U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 16

1.

Hemolytic uremic syndrome, atypical, susceptibility to, 1

Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. The onset of atypical HUS (aHUS) ranges from the neonatal period to adulthood. Genetic aHUS accounts for an estimated 60% of all aHUS. Individuals with genetic aHUS frequently experience relapse even after complete recovery following the presenting episode; 60% of genetic aHUS progresses to end-stage renal disease (ESRD). [from GeneReviews]

MedGen UID:
412743
Concept ID:
C2749604
Finding
2.

Atypical hemolytic-uremic syndrome with MCP/CD46 anomaly

Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. The onset of atypical HUS (aHUS) ranges from the neonatal period to adulthood. Genetic aHUS accounts for an estimated 60% of all aHUS. Individuals with genetic aHUS frequently experience relapse even after complete recovery following the presenting episode; 60% of genetic aHUS progresses to end-stage renal disease (ESRD). [from GeneReviews]

MedGen UID:
414167
Concept ID:
C2752040
Finding
3.

Atypical hemolytic-uremic syndrome with C3 anomaly

Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. The onset of atypical HUS (aHUS) ranges from the neonatal period to adulthood. Genetic aHUS accounts for an estimated 60% of all aHUS. Individuals with genetic aHUS frequently experience relapse even after complete recovery following the presenting episode; 60% of genetic aHUS progresses to end-stage renal disease (ESRD). [from GeneReviews]

MedGen UID:
442875
Concept ID:
C2752037
Finding
4.

Atypical hemolytic-uremic syndrome with I factor anomaly

Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. The onset of atypical HUS (aHUS) ranges from the neonatal period to adulthood. Genetic aHUS accounts for an estimated 60% of all aHUS. Individuals with genetic aHUS frequently experience relapse even after complete recovery following the presenting episode; 60% of genetic aHUS progresses to end-stage renal disease (ESRD). [from GeneReviews]

MedGen UID:
414542
Concept ID:
C2752039
Finding
5.

Atypical hemolytic-uremic syndrome with B factor anomaly

Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. The onset of atypical HUS (aHUS) ranges from the neonatal period to adulthood. Genetic aHUS accounts for an estimated 60% of all aHUS. Individuals with genetic aHUS frequently experience relapse even after complete recovery following the presenting episode; 60% of genetic aHUS progresses to end-stage renal disease (ESRD). [from GeneReviews]

MedGen UID:
416691
Concept ID:
C2752038
Finding
6.

Atypical hemolytic-uremic syndrome with thrombomodulin anomaly

Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. The onset of atypical HUS (aHUS) ranges from the neonatal period to adulthood. Genetic aHUS accounts for an estimated 60% of all aHUS. Individuals with genetic aHUS frequently experience relapse even after complete recovery following the presenting episode; 60% of genetic aHUS progresses to end-stage renal disease (ESRD). [from GeneReviews]

MedGen UID:
414541
Concept ID:
C2752036
Finding
7.

Familial dysautonomia

Familial dysautonomia, which affects the development and survival of sensory, sympathetic, and parasympathetic neurons, is a debilitating disorder present from birth. Neuronal degeneration progresses throughout life. Affected individuals have gastrointestinal dysfunction, autonomic crises (i.e., hypertensive vomiting attacks), recurrent pneumonia, altered pain sensitivity, altered temperature perception, and blood pressure instability. Hypotonia contributes to delay in acquisition of motor milestones. Optic neuropathy results in progressive vision loss. Older individuals often have a broad-based and ataxic gait that deteriorates over time. Developmental delay / intellectual disability occur in about 21% of individuals. Life expectancy is decreased. [from GeneReviews]

MedGen UID:
41678
Concept ID:
C0013364
Disease or Syndrome
8.

Upshaw-Schulman syndrome

Hereditary thrombotic thrombocytopenic purpura (TTP), also known as Upshaw-Schulman syndrome (USS), is a rare autosomal recessive thrombotic microangiopathy (TMA). Clinically, acute phases of TTP are defined by microangiopathic mechanical hemolytic anemia, severe thrombocytopenia, and visceral ischemia. Hereditary TTP makes up 5% of TTP cases and is caused mostly by biallelic mutation in the ADAMTS13 gene, or in very rare cases, by monoallelic ADAMTS13 mutation associated with a cluster of single-nucleotide polymorphisms (SNPs); most cases of all TTP (95%) are acquired via an autoimmune mechanism (see 188030). Hereditary TTP is more frequent among child-onset TTP compared with adult-onset TTP, and its clinical presentation is significantly different as a function of its age of onset. Child-onset TTP usually starts in the neonatal period with hematological features and severe jaundice. In contrast, almost all cases of adult-onset hereditary TTP are unmasked during the first pregnancy of a woman whose disease was silent during childhood (summary by Joly et al., 2018). [from OMIM]

MedGen UID:
224783
Concept ID:
C1268935
Disease or Syndrome
9.

Orthostatic hypotension 1

Dopamine beta-hydroxylase (DBH) deficiency is characterized by lack of sympathetic noradrenergic function but normal parasympathetic and sympathetic cholinergic function. Affected individuals exhibit profound deficits in autonomic regulation of cardiovascular function that predispose to orthostatic hypotension. Although DBH deficiency appears to be present from birth, the diagnosis is not generally recognized until late childhood. The combination of ptosis of the eyelids in infants and children, together with hypotension, is suggestive of the disease. In the perinatal period, DBH deficiency has been complicated by vomiting, dehydration, hypotension, hypothermia, and hypoglycemia requiring repeated hospitalization; children have reduced exercise capacity. By early adulthood, individuals have profound orthostatic hypotension, greatly reduced exercise tolerance, ptosis of the eyelids, and nasal stuffiness. Presyncopal symptoms include dizziness, blurred vision, dyspnea, nuchal discomfort, and chest pain; symptoms may worsen in hot environments or after heavy meals or alcohol ingestion. Life expectancy is unknown, but some affected individuals have lived beyond age 60 years. [from GeneReviews]

MedGen UID:
1648402
Concept ID:
C4746777
Disease or Syndrome
10.

Karyomegalic interstitial nephritis

Karyomegalic tubulointerstitial nephritis (KMIN) is a rare kidney disease characterized clinically by onset in the third decade of progressive renal failure. Renal biopsy shows chronic tubulointerstitial nephritis and interstitial fibrosis associated with enlarged and atypical tubular epithelial cell nuclei (summary by Baba et al., 2006). [from OMIM]

MedGen UID:
766688
Concept ID:
C3553774
Disease or Syndrome
11.

Hyperuricemia, pulmonary hypertension, renal failure, alkalosis syndrome

HUPRA syndrome is a severe autosomal recessive multisystem disorder characterized by onset in infancy of progressive renal failure leading to electrolyte imbalances, metabolic alkalosis, pulmonary hypertension, hypotonia, and delayed development. Affected individuals are born prematurely (summary by Belostotsky et al., 2011). [from OMIM]

MedGen UID:
462559
Concept ID:
C3151209
Disease or Syndrome
12.

46,XY sex reversal 4

Sex reversal in an individual associated with a 9p24.3 deletion. [from NCI]

MedGen UID:
416704
Concept ID:
C2752149
Congenital Abnormality
13.

Combined oxidative phosphorylation deficiency 34

COXPD34 is an autosomal recessive disorder resulting from a defect in mitochondrial function. The phenotype is variable, but may include congenital sensorineural deafness, increased serum lactate, and hepatic and renal dysfunction. Neurologic function is relatively preserved (summary by Menezes et al., 2015). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]

MedGen UID:
1631307
Concept ID:
C4693450
Disease or Syndrome
14.

Anti-glomerular basement membrane disease

Goodpasture syndrome, also known as anti-GBM disease, is a rare autoimmune disease consisting of alveolar hemorrhage and glomerulonephritis secondary to circulating antiglomerular basement membrane (anti-GBM) antibodies. Anti-GBM antibodies are directed against an antigen intrinsic to the alpha-3 chain of type IV collagen (COL4A3; 120070) that is expressed in the GBMs of the glomerular capillary loops and the basal membrane of the pulmonary alveoli. Goodpasture syndrome is suspected in patients with hemoptysis and hematuria and is confirmed by the presence of anti-GBM antibodies in renal biopsy specimens and serum. Patients with human leukocyte antigen HLA-DR15 and HLA-DR4 are susceptible to the development of Goodpasture syndrome. Reported cases of familial Goodpasture syndrome are extremely rare (summary by Angioi et al., 2017). [from OMIM]

MedGen UID:
140788
Concept ID:
C0403529
Disease or Syndrome
15.

Hypermetabolism due to uncoupled mitochondrial oxidative phosphorylation 2

Hypermetabolism due to uncoupled mitochondrial oxidative phosphorylation-2 (HUMOP2) is characterized by failure to thrive apparent in infancy despite adequate caloric intake. Affected individuals show normal thyroid function, hyperphagia, tachypnea, increased basal temperature, and increased sweating. Biochemical studies demonstrate increased mitochondrial oxygen consumption with inefficient production of ATP in the final steps of oxidative phosphorylation due to an uncoupling defect (Ganetzky et al., 2022). Genetic Heterogeneity of Hypermetabolism due to Uncoupled Mitochondrial Oxidative Phosphorylation See also HUMOP1 (238800). [from OMIM]

MedGen UID:
1824010
Concept ID:
C5774237
Disease or Syndrome
16.

Increased blood urea nitrogen

An increased amount of nitrogen in the form of urea in the blood. [from HPO]

MedGen UID:
760252
Concept ID:
C0151539
Finding
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity