U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Expression data of human somatic cell types and induced pluripotent stem cells

(Submitter supplied) Transcription factor-mediated reprogramming yields induced pluripotent stem cells (iPSC) by erasing tissue specific methylation and re-setting DNA methylation status to an embryonic stage. We compared bona fide human iPSC derived from umbilical cord blood (CB) and neonatal keratinocytes (K). Through both incomplete erasure of tissue specific methylation and de novo tissue specific methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
8 Samples
Download data: CEL
Series
Accession:
GSE27186
ID:
200027186
2.

DNA methylation data from human keratinocyte-derived iPS cells (N9) and ES cells

(Submitter supplied) Genome-wide DNA methylation of early and late passaged keratinocyte-derived iPS cells were compared to ES cells. We used custom Nimblegen microarrays to determine the genome-wide DNA methylation in human keratinocyte-derived iPS cells and ES cells
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL13611
17 Samples
Download data: XYS
Series
Accession:
GSE31742
ID:
200031742
3.

Donor cell type influences the epigenome and differentiation potential of human induced pluripotent stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Methylation profiling by genome tiling array
Platforms:
GPL13611 GPL13134 GPL570
49 Samples
Download data: CEL, XYS
Series
Accession:
GSE27224
ID:
200027224
4.

DNA methylation data from human iPS cells, ES cells, cord blood, and keratinocytes

(Submitter supplied) Genome-wide DNA methylation was studied to determine whether iPS cells retain epigenetic memory at loci associated with its tissue of origin. We used custom Nimblegen microarrays to determine the genome-wide DNA methylation in human iPS cells, ES cells, and somatic cells
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL13134
24 Samples
Download data: XYS
Series
Accession:
GSE27134
ID:
200027134
5.

DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time (Agilent)

(Submitter supplied) We examined genome-wide gene expression with human iPSC lines derived from different cell types, and human ESC lines using Agilent Whole Human Genome Microarray chips G4112F.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6480
16 Samples
Download data: TXT
Series
Accession:
GSE24677
ID:
200024677
6.

DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time

(Submitter supplied) We examined genome-wide DNA methylation with 22 human iPSC lines derived from different cell types and human ESC lines using Illumina’s Infinium HumanMethylation27 and focused on aberrant methylation sites in iPSCs for up to 42-week continuous cultivation. The iPSCs exhibited distinct epigenetic distances from ESCs at early passage. Continuous passaging of the iPSCs diminishes these differences between iPSCs and ESCs.
Organism:
Homo sapiens
Type:
Methylation profiling by array
Platform:
GPL8490
47 Samples
Download data: TXT
Series
Accession:
GSE24676
ID:
200024676
7.

Gene expression signatures for human iPS cell lines

(Submitter supplied) The reprogramming of human fibroblasts to generate induced pluripotent stem cells (hiPSCs) has been achieved through the expression of only a few exotic factors1-8, which is morphologically and molecularly verified in outer cellular states by characteristic markers, due to the remodeling of the somatic cell transcription programs in inner cellular states to the ES-like condition. Transcription factor-induced reprogramming to self-renewal and pluripotency raises the question as to how the exotic factors act to bring about these changes in the two cellular states9-11. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3842
Platform:
GPL4133
51 Samples
Download data: TXT
Series
Accession:
GSE20750
ID:
200020750
8.
Full record GDS3842

Transcription factor-induced pluripotent stem cells

Analysis of induced pluripotent stem cells (iPSC) and their parental somatic cells (SC) from amniotic mesodermal (AM), placental artery endothelial (PAE), uterine endometrium (UtE), and MRC sources. Results identify potential candidates for linkage between inner and outer cellular states in iPSCs.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 13 cell line, 2 cell type, 14 other sets
Platform:
GPL4133
Series:
GSE20750
51 Samples
Download data: TXT
9.

DNA methylation data from mouse iPS cells, ES cells, and ntES cells

(Submitter supplied) Genome-wide DNA methylation was studied to determine whether iPS cells retain epigenetic memory at loci associated with its tissue of origin. We used custom Nimblegen microarrays to determine the genome-wide DNA methylation in mouse iPS cells.
Organism:
Mus musculus
Type:
Methylation profiling by genome tiling array
Platforms:
GPL10680 GPL10683
85 Samples
Download data: XYS
Series
Accession:
GSE22851
ID:
200022851
10.

Somatic transcriptome priming gates lineage specific differentiation potential of human induced pluripotent stem cell states

(Submitter supplied) Human induced pluripotent stem cells (hiPSCs) provide an invaluable source for regenerative medicine; but are limited by proficient lineage specific differentiation. Here we reveal that hiPSCs derived from dermal skin fibroblasts (Fib) vs. human cord blood (CB) cells exhibit equivalent and indistinguishable pluripotent properties, but harbor important propensities for neural and hematopoietic lineage differentiation, independent of reprogramming factors used. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6244
22 Samples
Download data: CEL
Series
Accession:
GSE62066
ID:
200062066
11.

Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

(Submitter supplied) Epigenetic memory in induced pluripotent stem cells (iPSCs), with regards to their somatic cell type of origin, might lead to variations in their differentiation capacities. In this context, iPSCs from human CD34+ hematopoietic stem cells (HSCs) might be more suitable for hematopoietic differentiation than commonly used fibroblast-derived iPSCs. To investigate the influence of an epigenetic memory on the ex vivo expansion of iPSCs into erythroid cells, we compared iPSCs from human neural stem cells (NSCs) and human cord blood-derived CD34+ HSCs and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells (RBCs). more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
8 Samples
Download data: TXT
Series
Accession:
GSE55109
ID:
200055109
12.

MicroRNAs Contribute to iPSC-Somatic Donor Memory

(Submitter supplied) miRNA expression analysis in iPSC derived from CD133+cells from Cord Blood
Organism:
synthetic construct; Homo sapiens
Type:
Non-coding RNA profiling by array
Platform:
GPL16384
6 Samples
Download data: CEL
Series
Accession:
GSE45219
ID:
200045219
13.

Defining Differentiated Methylation Regions Especial for Pluripotency Acquisition and Maintenance in Human Stem Cell

(Submitter supplied) Here, we determined the DNA methylation profiles of 12 human cell lines, including 2 ESC lines, 2 pESC lines,4 virally-delivered iPSC lines, 2 episomal-delivered iPSC lines, and 2 parent cell lines that iPSCs derived from using Illumina’s Infinium HumanMethylation450. The iPSCs exhibited a hypermethylation status similarly to ESCs but distinct differences from the parent cells. Genes of common methylation pattern between iPSCs and ESCs were regarded as critical factors for stemness, while differences existing between iPSCs and ESCs implied that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cell reprogramming. more...
Organism:
Homo sapiens
Type:
Non-coding RNA profiling by genome tiling array
Platform:
GPL13534
12 Samples
Download data: IDAT, TXT
Series
Accession:
GSE57992
ID:
200057992
14.

Expression data from epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells

(Submitter supplied) Three induced pluripotent stem (iPS) cell lines were generated from pancreatic BCD (beta-cell-derived cells). One iPS cell clone was derived from pancreatic non-beta cells. We used microarrays to study the gene expression profiles of beta-iPSCs, and compared the expression of genes in their somatic parental cells and other ES and iPS cells.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6244
4 Samples
Download data: CEL
Series
Accession:
GSE29880
ID:
200029880
15.

Efficient hematopoietic redifferentiation of induced pluripotent stem cells derived from primitive murine bone marrow cells

(Submitter supplied) Heterogeneity among iPSC lines with regard to their gene expression profile and differentiation potential has been described and has been at least partly linked to the tissue of origin. We generated iPSCs from primitive (linneg) and non-adherent differentiated (linpos) bone marrow cells (BM-iPSC), and compared their differentiation potential to that of fibroblast-derived iPSCs (Fib-iPSC) and ESCs. In the undifferentiated state, individual iPSC clones but also ESCs proved remarkably similar when analyzed for alkaline phosphatase and SSEA-1 staining, endogenous expression of the pluripotency genes Nanog, Oct4, and Sox2, or global gene expression profiles. However, substantial differences between iPSC clones were observed after induction of differentiation, which became most obvious upon cytokine-mediated instruction towards the hematopoietic lineage. All three BM-iPSC lines derived from undifferentiated cells yielded high proportions of cells expressing the hematopoietic differentiation marker CD41, and in two of these lines, high proportions of CD41+/CD45+ cells were detected. In contrast, little hematopoiesis-specific surface marker expression was detected in linpos BM-iPSC and FIB-iPSC lines. These results were corroborated by functional studies demonstrating robust colony outgrowth from hematopoietic progenitors in two of the linneg BM-iPSCs only. Thus, in summary our data demonstrate efficient generation of iPSCs from primitive hematopoietic tissue as well as efficient hematopoietic redifferentiation for linneg BM-iPSC lines, thereby further supporting the notion of an epigenetic memory in iPSCs. Murine embryonic fibroblasts (MEFs) from C3H mice were cultured in low-glucose DMEM supplemented with 10% heat-inactivated fetal calf serum gold (PAA, Pasching, Austria), penicillin-streptomycin, 1 mM L-glutamine and 0.05 mM beta-mercaptoethanol on gelatine-coated dishes. C3H MEFs were grown to confluence, inactivated with 10 ug/ml Mitomycin C (Sigma) and used as feeder layers. Virus production was performed in a four plasmid-manner. Briefly, 3.5x10^6 293T cells were seeded 24h prior to transfection in 10 cm dishes. 293T cells were cultivated in high-glucose DMEM (Gibco) supplemented with 10% heat-inactivated FCS, penicillin-streptomycin and 1 mM L-glutamine. Cells were transfected with 5 ug lentiviral vector, 8 ug pcDNA3.GP.4xCTE (expressing HIV-1 gag/pol), 5 ug pRSV-Rev and 2 ug pMD.G (encoding the VSV glycoprotein) using the calcium phosphate method in the presence of HEPES and chloroquine. Supernatants were harvested 48h and 72h after transfection, filtered and subsequently 50x concentrated by ultracentrifugation. Titers determined based on real-time PCR, were in the range of 1-5x10^7/ml. For iPSC generation, bone marrow cells were isolated from femurs and tibias of Oct4-GFP transgenic mice (OG2) and immunomagnetically separated into lineage negative (Lin-) and lineage positive (Lin+) populations using the mouse lineage depletion kit (Miltenyi Biotec). Lin- cells were cultivated in serum-free StemSpan medium (Stem Cell Technology) supplemented with 2 mM L-glutamine, penicillin-streptomycin, 10 ng/ml mSCF, 20 ng/ml mTPO, 20 ng/ml, 20 ng/ml IGF-2 and 10 ng/ml FGF-1 (all Peprotech). Lin+ cells were cultivated in Iscove's modified eagle medium (IMDM), supplemented with 15% heat-inactivated FCS, 1 mM L-glutamine, penicillin-streptomycin, 100 ng/ml mSCF, 100 ng/ml mFLT3-L, 10 ng/ml hIL-3 and 100 ng/ml hIL-11. Both Lin- and Lin+ cells were pre-stimulated in the aforementioned media for 48 h. Thereafter, 2x10^5 Lin- and and Lin+ bone marrow cells were transduced on Retronection-coated plates (Takara) with lentiviral vectors encoding for human Oct4, Sox2, Klf4 and c-Myc using a multiplicity of infection (MOI) of 50 per virus. Twenty-four hours after transduction, media were supplemented with 2 mM valproic acid. Transduced bone marrow cells were kept in hematopoietic medium until 5 or 7 days post transduction (p.t.) and then transferred onto Mitomycin C-treated MEF feeders on gelatine-coated dishes. Henceforward, cells were cultivated in ES cell medium (knockout DMEM (Gibco), 15% ES-tested FCS, 1 mM L-glutamine, 0.1 mM non-essential amino acids (Gibco), 100 uM beta-mercaptoethanol (Sigma), penicillin-streptomycin and 103 units/ml leukemia inhibitory factor (LIF, provided by the Max-Planck-Institute, Munster, Germany). Upon appearance of GFP-positive ESC-like colonies, single colonies were picked based on morphology and GFP expression. Murine ESCs and iPSCs were cultured on Mitomycin C-treated MEF feeders in the aforementioned ES medium. Murine ESCs and iPSCs were passaged every 2-3 days. The murine embryonic fibroblast-derived iPSC lines (MEF-iPS, 3FLV2, 4FLV1) were generated by transduction of OG2-MEFs with the same lentiviral vector constructs using standard technology. For iPSC lines 3FLV2 and 4FLV1, complete reprogramming was demonstrated by alkaline phosphatase and SSEA1-staining, pluripotency factor expression and teratoma formation.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
7 Samples
Download data: TXT
Series
Accession:
GSE29635
ID:
200029635
16.

Reprogramming-associated aberrant DNA methylation determines hematopoietic differentiation capacity of human induced pluripotent stem cells [iPSCs_expression_with_different_culture_conditions]

(Submitter supplied) The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL14550
8 Samples
Download data: TXT
Series
Accession:
GSE81453
ID:
200081453
17.

Reprogramming-associated aberrant DNA methylation determines hematopoietic differentiation capacity of human induced pluripotent stem cells [iPSCs_methylation 2]

(Submitter supplied) The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL13534
12 Samples
Download data: TXT
Series
Accession:
GSE81452
ID:
200081452
18.

Reprogramming-associated aberrant DNA methylation determines hematopoietic differentiation capacity of human induced pluripotent stem cells [iPSC_ESC_lines]

(Submitter supplied) The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL14550
13 Samples
Download data: TXT
Series
Accession:
GSE75096
ID:
200075096
19.

Reprogramming-associated aberrant DNA methylation determines hematopoietic differentiation capacity of human induced pluripotent stem cells [Erythroid_lines]

(Submitter supplied) The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL14550
6 Samples
Download data: TXT
Series
Accession:
GSE75095
ID:
200075095
20.

Reprogramming-associated aberrant DNA methylation determines hematopoietic differentiation capacity of human induced pluripotent stem cells

(Submitter supplied) The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
29 Samples
Download data: BW, TXT
Series
Accession:
GSE74967
ID:
200074967
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_667c655b9041cd510ca8977a|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center