NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE24358 Query DataSets for GSE24358
Status Public on Dec 12, 2012
Title Gene expression profiling of neuroendocrine primary tumors: effect of Octreotide treatment
Organism Homo sapiens
Experiment type Expression profiling by array
Summary The management of neuroendocrine tumors (NETs) is very variable, depending on many specific aspects, such as the type of tumor, spread and patient general health. Several advances have been made with the newly developed somatostatin analogues to cure this type of malignancies. Somatostain analogues such as octreotide have been used in clinic to treat patients with neuroendocrine tumors (NETs). However, the molecular mechanism leading either to successful therapy or acquired resistance to the analogues is still to large extent unclear. Patients develop drugs resistance during a long term treatment. Therefore, to identify the pivotal regulatory genes involved in the development of drug resistance is an actual challenge. We studied five human neuroendocrine tumor cell lines, CNDT2.5, KRJ1, QGP-1, NCI H720 and NCI H727. We also investigated a long-term treated CNDT2.5 by using octreotide. We performed gene expression profiling in all the human neuroendocrine cell lines.
Keywords: Gene Expression profiling, treatment comparison
 
Overall design We investigated 5 human neuroendocrine cell lines, CNDT2.5 and KRJ1, established from ileum NETs, QGP1 by a pancreatic NET, NCI H720 and NCI H727 from bronchopulmonary NETs. CNDT2.5 cell were constantly treated with 1µM octreotide for 10 and 16 months. We isolated total RNA (Ambion, PARIS™ Kit) from 5 WT cell lines and CNDT2.5 treated with octreotide (Santostatin, Novartis). Total RNA was hybridized onto the Affymetrix Human Gene 1.0 ST Array by Affymetrix Uppsala Platform, UU. SE (Uppsala, Sweden). We first wanted to verify whether the different cell lines may become reliable models to study neuroendocrine signaling pathways. The main objective of this project aimed at understanding the mechanisms by which octrotide (Sandostatin, Novartis) alter cellular growth and differentiation of CNDT2.5 cells. We therefore focused on intermediate (10 months) and long stimulation (16 months) events triggered by sandostatin, which lead variation of CNDT.2.5 cells gene expression to identify potential pivotal genes involved in the development of drug resistance in neuroendocrine cells.
 
Contributor(s) Li S, Essaghir A, Demoulin J, Giandomenico V
Citation(s) 23119007
Submission date Sep 24, 2010
Last update date Jul 26, 2018
Contact name Jean-Baptiste Demoulin
Organization name Université catholique de Louvain
Department de Duve Institute
Lab UCL - MEXP
Street address av Hippocrate 75, B1.74.05
City Brussels
ZIP/Postal code B-1200
Country Belgium
 
Platforms (1)
GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]
Samples (8)
GSM600366 Ileum neuroendocrine cell line, + octreotide 10 months
GSM600367 Ileum neuroendocrine cell line, + octreotide 16 months
GSM600368 Ileum neuroendocrine cell line, 10 months
Relations
BioProject PRJNA132815

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE24358_RAW.tar 29.0 Mb (http)(custom) TAR (of CEL, CHP)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap