U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Promoter DNA sequence guides factors that position the +1 nucleosome and facilitate TBP binding

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae; Saccharomyces cerevisiae S288C; Saccharomyces cerevisiae W303
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11232 GPL17342
64 Samples
Download data: BW, TXT
Series
Accession:
GSE98260
ID:
200098260
2.

Promoter DNA sequence guides factors that position the +1 nucleosome and facilitate TBP binding [sequencing]

(Submitter supplied) Here we present evidence that precise positioning of the +1 promoter nucleosome in yeast is critical for efficient TBP binding and pre-initiation complex assembly, and is determined, at least in part, by the action of two key factors, the essential chromatin remodeler RSC and one (or more) of a small set of ubiquitous pioneer transcription factors (PTFs). Despite their widespread co-localization, we show that RSC and PTFs often act independently to generate accessible chromatin. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
52 Samples
Download data: BW
Series
Accession:
GSE98259
ID:
200098259
3.

Promoter DNA sequence guides factors that position the +1 nucleosome and facilitate TBP binding [array]

(Submitter supplied) Here we present evidence that precise positioning of the +1 promoter nucleosome in yeast is critical for efficient TBP binding and pre-initiation complex assembly, and is determined, at least in part, by the action of two key factors, the essential chromatin remodeler RSC and one (or more) of a small set of ubiquitous pioneer transcription factors (PTFs). Despite their widespread co-localization, we show that RSC and PTFs often act independently to generate accessible chromatin. more...
Organism:
Saccharomyces cerevisiae; Saccharomyces cerevisiae S288C; Saccharomyces cerevisiae W303
Type:
Expression profiling by array
Platform:
GPL11232
12 Samples
Download data: TXT
Series
Accession:
GSE98205
ID:
200098205
4.

The Chromatin Remodelers RSC and ISW1 Display Functional and Chromatin-based Promoter Antagonism

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array; Expression profiling by genome tiling array; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
21 Samples
Download data: BW, TXT
Series
Accession:
GSE65594
ID:
200065594
5.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [MNase-Seq]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
2 Samples
Download data: BW
Series
Accession:
GSE65593
ID:
200065593
6.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [ChIP-seq]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13821 GPL13272
7 Samples
Download data: BW
Series
Accession:
GSE65592
ID:
200065592
7.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [HybMap microarray]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by genome tiling array
Platform:
GPL19733
6 Samples
Download data: TXT
Series
Accession:
GSE65591
ID:
200065591
8.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [nucleosome occupancy]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4130
2 Samples
Download data: TXT
Series
Accession:
GSE65590
ID:
200065590
9.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [ChIP-chip]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4130
4 Samples
Download data: TXT
Series
Accession:
GSE65589
ID:
200065589
10.

Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination

(Submitter supplied) Most yeast genes have a nucleosome-depleted region (NDR) at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. We have examined the interplay between RSC (a conserved essential SWI/SNF-type complex that determines NDR size) and the ISW1, CHD1 and ISW2 nucleosome spacing enzymes in chromatin organization and transcription, using isogenic strains lacking all combinations of these enzymes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
6 Samples
Download data: TDF
Series
Accession:
GSE117514
ID:
200117514
11.

Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination

(Submitter supplied) We addressed the roles of four remodeling machines (ISW1, ISW2, CHD1 and RSC) in specifying the chromatin organization.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19756 GPL13821
32 Samples
Download data: BEDGRAPH
Series
Accession:
GSE73428
ID:
200073428
12.

RSC Defines MNase-sensitive Promoter Architecture in Yeast

(Submitter supplied) The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently challenged by contradictory reports as to whether a distinct set of wider (≳150 bp) NDRs instead contain unusually unstable Micrococcal Nuclease-sensitive “fragile” particles, thought to be nucleosomal because of their size. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
63 Samples
Download data: BEDGRAPH, PDF
Series
Accession:
GSE116853
ID:
200116853
13.

Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly

(Submitter supplied) ATP-dependent chromatin remodelers (CRs), including SWI/SNF, RSC and Ino80C in budding yeast, are thought to stimulate transcription by repositioning or evicting promoter nucleosomes. The relative importance of these CRs in stimulating activator binding and recruitment of TATA-binding protein (TBP) to promoters is incompletely understood. Examining mutants depleted of the catalytic subunits of these CRs, we determined that RSC and Ino80C stimulate binding of transcription factor Gcn4 to nucleosome-depleted regions, or linkers between genic nucleosomes, at multiple target genes activated by Gcn4 in amino acid-starved cells, frequently by evicting nucleosomes from the Gcn4 binding motifs.  At some genes, SWI/SNF functionally complements RSC, while opposing RSC at others to limit Gcn4 binding. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL23014
71 Samples
Download data: BW
Series
Accession:
GSE192592
ID:
200192592
14.

Two Distinct Promoter Nucleosome Architectures at Protein-Coding Genes in Yeast

(Submitter supplied) Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
32 Samples
Download data: BW
Series
Accession:
GSE73337
ID:
200073337
15.

Opposing chromatin remodeler activities control initiation frequency and start site selection

(Submitter supplied) Using an integrated analysis of chromatin remodeler binding in unperturbed cells and nucleosome displacement activity upon rapid remodeler depletion or degradation, we investigate the interplay between these enzymes and their functional consequences. We show that many promoters are acted upon by multiple remodelers that operate either cooperatively or in opposition to determine the precise location of the key transcription start site-associated +1 nucleosome. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other; Methylation profiling by high throughput sequencing
Platforms:
GPL21656 GPL17342
82 Samples
Download data: BIGWIG, BW
Series
Accession:
GSE115412
ID:
200115412
16.

Sequence-Targeted Nucleosome Sliding in vivo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL9134
30 Samples
Download data: TXT
Series
Accession:
GSE72572
ID:
200072572
17.

Sequence-Targeted Nucleosome Sliding in vivo - Transcription Profiling

(Submitter supplied) RNA sequencing was performed on various W303 variants to determine effects of nucleosome repositioning on transcript abundance
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL9134
17 Samples
Download data: TXT, XLS
Series
Accession:
GSE72571
ID:
200072571
18.

Sequence-Targeted Nucleosome Sliding in vivo - Nucleosome Mapping

(Submitter supplied) Nucleosome positions were determined in wild type cells, cells lacking Isw2 or Ume6, and cells containing a hybrid Chd1-Ume6 chimeric remodeler
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9134
13 Samples
Download data: TXT
Series
Accession:
GSE72570
ID:
200072570
19.

RSC Regulates Nucleosome Positioning at Pol II Genes and Density at Pol III Genes

(Submitter supplied) Nucleosomes restrict the access of transcription factors to chromatin. RSC is a SWI/SNF-family chromatin-remodeling complex from yeast that repositions and ejects nucleosomes in vitro. Here, we examined these activities and their importance in vivo. We utilized array-based methods to examine nucleosome occupancy and positioning at more than 200 locations in the genome following the controlled destruction of the catalytic subunit of RSC, Sth1. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL5637
50 Samples
Download data: TXT
Series
Accession:
GSE8862
ID:
200008862
20.

The RSC complex remodels nucleosomes in transcribed coding sequences and promotes transcription in Saccharomyces cerevisiae

(Submitter supplied) RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that not only RSC binds to nucleosomes in coding sequences (CDSs) but also remodels them to promote transcription. RSC MNase ChIP-seq data revealed that RSC-protected fragments were very heterogenous (~80 bp to 180 bp) compared to the sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC activity promotes accessibility of nucleosomal DNA. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21656
8 Samples
Download data: BW
Series
Accession:
GSE147065
ID:
200147065
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_66779a11ccfbad768fc17480|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center