Table 1.

Molecular Genetic Testing Used in MIRAGE Syndrome

Gene 1MethodProportion of Probands with a Pathogenic Variant 2 Detectable by Method
SAMD9 Sequence analysis 344/44 4, 5
Gene-targeted deletion/duplication analysis 6Unknown 7
1.

See Table A. Genes and Databases for chromosome locus and protein.

2.

See Molecular Genetics for information on allelic variants detected in this gene.

3.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

4.

Data derived from the subscription-based professional view of Human Gene Mutation Database [Stenson et al 2020]

5.

Somatically acquired loss of heterozygosity – for example, due to monosomy 7, del(7q), or uniparental disomy 7 – often occurs in hematopoietic tissue of individuals with a pathogenic SAMD9 variant. SAMD9 is located on chromosome 7 and loss of chromosomes with a pathogenic SAMD9 variant occurs preferentially. This somatic change results in a decreased fraction of cells with the variant and may cause a false negative molecular result when testing leukocyte or bone marrow DNA. Therefore, evaluation of genomic abnormalities with SNP array and/or evaluation of low-abundance variants with deep sequencing (>1000X read depth) should be considered in individuals who are clinically suspected for MIRAGE syndrome and have a negative genetic test result. If feasible, use of DNA derived from non-hematopoietic tissues (e.g. skin fibroblasts, hair roots) may be considered (see Molecular Genetics, SAMD9-specific laboratory technical considerations).

6.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

7.

No data on detection rate of gene-targeted deletion/duplication analysis are available. In theory, deletion of SAMD9 would cause loss of function and therefore would not cause MIRAGE syndrome.

From: MIRAGE Syndrome

Cover of GeneReviews®
GeneReviews® [Internet].
Adam MP, Feldman J, Mirzaa GM, et al., editors.
Seattle (WA): University of Washington, Seattle; 1993-2024.
Copyright © 1993-2024, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

GeneReviews® chapters are owned by the University of Washington. Permission is hereby granted to reproduce, distribute, and translate copies of content materials for noncommercial research purposes only, provided that (i) credit for source (http://www.genereviews.org/) and copyright (© 1993-2024 University of Washington) are included with each copy; (ii) a link to the original material is provided whenever the material is published elsewhere on the Web; and (iii) reproducers, distributors, and/or translators comply with the GeneReviews® Copyright Notice and Usage Disclaimer. No further modifications are allowed. For clarity, excerpts of GeneReviews chapters for use in lab reports and clinic notes are a permitted use.

For more information, see the GeneReviews® Copyright Notice and Usage Disclaimer.

For questions regarding permissions or whether a specified use is allowed, contact: ude.wu@tssamda.

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.