U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 38

1.

Alstrom syndrome

Alström syndrome is characterized by cone-rod dystrophy, obesity, progressive bilateral sensorineural hearing impairment, acute infantile-onset cardiomyopathy and/or adolescent- or adult-onset restrictive cardiomyopathy, insulin resistance / type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and chronic progressive kidney disease. Cone-rod dystrophy presents as progressive visual impairment, photophobia, and nystagmus usually starting between birth and age 15 months. Many individuals lose all perception of light by the end of the second decade, but a minority retain the ability to read large print into the third decade. Children usually have normal birth weight but develop truncal obesity during their first year. Sensorineural hearing loss presents in the first decade in as many as 70% of individuals and may progress to the severe or moderately severe range (40-70 db) by the end of the first to second decade. Insulin resistance is typically accompanied by the skin changes of acanthosis nigricans, and proceeds to T2DM in the majority by the third decade. Nearly all demonstrate hypertriglyceridemia. Other findings can include endocrine abnormalities (hypothyroidism, hypogonadotropic hypogonadism in males, and hyperandrogenism in females), urologic dysfunction / detrusor instability, progressive decrease in renal function, and hepatic disease (ranging from elevated transaminases to steatohepatitis/NAFLD). Approximately 20% of affected individuals have delay in early developmental milestones, most commonly in gross and fine motor skills. About 30% have a learning disability. Cognitive impairment (IQ <70) is very rare. Wide clinical variability is observed among affected individuals, even within the same family. [from GeneReviews]

MedGen UID:
78675
Concept ID:
C0268425
Disease or Syndrome
2.

Megaloblastic anemia, thiamine-responsive, with diabetes mellitus and sensorineural deafness

Thiamine-responsive megaloblastic anemia syndrome (TRMA) is characterized by megaloblastic anemia, progressive sensorineural hearing loss, and diabetes mellitus. Onset of megaloblastic anemia occurs between infancy and adolescence. The anemia is corrected with thiamine treatment, but the red cells remain macrocytic and anemia can recur if treatment is withdrawn. Progressive sensorineural hearing loss often occurs early and can be detected in toddlers; hearing loss is irreversible and may not be prevented by thiamine treatment. The diabetes mellitus is non-type I in nature, with age of onset from infancy to adolescence. Thiamine treatment may reduce insulin requirement and delay onset of diabetes in some individuals. [from GeneReviews]

MedGen UID:
83338
Concept ID:
C0342287
Congenital Abnormality
3.

Leber congenital amaurosis 4

Autosomal recessive childhood-onset severe retinal dystrophy is a heterogeneous group of disorders affecting rod and cone photoreceptors simultaneously. The most severe cases are termed Leber congenital amaurosis (LCA), whereas the less aggressive forms are usually considered juvenile retinitis pigmentosa (Gu et al., 1997). Various intermediate phenotypes between LCA and retinitis pigmentosa are known and are sometimes described as 'early-onset severe rod-cone dystrophy' or 'early-onset retinal degeneration' (Booij et al., 2005). For a general phenotypic description and a discussion of genetic heterogeneity of Leber congenital amaurosis, see LCA1 (204000); for retinitis pigmentosa, see 268000; for cone-rod dystrophy, see 120970. [from OMIM]

MedGen UID:
346808
Concept ID:
C1858386
Disease or Syndrome
4.

Cone-rod dystrophy 2

Cone-rod dystrophy (CORD) characteristically leads to early impairment of vision. An initial loss of color vision and of visual acuity is followed by nyctalopia (night blindness) and loss of peripheral visual fields. In extreme cases, these progressive symptoms are accompanied by widespread, advancing retinal pigmentation and chorioretinal atrophy of the central and peripheral retina (Moore, 1992). In many families, perhaps a majority, central and peripheral chorioretinal atrophy is not found (Tzekov, 1998). Genetic Heterogeneity of Autosomal Cone-Rod Dystrophy There are several other autosomal forms of CORD for which the molecular basis is known. CORD3 (604116) is caused by mutation in the ABCA4 gene (601691) on chromosome 1p22. CORD5 (600977) is caused by mutation in the PITPNM3 gene (608921) on chromosome 17p13. CORD6 (601777) is caused by mutation in the GUCY2D gene (600179) on chromosome 17p13.1. CORD9 (612775) is caused by mutation in the ADAM9 gene (602713) on chromosome 8p11. CORD10 (610283) is caused by mutation in the SEMA4A gene (607292) on chromosome 1q22. CORD11 (610381) is caused by mutation in the RAXL1 gene (610362) on chromosome 19p13. CORD12 (612657) is caused by mutation in the PROM1 gene (604365) on chromosome 4p15. CORD13 (608194) is caused by mutation in the RPGRIP1 gene (605446) on chromosome 14q11. CORD14 (see 602093) is caused by mutation in the GUCA1A gene (600364) on chromosome 6p21. CORD15 (613660) is caused by mutation in the CDHR1 gene (609502) on chromosome 10q23. CORD16 (614500) is caused by mutation in the C8ORF37 gene (614477) on chromosome 8q22. CORD18 (615374) is caused by mutation in the RAB28 gene (612994) on chromosome 4p15. CORD19 (615860) is caused by mutation in the TTLL5 gene (612268) on chromosome 14q24. CORD20 (615973) is caused by mutation in the POC1B gene (614784) on chromosome 12q21. CORD21 (616502) is caused by mutation in the DRAM2 gene (613360) on chromosome 1p13. CORD22 (619531) is caused by mutation in the TLCD3B gene (615175) on chromosome 16p11. CORD23 (see 613428) is caused by mutation in the C2ORF71 gene (PCARE; 613425) on chromosome 2p23. CORD24 (620342) is caused by mutation in the UNC119 gene (604011) on chromosome 17q11. A diagnosis of CORD was made in an individual with a mutation in the AIPL1 gene (604392.0004) on chromosome 17p13.1, as well as in an individual with a mutation in the UNC119 gene (604011.0001) on chromosome 17q11.2. Other mapped loci for autosomal CORD include CORD1 (600624) on chromosome 18q21.1-q21.3; CORD7 (603649) on chromosome 6q14; CORD8 (605549) on chromosome 1q12-q24; and CORD17 (615163) on chromosome 10q26. For a discussion of X-linked forms of cone-rod dystrophy, see CORDX1 (304020). [from OMIM]

MedGen UID:
483485
Concept ID:
C3489532
Disease or Syndrome
5.

Cone-rod dystrophy 3

Cone-rod dystrophy-3 (CORD3) is an autosomal recessive, clinically heterogeneous retinal disorder with typical findings of reduced visual acuity, impairment of the central visual field, color vision deficits, and fundoscopic evidence of maculopathy, with no or few midperipheral retinal pigment deposits. Cone degeneration appears early in life with a central involvement of the retina, followed by a degeneration of rods several years later (summary by Klevering et al., 2002 and Ducroq et al., 2002). Both cone and rod a- and b-wave electroretinogram (ERG) amplitudes are reduced (Fishman et al., 2003). For a general phenotypic description and a discussion of genetic heterogeneity of cone-rod dystrophy, see 120970. [from OMIM]

MedGen UID:
349030
Concept ID:
C1858806
Disease or Syndrome
6.

Cone-rod dystrophy 6

The first signs and symptoms of cone-rod dystrophy, which often occur in childhood, are usually decreased sharpness of vision (visual acuity) and increased sensitivity to light (photophobia). These features are typically followed by impaired color vision (dyschromatopsia), blind spots (scotomas) in the center of the visual field, and partial side (peripheral) vision loss. Over time, affected individuals develop night blindness and a worsening of their peripheral vision, which can limit independent mobility. Decreasing visual acuity makes reading increasingly difficult and most affected individuals are legally blind by mid-adulthood. As the condition progresses, individuals may develop involuntary eye movements (nystagmus).

There are more than 30 types of cone-rod dystrophy, which are distinguished by their genetic cause and their pattern of inheritance: autosomal recessive, autosomal dominant, and X-linked. Additionally, cone-rod dystrophy can occur alone without any other signs and symptoms or it can occur as part of a syndrome that affects multiple parts of the body.

Cone-rod dystrophy is a group of related eye disorders that causes vision loss, which becomes more severe over time. These disorders affect the retina, which is the layer of light-sensitive tissue at the back of the eye. In people with cone-rod dystrophy, vision loss occurs as the light-sensing cells of the retina gradually deteriorate. [from MedlinePlus Genetics]

MedGen UID:
400963
Concept ID:
C1866293
Disease or Syndrome
7.

Cone-rod dystrophy 16

Cone-rod dystrophy (CORD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. RP is characterized initially by rod photoreceptor dysfunction, giving rise to night blindness, which is followed by progressive rod and cone photoreceptor dystrophy, resulting in midperipheral vision loss, tunnel vision, and sometimes blindness. In contrast to RP, CORD is characterized by a primary loss of cone photoreceptors and subsequent or simultaneous loss of rod photoreceptors. The disease in most cases becomes apparent during primary-school years, and symptoms include photoaversion, decrease in visual acuity with or without nystagmus, color vision defects, and decreased sensitivity of the central visual field. Because rods are also involved, night blindness and peripheral vision loss can occur. The diagnosis of CORD is mainly based on electroretinogram (ERG) recordings, in which cone responses are more severely reduced than, or equally as reduced as rod responses (summary by Estrada-Cuzcano et al., 2012). [from OMIM]

MedGen UID:
482675
Concept ID:
C3281045
Disease or Syndrome
8.

Bardet-Biedl syndrome 19

Bardet-Biedl syndrome-19 (BBS19) is an autosomal recessive ciliopathy characterized by obesity, impaired intellectual development, polydactyly, renal failure, retinitis pigmentosa, and hypogonadism (Aldahmesh et al., 2014). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900). [from OMIM]

MedGen UID:
855173
Concept ID:
C3889475
Disease or Syndrome
9.

Cone dystrophy 4

Achromatopsia is characterized by reduced visual acuity, pendular nystagmus, increased sensitivity to light (photophobia), a small central scotoma, eccentric fixation, and reduced or complete loss of color discrimination. All individuals with achromatopsia (achromats) have impaired color discrimination along all three axes of color vision corresponding to the three cone classes: the protan or long-wavelength-sensitive cone axis (red), the deutan or middle-wavelength-sensitive cone axis (green), and the tritan or short-wavelength-sensitive cone axis (blue). Most individuals have complete achromatopsia, with total lack of function of all three types of cones. Rarely, individuals have incomplete achromatopsia, in which one or more cone types may be partially functioning. The manifestations are similar to those of individuals with complete achromatopsia, but generally less severe. Hyperopia is common in achromatopsia. Nystagmus develops during the first few weeks after birth followed by increased sensitivity to bright light. Best visual acuity varies with severity of the disease; it is 20/200 or less in complete achromatopsia and may be as high as 20/80 in incomplete achromatopsia. Visual acuity is usually stable over time; both nystagmus and sensitivity to bright light may improve slightly. Although the fundus is usually normal, macular changes (which may show early signs of progression) and vessel narrowing may be present in some affected individuals. Defects in the macula are visible on optical coherence tomography. [from GeneReviews]

MedGen UID:
416518
Concept ID:
C2751308
Disease or Syndrome
10.

Cone-rod dystrophy 12

Cone-rod dystrophy is a group of related eye disorders that causes vision loss, which becomes more severe over time. These disorders affect the retina, which is the layer of light-sensitive tissue at the back of the eye. In people with cone-rod dystrophy, vision loss occurs as the light-sensing cells of the retina gradually deteriorate.

There are more than 30 types of cone-rod dystrophy, which are distinguished by their genetic cause and their pattern of inheritance: autosomal recessive, autosomal dominant, and X-linked. Additionally, cone-rod dystrophy can occur alone without any other signs and symptoms or it can occur as part of a syndrome that affects multiple parts of the body.

The first signs and symptoms of cone-rod dystrophy, which often occur in childhood, are usually decreased sharpness of vision (visual acuity) and increased sensitivity to light (photophobia). These features are typically followed by impaired color vision (dyschromatopsia), blind spots (scotomas) in the center of the visual field, and partial side (peripheral) vision loss. Over time, affected individuals develop night blindness and a worsening of their peripheral vision, which can limit independent mobility. Decreasing visual acuity makes reading increasingly difficult and most affected individuals are legally blind by mid-adulthood. As the condition progresses, individuals may develop involuntary eye movements (nystagmus). [from MedlinePlus Genetics]

MedGen UID:
393334
Concept ID:
C2675210
Disease or Syndrome
11.

X-linked cone-rod dystrophy 3

Cone-rod dystrophy is a retinal disorder with predominantly cone involvement. Rod impairment may occur at the same time as the cone impairment or appear later. Patients with CORD usually have reduced visual acuity, photophobia, and color vision defects (summary by Huang et al., 2013). For a discussion of genetic heterogeneity of X-linked cone-rod dystrophy, see 304020. [from OMIM]

MedGen UID:
336932
Concept ID:
C1845407
Disease or Syndrome
12.

Bardet-Biedl syndrome 17

Bardet-Biedl syndrome-17 (BBS17) is an autosomal recessive ciliopathy characterized by retinitis pigmentosa, cognitive impairment, obesity, renal dysfunction, and hypogenitalism. Polydactyly, most often postaxial, is also a primary feature of BBS; in BBS17, mesoaxial polydactyly, with fused or Y-shaped metacarpals, is a distinct manifestation (Deffert et al., 2007; Schaefer et al., 2014). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900). [from OMIM]

MedGen UID:
811538
Concept ID:
C3714980
Disease or Syndrome
13.

Cone-rod dystrophy 13

The first signs and symptoms of cone-rod dystrophy, which often occur in childhood, are usually decreased sharpness of vision (visual acuity) and increased sensitivity to light (photophobia). These features are typically followed by impaired color vision (dyschromatopsia), blind spots (scotomas) in the center of the visual field, and partial side (peripheral) vision loss. Over time, affected individuals develop night blindness and a worsening of their peripheral vision, which can limit independent mobility. Decreasing visual acuity makes reading increasingly difficult and most affected individuals are legally blind by mid-adulthood. As the condition progresses, individuals may develop involuntary eye movements (nystagmus).

There are more than 30 types of cone-rod dystrophy, which are distinguished by their genetic cause and their pattern of inheritance: autosomal recessive, autosomal dominant, and X-linked. Additionally, cone-rod dystrophy can occur alone without any other signs and symptoms or it can occur as part of a syndrome that affects multiple parts of the body.

Cone-rod dystrophy is a group of related eye disorders that causes vision loss, which becomes more severe over time. These disorders affect the retina, which is the layer of light-sensitive tissue at the back of the eye. In people with cone-rod dystrophy, vision loss occurs as the light-sensing cells of the retina gradually deteriorate. [from MedlinePlus Genetics]

MedGen UID:
413025
Concept ID:
C2750720
Disease or Syndrome
14.

Axial spondylometaphyseal dysplasia

Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on electroretinogram. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora (summary by Suzuki et al., 2011). [from OMIM]

MedGen UID:
356065
Concept ID:
C1865695
Disease or Syndrome
15.

Cone dystrophy 3

Progressive cone dystrophy usually presents in childhood or early adult life, with many patients developing rod photoreceptor involvement in later life, thereby leading to considerable overlap between progressive cone dystrophy and cone-rod dystrophy. Both progressive cone dystrophy and cone-rod dystrophy have been associated with mutation in the GUCA1A gene (Michaelides et al., 2006). Intrafamilial variability in GUCA1A-associated macular disease ranges from mild photoreceptor degeneration to central areolar choroidal dystrophy (CACD), a form of retinal degeneration that primarily involves the macula and is characterized by a well-defined atrophic region of retinal pigment epithelium and choriocapillaris in the latest stage (Chen et al., 2017). [from OMIM]

MedGen UID:
356104
Concept ID:
C1865869
Disease or Syndrome
16.

Cone-rod dystrophy 5

Cone-rod dystrophy-5 (CORD5) is characterized by reduced visual acuity, photophobia, and defective color vision. Most patients experience onset of symptoms in early childhood, with progression to legal blindness by early adulthood, although some patients exhibit a milder phenotype, with onset in the fourth or fifth decade of life (Kohn et al., 2007; Reinis et al., 2013). For a general phenotypic description and a discussion of genetic heterogeneity of cone-rod dystrophy, see 120970. [from OMIM]

MedGen UID:
322083
Concept ID:
C1832976
Disease or Syndrome
17.

Cone dystrophy with supernormal rod response

Cone dystrophy with supernormal rod responses (CDSRR) is characterized by onset in the first or second decade of life of very marked photophobia, myopia, reduced color vision along the red-green axis with relatively preserved tritan discrimination, and central scotomata with peripheral widespread sensitivity loss predominating in the superior visual field. Nyctalopia is a later feature of the disorder. There is often retinal pigment epithelium disturbance at the macula with a normal retinal periphery. Autofluorescence (AF) imaging shows either a perifoveal ring or a central macular area of relative increased AF (summary by Michaelides et al., 2005). [from OMIM]

MedGen UID:
332081
Concept ID:
C1835897
Disease or Syndrome
18.

Cone-rod dystrophy 7

Cone-rod dystrophy is a group of related eye disorders that causes vision loss, which becomes more severe over time. These disorders affect the retina, which is the layer of light-sensitive tissue at the back of the eye. In people with cone-rod dystrophy, vision loss occurs as the light-sensing cells of the retina gradually deteriorate.

There are more than 30 types of cone-rod dystrophy, which are distinguished by their genetic cause and their pattern of inheritance: autosomal recessive, autosomal dominant, and X-linked. Additionally, cone-rod dystrophy can occur alone without any other signs and symptoms or it can occur as part of a syndrome that affects multiple parts of the body.

The first signs and symptoms of cone-rod dystrophy, which often occur in childhood, are usually decreased sharpness of vision (visual acuity) and increased sensitivity to light (photophobia). These features are typically followed by impaired color vision (dyschromatopsia), blind spots (scotomas) in the center of the visual field, and partial side (peripheral) vision loss. Over time, affected individuals develop night blindness and a worsening of their peripheral vision, which can limit independent mobility. Decreasing visual acuity makes reading increasingly difficult and most affected individuals are legally blind by mid-adulthood. As the condition progresses, individuals may develop involuntary eye movements (nystagmus). [from MedlinePlus Genetics]

MedGen UID:
355026
Concept ID:
C1863634
Disease or Syndrome
19.

Retinal cone dystrophy 4

Any cone dystrophy in which the cause of the disease is a mutation in the CACNA2D4 gene. [from MONDO]

MedGen UID:
355308
Concept ID:
C1864849
Disease or Syndrome
20.

Cone-rod dystrophy 11

The first signs and symptoms of cone-rod dystrophy, which often occur in childhood, are usually decreased sharpness of vision (visual acuity) and increased sensitivity to light (photophobia). These features are typically followed by impaired color vision (dyschromatopsia), blind spots (scotomas) in the center of the visual field, and partial side (peripheral) vision loss. Over time, affected individuals develop night blindness and a worsening of their peripheral vision, which can limit independent mobility. Decreasing visual acuity makes reading increasingly difficult and most affected individuals are legally blind by mid-adulthood. As the condition progresses, individuals may develop involuntary eye movements (nystagmus).

There are more than 30 types of cone-rod dystrophy, which are distinguished by their genetic cause and their pattern of inheritance: autosomal recessive, autosomal dominant, and X-linked. Additionally, cone-rod dystrophy can occur alone without any other signs and symptoms or it can occur as part of a syndrome that affects multiple parts of the body.

Cone-rod dystrophy is a group of related eye disorders that causes vision loss, which becomes more severe over time. These disorders affect the retina, which is the layer of light-sensitive tissue at the back of the eye. In people with cone-rod dystrophy, vision loss occurs as the light-sensing cells of the retina gradually deteriorate. [from MedlinePlus Genetics]

MedGen UID:
322767
Concept ID:
C1835865
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity