U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein

(Submitter supplied) Impact of protein ingestion following 1 h intense cycling on the induced transcriptome and signaling in biopsy samples from endurance-trained men, relative to isocaloric control
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6104
39 Samples
Download data: TXT
Series
Accession:
GSE27285
ID:
200027285
2.

Genome-wide analysis of muscle gene expression in response to an intense cycling exercise. Effect of two protein-leucine enriched diets

(Submitter supplied) Protein-leucine supplement ingestion following strenuous endurance exercise accentuates skeletal-muscle protein synthesis and adaptive molecular responses, but the underlying transcriptome is uncharacterized. In a randomized single-blind triple-crossover design, 12 trained men completed 100 min of high-intensity cycling then ingested either 70/15/180/30g protein/leucine/carbohydrate/fat (15LEU), 23/5/180/30g (5LEU) or 0/0/274/30g (CON) beverages during the first 90 min of a 240-min recovery period. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6947
72 Samples
Download data: TXT
Series
Accession:
GSE44818
ID:
200044818
3.

Changes in the transcriptome of circulating neutrophils and skeletal muscle in response to endurance exercise

(Submitter supplied) Analysis of the changes in the transcriptome of circulating neutrophils and skeletal muscle from standardized resting conditions (baseline; pre-EXTRI) to 3, 48 and 96 hours after an experimental exercise trial (EXTRI; 1 hour of cycling followed by 1 hours of running) in 8 healthy, endurance-trained, male subjects. It was hypothesized that the time-course dependent transcriptomic changes would reflect the molecular and signalling mechanisms by which neutrophils regulate and counter-regulate inflammation, and by which skeletal muscle responds, regenerates, and phenotypically adapts to intense, prolonged exercise involving muscle damage. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
64 Samples
Download data
Series
Accession:
GSE43856
ID:
200043856
4.

cDNA microarray analysis of human skeletal muscle after endurance exercise

(Submitter supplied) We examined global mRNA expression using cDNA microarrays in skeletal muscle of humans before, and 3h and 48h after a single bout of exhaustive endurance exercise (cycling). Keywords: Time course
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS1679
Platform:
GPL3457
8 Samples
Download data: GPR
Series
Accession:
GSE4247
ID:
200004247
5.

Buck Institute Human 8k cDNA microarray

(Submitter supplied) 8,432 randomly chosen cDNAs from a 40k Research Genetics human cDNA library were amplified under standard conditions (GeneAmp PCR System 9700) with the help of a volumetric robot (Tecan/Genesis, RSP150 and Tomtec/Quadra 384). Amplified products were transferred to a 384-well plates, purified transferred to 384-well print plates (Genetix), dried and resuspended in print buffer (3xSSC, 1.5M Betaine). more...
Organism:
Homo sapiens
2 DataSets
3 Series
15 Samples
Download data
Platform
Accession:
GPL3457
ID:
100003457
6.
Full record GDS1679

Exhaustive endurance exercise effect on skeletal muscle: time course

Expression profiling of vastus lateralis muscles 3 and 48 hours after a 75-minute bout of high-intensity cycling. Results identify transcriptional pathways activated in skeletal muscles recovering from endurance exercise.
Organism:
Homo sapiens
Type:
Expression profiling by array, log ratio, 2 time sets
Platform:
GPL3457
Series:
GSE4247
8 Samples
Download data: GPR
DataSet
Accession:
GDS1679
ID:
1679
7.

The impact of endurance exercise on human skeletal muscle transcriptome

(Submitter supplied) The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and the untrained muscle in healthy adult young males, both at baseline as well as in response to an acute bout of exercise.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13667
48 Samples
Download data: CEL
Series
Accession:
GSE250122
ID:
200250122
8.

Multi-Omic Integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity [Methylation data]

(Submitter supplied) Analysis of skeletal muscle DNA methylation from type 2 diabetic volunteers before and after 16 weeks of chronic exercise training (two groups, one undergoing aerobic excercise and the other resistance training exercise)
Organism:
Homo sapiens
Type:
Methylation profiling by array
Platform:
GPL13534
34 Samples
Download data: TXT
Series
Accession:
GSE58280
ID:
200058280
9.

Multi-Omic Integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
synthetic construct; Homo sapiens
Type:
Non-coding RNA profiling by array; Expression profiling by array; Methylation profiling by array
Platforms:
GPL13534 GPL14613 GPL10558
102 Samples
Download data: CEL, CHP
Series
Accession:
GSE58250
ID:
200058250
10.

Multi-Omic Integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity [mRNA data]

(Submitter supplied) Analysis of skeletal muscle gene expression from type 2 diabetic volunteers before and after 16 weeks of chronic exercise training (two groups, one undergoing aerobic ecercise and the other resistance training exercise)
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
34 Samples
Download data: TXT
Series
Accession:
GSE58249
ID:
200058249
11.

Multi-Omic Integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity [miRNA data]

(Submitter supplied) Analysis of skeletal muscle miRNA expression from type 2 diabetic volunteers before and after 16 weeks of chronic exercise training (two groups, one undergoing aerobic ecercise and the other resistance training exercise)
Organism:
Homo sapiens; synthetic construct
Type:
Non-coding RNA profiling by array
Platform:
GPL14613
34 Samples
Download data: CEL, CHP
Series
Accession:
GSE58248
ID:
200058248
12.

Impact of protein on muscle transcriptome to endurance training

(Submitter supplied) The present analysis was executed to determine the impact of protein supplementation on changes in the muscle transcriptome following prolonged endurance training
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL28236
80 Samples
Download data: CEL, TXT
Series
Accession:
GSE147494
ID:
200147494
13.

Human skeletal muscle methylome after low carbohydrate energy balanced exercise

(Submitter supplied) We aimed to investigate the human skeletal muscle (SkM) DNA methylome after exercise in low carbohydrate (CHO) energy balance (with high fat) compared with exercise in low-CHO energy deficit (with low fat) conditions. The objective to identify novel epigenetically regulated genes and pathways associated with ‘train-low sleep-low’ paradigms. The sleep-low conditions included 9 males that cycled to deplete muscle glycogen while reaching a set energy expenditure. more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL21145
23 Samples
Download data: IDAT, TXT
Series
Accession:
GSE223786
ID:
200223786
14.

Transcriptome response of human skeletal muscle to divergent exercise stimuli

(Submitter supplied) While acute aerobic and resistance exercise stimulate a number of shared genes, each exercsie mode stimlutes a number of uniquely responsive genes, thus highlighting that different forms of exercise facilitate distinct molecular responses in skeletal muscle.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
29 Samples
Download data: TXT
Series
Accession:
GSE107934
ID:
200107934
15.

Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults

(Submitter supplied) Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
57 Samples
Download data: TXT
16.

Exercise-induced modification of skeletal muscle transcriptome in Arabian horses

(Submitter supplied) Purpose: RNA-seq method was used to select genes expressed in muscle tissue and are potentially associated with exercise adaptation in Arabian horses. Methods: Whole transcriptomes between three time points of muscle tissue collection were compared: T0 (untrained horses), T1 (horses after intense gallop phase) and T2 (at the end of the racing season), in total 23 samples. The biopsy of gluteus medius muscle was performed by using minimally invasive ProMag™ Ultra Automatic Biopsy Instrument with a 2 mm diameter biopsy needle. more...
Organism:
Equus caballus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL22019
23 Samples
Download data: CSV
Series
Accession:
GSE88951
ID:
200088951
17.

A longitudinal gene expression microarray analysis of skeletal muscle resistance training

(Submitter supplied) Skeletal muscle adapts to resistance exercise (RE) performance acutely and chronically. An important regulatory step of muscle adaptation to RE is gene expression. Microarray analysis can be used as an exploratory method to investigate how genes and gene clusters are modulated acutely and chronically by RE. The purpose of the present study was to investigate the effect of training status in the basal (rested) and pre- to 24h post-RE on the global transcriptome in vastus lateralis muscle biopsies of young men. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
40 Samples
Download data: IDAT, TXT
Series
Accession:
GSE106865
ID:
200106865
18.

Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

(Submitter supplied) The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The purpose of the study was to detect the sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, resistance exericse.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
28 Samples
Download data: CEL, CHP
Series
Accession:
GSE24235
ID:
200024235
19.

Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle

(Submitter supplied) In our study, we investigated for contractile activity-specific changes in the transcriptome in untrained and trained (after an aerobic training programme) human skeletal muscle. The second goal was to examine effect of aerobic training on gene expression in muscle at baseline (after long term training). Seven untrained males performed the one-legged knee extension exercise (for 60 min) with the same relative intensity before and after a 2 month aerobic training programme (1 h/day, 5/week). more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL16791 GPL18573
84 Samples
Download data: TXT
20.

Equine skeletal muscle: pre versus post-exercise

(Submitter supplied) Unconditioned thoroughbred geldings were exercised to maximal heart rate or fatigue on an equine high-speed treadmill. Skeletal muscle biopsies were taken from the middle gluteal muscle before, immediately after and four hours after exercise. 
Organism:
Equus caballus
Type:
Expression profiling by array
Platform:
GPL8582
32 Samples
Download data: GPR
Series
Accession:
GSE16235
ID:
200016235
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_672a86e59b324b7290567bfe|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center