus Plasmodium. Of the 4 species that infect humans, P. falciparum causes the most severe forms of malaria and is the major cause of death and disease. Although less fatal, P. malariae, P. ovale, and, in particular, P. vivax infections are major causes of morbidity. The parasite cycle involves a first stage in liver cells and a subsequent stage at erythrocytes, when malaria symptoms occur. A wide spectrum of phenotypes are observed, from asymptomatic infection to mild disease, including fever and mild anemia, to severe disease, including cerebral malaria, profound anemia, and respiratory distress. Genetic factors influence the response to infection, as well as disease progression and severity. Malaria is the strongest known selective pressure in the recent history of the human genome, and it is the evolutionary driving force behind sickle-cell disease (603903), thalassemia (see 141800), glucose-6-phosphatase deficiency (300908), and other erythrocyte defects that together constitute the most common mendelian diseases of humans (Kwiatkowski, 2005; Campino et al., 2006). [from OMIM]

MedGen UID:
370149
Concept ID:
C1970028
Finding
2.

BLOOD GROUP, MN

MN antigens reside on GYPA, one of the most abundant red-cell glycoproteins. The M and N antigens are 2 autosomal codominant antigens encoded by the first 5 amino acids of GYPA and include 3 O-linked glycans as part of the epitope. M and N differ at amino acids 1 and 5, where M is ser-ser-thr-thr-gly, and N is leu-ser-thr-thr-glu. M is the ancestral GYPA allele and is common in all human populations and Old World apes. GYPA, glycophorin B (GYPB; 617923), and glycophorin E (GYPE; 138590) are closely linked on chromosome 4q31. The N terminus of GYPB is essentially identical to that of GYPA except that it always expresses the N antigen, denoted 'N' or N-prime. Antigens of the Ss blood group (111740) reside on GYPB, and recombination and gene conversion between GYPA, GYPB, and GYPE lead to hybrid glycophorin molecules and generation of low-incidence antigens. Thus, the MN and Ss blood groups are together referred to as the MNSs or MNS blood group system. The U antigen refers to a short extracellular sequence in GYPB located near the membrane. Recombination results in 3 glycophorin-null phenotypes: En(a-) cells lack GYPA due to recombination between GYPA and GYPB; GYPB-negative (S-s-U-) cells lack GYPB due to recombination in GYPB; and M(k) cells (M-N-S-s-U-) lack both GYPA and GYPB due to recombination between GYPA and GYPE. Individuals with glycophorin-null phenotypes have decreased sialic acid content and increased resistance to malarial infection (see 611162). GYPA and GYPB are not essential for red-cell development or survival, and GYPA- and GYPB-null phenotypes are not associated with anemia or altered red-cell function (review by Cooling, 2015). [from OMIM]

MedGen UID:
10071
Concept ID:
C0026327
Body System

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...